SPARKBio

high-throughput optical cardiotoxicity screening

Developed by The George Washington University

Technology Summary

- First scalable automated all-optical system for high-throughput cardiac toxicity screening (OptoDyCE).
- Optically measures electrophysiology of a variety of primary and stem-cell-derived cells and tissues.
- Compatible with proprietary "spark-cell" spheroids: easy to manipulate, store and deploy for immediate use.
- No genetic modification of the studied cells of interest needed; no viral delivery needed; fast deployment.

Klimas, A. et al. Nat. Commun. 7, 11542 (2016) Klimas A et al. Prog Biophys Mol Biol, 154:62-70 (2020)

OptoDyCE is applicable to various experimental models for drug discovery and cardiotoxicity screening.

Problems with Drug Development Pipeline

Cardiotoxicity is one of the leading causes for discontinuation at different phases of drug development.

- Current methods of pre-clinical cardiotoxicity testing are slow, expensive, and lack the complexity of in vivo cardiomyocytes.
- There are no scalable and high-throughput compatible cellular cardiac electrophysiology assays in the market.
- Current automated systems can't characterize tissue-level/multicellular effects.

Our Solution

A Device and Method Providing Multi-Parameter, High-Content Information

Light-based device provides simultaneous multiparameter control and measurement of hiPSC-CMs.

Gene Delivery Modular Delivery

Light sensitivity (green) imparted on CMs (red) using gene delivery or "spark" cells.

Physiologically relevant, multi-parameter data can be obtained in different tissue configurations within 10 seconds per sample.

Pro-arrhythmic effects of a drug (Vanoxerine) recently removed from Phase III clinical trials were easily revealed using the OptoDyCE Platform.

System can dynamically interrogate 10,000 samples per day (20 years of patch clamp man-hours) and provide a more complete profile of potential cardiotoxic effects compared to traditional methods.

Our Solution

OptoDyCE-compatible "Spark-Cell" Spheroids for Optical Pacing of Cardiac Tissue

- ChR2 SPHEROID hiPS-CM SYNCYTIA ELECTROPHYSIOLOGY

- "Spark-cell" spheroids are scalable and cost-effective for contactless optical stimulation of cardiac cell constructs for high throughput drug screening.
- Confer optical responsiveness of cardiac tissue earlier than direct viral or liposomal genetic modification of the cardiomyocytes.
- Offer multimodal responsiveness optical, magnetic, ultrasound for navigation and actuation.

Chua C et al. Front Bioeng Biotechnol; 9:658594 (2022).

"Spark-cell" spheroids can be manufactured in a high-throughput (HT) format, and can be positioned onto hiPSC-cardiomyocytes, also grown in HT format

Chua C et al. Front Bioeng Biotechnol; 9:658594 (2022).

"Spark-Cell" spheroids can be frozen, transported, and quickly deployed on-site to confer optical pacing of cardiac cells

Target Customers

Industry

- High-throughput screening developers (Nanion, Axion Biosystems, Q-State Biosciences)
- Pre-clinical CROs doing cardio toxicity screening (Eurofins, Cardiomex, Cyprotex, etc.)
- Pharma companies (Bayer, Novartis, Bristol-Myers Squibb, Johnson & Johnson etc.)
- Biotech, gene therapy developers
- AI, machine learning companies for personalized medicine (In Silico Medicine)

Research Institutions

- Academic labs
- University core facilities

What makes SPARKBio unique?

- Allows precise optogenetic stimulation without genetic modification of cells
- Allows all-optical electrophysiology-simultaneous voltage, calcium optical measurements
- Safer for cells due to low intensity and long wavelength light used
- Spheroids respond to electrical, optical, magnetic, and ultrasound signals
- Compatible with standard high-throughput plate format (96- or 384-well plates)

Competitive advantages

		D. J. Cl	MEA	Vala	0.54.4	0 / 0 05
		Patch Clamp	MEAs	Sciences	Q-State	OptoDyCE
General	Low Cost					✓
	High Throughput		✓	✓	✓	✓
	High Sensitivity	✓	✓	✓	✓	✓
	Modular					✓
	Multi-cell recording		✓	✓	✓	✓
	Contactless Actuation				✓	✓
	Contactless Recording			✓	✓	✓
Assay	Voltage	✓			✓	✓
	Calcium			✓	✓	✓
	Contraction					✓
Sample Type	Monolayer		✓	✓	✓	✓
	3D Structure					✓
	Single Cells	✓	✓	✓	✓	✓
	Human Cells	✓	✓	✓	✓	✓
Study Type	Cardiotoxicity	✓	✓	✓	✓	✓
	Chronic Study		✓	✓	✓	✓
	EC-Coupling					✓
	Mechanistic Screen					✓
	Lead Screening		✓	✓	✓	✓

Innovator

Emilia Entcheva, PhD

- Director of the Cardiac Optogenetics and Optical Imaging lab at the George Washington University
- PhD in Biomedical Engineering
- Pioneer of cardiac optogenetics and optical methods
- Extensive knowledge of cardiac electrophysiology experiments and computer modeling

What does SPARKBio need?

- What we are looking for?
 - Serial entrepreneur with potential for CEO role
 - CSO/CTO
 - Investment / Financing
- Is there a market for SPARKBio's technology?
 - Yes. <u>Cardiotoxicity alone accounts for >30% of drugs withdrawn</u>. To avoid latestage drug attrition, pharmaceutical industries needs high-throughput platforms to screen drug-induced cardiac toxicity in vitro.
- What is the current development state of SPARKBio's technology?
 - Patents filed
 - Have fully-functional prototype