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Genome-wide association studies (GWAS) have identified 
thousands of genetic variants that have been associated 
with quantitative traits and common diseases. However, the 

vast majority of variants occur in noncoding regions, resulting in 
significant challenges when attempting to elucidate the molecular 
mechanisms through which these variants contribute to diseases 
and phenotypes. To provide functional interpretations of GWAS 
loci, researchers have suggested employing several molecular QTL 
analyses, including expression QTLs (eQTLs)1, which are genetic 
variants associated with the expression of one or more genes. 
Although these genetic variants can be informative and, in many 
cases, are thought to impact the transcription of nearby genes, the 
roles played by a large fraction of trait-associated noncoding vari-
ants is unexplained2.

APA plays an important role during the posttranscriptional 
regulation of most human genes. By employing different polyad-
enylation (poly(A)) sites, genes can either shorten or extend 3′UTRs 
that contain cis-regulatory elements, such as microRNAs (miRNA) 
or RNA-binding protein (RBP) binding sites3. Therefore, APA can 
affect the stability and translation efficiency of target messenger 
RNA and the cellular localization of proteins4. The diverse land-
scape of poly(A) sites can substantially impact both normal devel-
opment and the progression of diseases, such as cancer5. The broad 
importance of alternative polyadenylation is well exemplified by 
the altered expression of NUDT21, a key APA regulator, in diseases 
such as glioblastoma6 and idiopathic pulmonary fibrosis7. More 
recently, our work revealed a more nuanced interpretation of APA 
since 3′UTR shortening in breast cancer represses tumor suppressor 
genes in trans by disrupting competing endogenous RNA crosstalk8.

In addition to being associated with gene expression, genetic 
variations have been identified as critical regulatory factors for 
the APA of individual genes in certain cell lines9,10. Moreover, 
APA-associated genetic changes have been linked to the develop-
ment of multiple disease states, including cancer11, α-thalassemia12, 
facioscapulohumeral muscular dystrophy13, bone fragility14, neo-
natal diabetes15 and systemic lupus erythematosus16,17. As a prime 
example of these studies, one SNP (rs10954213) within the 3′UTR of 
IRF5 can alter the 3′UTR length and affect mRNA stability17, which 
can further contribute to systemic lupus erythematosus susceptibil-
ity. Aside from these few isolated examples, the broad implications 
of genetic determinants impacting APA in various human tissues 
and their association with phenotypic traits and diseases have not 
been systematically examined.

Previous studies identified APA-associated SNPs using 3′-end 
profiling methods, which have not been widely adopted; thus, 
these methods have only been applied to small sample sizes9,18. In 
contrast, RNA sequencing (RNA-seq) has been extensively used 
during eQTL studies; however, only a few RNA-seq data have 
been analyzed in a manner that would systematically identify and 
quantify APA events19. To obtain an insight into the genetic basis 
of APA regulation in human tissues, we used our dynamic analy-
ses of APA from RNA-seq (DaPars) algorithm20 to construct an 
atlas of tissue-specific, human APA events, using 8,277 RNA-seq 
datasets coupled with whole-genome sequencing genotype data 
derived from 46 tissues and isolated from 467 individuals by the 
Genotype-Tissue Expression Project (GTEx)1. In total, we identified 
403,215 common cis-acting genetic variants associated with APA 
(3′aVariants), which were colocalized with 16.1% of trait-associated 
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variants in at least 1 tissue. Collectively, the results of our study indi-
cated that 3′aQTLs reveal the genetic architecture of an emerging 
molecular phenotype and can be used to interpret a significant por-
tion of the human genetic variants found outside of coding regions.

Results
An atlas of human 3′aQTLs. To detect global APA events in pri-
mary human tissues, we used our DaPars v.2.0 algorithm to iden-
tify APA events retrospectively and directly using 8,277 standard 
RNA-seq samples in 46 tissue types from the GTEx v.7 project. The 
multi-sample DaPars v.2 regression framework calculates a percent-
age of distal poly(A) site usage index (PDUI) value for each gene in 
each sample (Supplementary Fig. 1). The PDUI values can then be 
normalized further after corrections for known covariates includ-
ing sex, sequencing platform, population structure, RNA integrity 
number and inferred technical covariates using probabilistic esti-
mation of expression residual (PEER) factors21. The inferred PEER 
factors were strongly associated with several known covariates for 
each sample and donor (Extended Data Figs. 1–3). We then used 
Matrix eQTL to identify common genetic variations associated with 
differential 3′UTR usage (3′aQTLs) in each tissue22 (Methods). 
Genes with a 3′aQTL are called 3′aGenes and the corresponding sig-
nificant variants are called 3′aVariants. Using a false discovery rate 
(FDR) threshold of 5%, we identified 403,215 3′aVariants associated 
with 11,613 3′aGenes across 46 tissues, representing approximately 
51% of annotated genes (Fig. 1a). Across all tissues, we discovered 
56.7% of protein-coding and 26.1% of long noncoding RNA genes 

detected in at least 1 tissue (Supplementary Fig. 2). The tissues with 
the highest numbers of 3′aQTLs tended to have larger sample sizes 
(Supplementary Table 1). This strong association between 3′aQTL 
number and sample size suggests that additional APA events and 
3′aQTLs will continue to be discovered as additional RNA-seq data-
sets become available. In addition, our global analysis of recent satu-
ration mutagenesis data23 showed that 3′aQTLs are more enriched 
in the variants that lead to more notable APA changes (Extended 
Data Fig. 4).

To evaluate the performance of our 3′aQTL detection method 
using the current sample size, we compared the detected 3′aQTLs 
with previously reported SNPs that have been associated with varia-
tions in 3′UTR usage. Although previous studies of APA events 
have been limited to a few cell types, such as lymphoblastoid cells, 
our approach recaptured many of these ‘experimentally validated’ 
3′aQTLs. For example, the strong association between the SNP 
rs10954213 and the alternative 3′UTR of IRF5 (ref. 17), which encodes 
a transcription factor involved in multiple immune processes, was 
replicated in a whole-blood 3′aQTL analysis (Fig. 1b). Interestingly, 
we also found that this genetic effect on IRF5 was shared in 22 other 
tissues, suggesting that the multi-tissue context analysis of this locus 
could aid further investigations into how IRF5 variants contribute 
to autoimmune diseases (Supplementary Fig. 3). Of the 15 previ-
ously reported SNP-associated APA genes that were identified in 
lymphoblastoid cell lines9,10,24–26, our 3′aQTL analysis was able to 
recapture 13 (87%) in Epstein–Barr virus (EBV)-transformed lym-
phocytes (Supplementary Fig. 4). This observation indicated that 
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Fig. 1 | Atlas of genetic variations associated with 3′UTR usage across 46 human tissues. a, Distribution of the number of APA events and significant 
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the currently available datasets can be used to capture most of the 
known APA-associated SNPs in human tissues.

To investigate the global distribution of 3′aQTLs across the 
human genome, we used Manhattan plots to visualize the locations 
of 3′aQTLs, with their associated P values (Supplementary Fig. 5a). 
Significant 3′aQTLs were distributed across each chromosome. 
Importantly, previously reported APA genes were readily detected, 
including IRF5 (ref. 17), ERAP1 (ref. 10), THEM4 (ref. 10), EIF2A 
and DIP2B9; however, most of the detected 3′aQTL genes repre-
sented, to the best of our knowledge, new events. Several of these 
new 3′aQTL genes are particularly noteworthy, including CHURC1 
(Supplementary Fig. 5b), which encodes a zinc-finger transcrip-
tional activator that is important during neuronal development27, 
and TPSAB1 (Supplementary Fig. 5c), which encodes α-tryptase 
and reportedly plays a role in multisystem disorders, such as irritable 
bowel syndrome, caused by elevated basal serum tryptase levels28.

We applied heritability estimation and genetic fine-mapping to 
elucidate the genetic architecture of APA gene variations caused 
by 3′aQTLs. Specifically, we used a linear mixed model in the 
genome-wide complex trait analysis genome-based restricted 
maximum likelihood program29 to estimate the heritability of the 
APA variations contributed by all 3′aVariants in each gene, within 

the 1-megabase (Mb) cis region. We observed that 3′aQTLs can 
explain, on average, 25.2% of APA variations (Fig. 1c). At the indi-
vidual tissue level, 3′aQTLs can explain between 15.5 and 51.2% of 
APA variations (Supplementary Table 2). Furthermore, 3′aQTLs 
could explain >50% of APA variations in 2.2% of APA genes, which 
are enriched in antigen processing and response to interferon-γ 
(IFN-γ)-mediated signal pathways (Supplementary Fig. 6). For 
example, 72.7% of the IRF5 APA variations can be explained by 
3′aQTLs. We also found that 3′aQTLs can explain, on average, 
16.2% of APA gene expression changes (Supplementary Fig. 7). 
To account for correlations among the identified 3′aQTLs, due to 
linkage disequilibrium (LD), we used sum of single effects (SuSiE) 
regression30 to fine-map independent associations (summarized as 
95% single-effect credible sets) for each APA transcript in each tis-
sue. SuSiE produces clusters of association signals and each signal 
is designed to capture exactly one causal SNP independent from 
those captured by other clusters. SNPs within each signal cluster 
are highly correlated due to LD. ALDH16A1 is an APA example 
where SuSiE revealed two independent 3′aQTL signal clusters (the 
lead 3′aQTLs are rs1006938 and rs73582462). The maximum R2 
between any 2 SNPs taken separately from the 2 clusters is very 
small (0.03), suggesting that there are indeed 2 independent signals 
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detected. IRF5 is another APA example where SuSiE detected only 
one signal cluster (the lead 3′aQTL is rs10954213). In total, 35% 
of tissue-transcript pairs were associated with more than 1 inde-
pendent 3′aQTL, which indicated the widespread, allelic hetero-
geneity of 3′aQTL effects (Fig. 1d). Altogether, the approximately 
0.4 million 3′aQTLs we identified provide an extensive display of 
how common genetic variants are associated with 3′UTR usage 
across multiple human tissues and expand the number of known 
3′aQTLs by several orders of magnitude compared with all previ-
ously reported APA-associated SNPs.

Patterns of tissue specificity for 3′aQTLs. To examine how cis 
regulatory elements contribute to APA events in tissue-specific or 
shared manners (Supplementary Fig. 8), we used multivariate adap-
tive shrinkage (MASH)31 to estimate the effect sizes of 3′aQTLs 
shared across all 46 tissues, while controlling for nongenetic cor-
relations, such as sample overlap. The heterogeneity of cross-tissue 
effects was evaluated based on the sharing of signs (effects in the 
same direction) and magnitudes (effects in the same direction and 

within a twofold effect size change) among 3′aQTLs. This analysis 
revealed that human tissues cluster into two major groups—brain 
tissues and non-brain tissues—using hierarchical clustering with 
complete linkage (Fig. 2a). We also noted that some biologically 
related tissues grouped within ‘non-brain’ tissues, such as the uterus/
vagina/ovary and colon/stomach groups (Fig. 2b). These patterns 
revealed developmental and functional similarities between dif-
ferent tissues due to APA regulation. In addition, we found that, 
although 78.4% of tissues had 3′aQTLs with the same sign, only 
13.9% of shared 3′aQTLs displayed similar magnitudes. Compared 
with eQTLs shared among tissues (85% shared among tissues by 
sign and 36% shared among tissues by magnitude)31, 3′aQTLs 
exhibited similar sign effects (Supplementary Figs. 9 and 10)  
but a much lower degree of shared-magnitude effects (Fig. 2c–e, 
Supplementary Fig. 11 and Extended Data Fig. 5). One possible 
explanation is that APA events are more tissue-specific than gene 
expression (Supplementary Fig. 12). Considered collectively, these 
observations suggested that 3′aQTL effect sizes exhibit greater tis-
sue specificity than that of eQTLs.
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3′aQTLs have distinct molecular features. To characterize the rela-
tionships between different QTLs, we classified lead 3′aQTLs and 
lead eQTLs across 46 tissue types according to the functional cat-
egories defined in SnpEff v.5.0 (ref. 32). As expected, we found that 
3′aQTLs were significantly enriched in 3′UTRs (P = 2.68 × 10−30) or 
located within 5 kilobases (kb) downstream of genes (P = 9.43 × 10−08), 
whereas eQTLs were significantly enriched within gene promoters/
upstream regions (P = 1.11 × 10−34) or within 5′UTRs (P = 1.42 × 10−32) 
(Fig. 3a). This observation is consistent with the metagene analysis 
encompassing the relative position distributions of 3′aQTLs and 
eQTLs over their associated genes (Fig. 3b). 3′aQTLs are distributed 
approximately symmetrically around the 3′UTR region and 34% of 
3′aQTLs are located in downstream gene regions, likely due to the 
LD effect1,33 (Methods). 3′aQTLs also differ markedly from splicing 
QTLs (sQTLs)33, which are enriched primarily within gene bodies 
and splice regions (Extended Data Fig. 6). We also cross-referenced 
the recent 549 protein QTLs34 (pQTLs) with lead 3′aQTLs and lead 
eQTLs. We found that 154 multi-tissue 3′aQTLs are pQTLs for 
the same gene in 1 or more tissues and 78.5% of pQTL-overlapped 
3′aQTLs are not eQTLs. These data suggest that some 3′aQTLs can 
affect protein expression levels independent of gene expression.

To further determine the genomic context of 3′aQTLs, while also 
accounting for LD effects, we examined the enrichment of 3′aQTLs 
according to their posterior causal probabilities. Fine-mapped 
3′aQTLs were allocated into six bins based on causality quantiles. 
We found that 27.4% of 3′aQTLs in the most causal bin (larger 

than the 90th quantile) were associated with a 14-fold enrichment 
in 3′UTR regions compared with 3′aQTLs in the least causal bins 
(less than the 50th quantile) (Fig. 3c). Interestingly, 3′aQTLs are also 
highly enriched in conserved regions (University of California Santa 
Cruz (UCSC) phastCons conservation score >0.8) (Fig. 3d) but not 
in transcription factor binding sites (Supplementary Fig. 13).

Moreover, the structures of 3′aGenes and eQTL-associated 
genes (eGenes) differed considerably. Compared with eGenes, 
3′aGenes harbored comparable 5′UTRs but much longer cod-
ing sequences (CDS) (P = 2.71 × 10−26) and 3′UTR lengths 
(P = 3.51 × 10−147) (Fig. 3e). Furthermore, a significantly higher 
number of adenylate-uridylate-rich elements proximal to poly(A) 
sites were observed in 3′aGenes than in eGenes (P = 7.61 × 10−198), 
suggesting that 3′aGenes harbor more potentially regulatory ele-
ments that control APA events (Supplementary Fig. 14). 3′aGenes 
are also enriched in ontologies related to immune and environmen-
tal responses, such as the IFN-γ-mediated signaling pathway. This 
is in contrast with eGenes, which were underrepresented in genes 
related to the environmental response1. Considered collectively, 
the results of these analyses suggested that 3′aQTLs and the genes 
affected by them have different molecular features than other previ-
ously defined QTLs and their modulated genes.

Alterations of poly(A) motifs are associated with APA. Next, 
we investigated the potential mechanisms through which genetic 
variations contribute to APA events. We hypothesized that some 
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Fig. 4 | 3′aQTLs can alter PAS and uridylate-rich motifs in human tissues. a, Summary of the PAS altered by 3′aVariants across human tissues. The x axis 
shows the tissue names and the y axis lists the number of 3′aQTLs that alter the PAS. b, Enrichment of 3′aVariants that alter PAS and uridylate-rich motifs 
and are proximal to poly(A) sites, compared with the rest of the genome. Data are presented as odds ratio and 95% CI. c, Box plot showing the significant 
correlation between the 3′aQTL rs1130319 and ADI1 APA events for each genotype. Each dot represents a normalized PDUI value from a single sample. The 
center horizontal lines represent the median values and the boxes span from the 25th to the 75th percentile. The whiskers extend to 1.5× IQR (bottom). 
The coverage plot illustrates that this SNP could disrupt the canonical PAS. The red dotted line in the RefSeq gene structure indicates the location of the 
3′aVariant. The PAS is shown, with the 3′aQTL highlighted in red. d, Box plot showing that the 3′aQTL rs3211995 is strongly correlated with the SLC9A3R2 
3′UTR change for each genotype. The coverage plot illustrates that this SNP could ‘create’ a canonical PAS. e, Box plot showing that the 3′aQTL rs12359, 
which alters the uridylate-rich motif, is strongly associated with SYDE1 3′UTR usage for each genotype.
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3′aQTLs alter the motifs important for the 3′-end processing 
of transcripts. Alterations to the polyadenylation signal (PAS) 
can produce distinct mRNA isoforms, with 3′UTRs of differing 
lengths. However, only a few cases have been reported from a lim-
ited number of cell lines9,35. To systematically examine the preva-
lence of PAS-altering 3′aQTLs among human populations, we 
extracted significant 3′aVariants located within 50 base pairs (bp) 
upstream of annotated poly(A) sites from the Poly(A) database 
(PolyA_DB)36, UCSC, Ensembl and RefSeq gene annotations, and 
performed motif searches based on 15 common PAS motif vari-
ants. In total, we identified 2,135 3′aVariants that alter the PAS and 
generate alternative 3′UTR lengths in their associated genes across 
46 human tissues (Fig. 4a and Supplementary Table 3). A total of 
991 3′aVariants either disrupted the canonical PAS (AATAAA) or 
changed other PAS variants to the canonical PAS (P = 2.827 × 10−10)  
(Fig. 4b). For example, a change in the rs1130319 SNP from the ref-
erence A allele to the C allele, which impairs the canonical PAS, 
AATAAA, correlated with the preferred use of a cryptic poly(A) 
site in the ADI1 3′UTR (Fig. 4c). We validated our finding using 
recent saturation mutagenesis data23, where the same 3′aVariant dis-
ruption of the ADI1 canonical poly(A) motif resulted in a 20-fold 
decrease in the abundance of the long isoform (Extended Data 
Fig. 7a). In another case, a G>A change in rs3211995 resulted in a 
strong PAS (AATAAA), instead of the weak noncanonical GATAA 
motif, at the 3′-end of SLC9A3R2, which correlated with a shift to 
an mRNA isoform with a longer 3′UTR (Fig. 4d). Again, saturation 
mutagenesis confirmed that this 3′aVariant resulted in a 42.52-fold 
increase in the abundance of the long isoform (Extended Data  
Fig. 7b). We also found that 3′aVariants are prone to alter those PAS 
variants that are proximal to annotated poly(A) sites (Fig. 4b). In 
addition to the PAS, we also investigated whether 3′aVariants could 
alter uridylate-rich elements, which are also important for 3′-end 
processing4. Interestingly, adenylate-uridylate, guanylate-uridylate 
and uridylate-rich motifs were also frequently altered by 3′aQTLs 
(Fig. 4b and Supplementary Fig. 15). For example, a 3′aVariant 
at the guanylate-uridylate-rich motif, GTTTG, located near the 
proximal poly(A) site of the gene SYDE1, could lead to significant 
3′UTR shortening (Fig. 4e). The uridylate-rich motif variations on 
APA have been described before37. Collectively, these results sug-
gested that a small fraction of detectable APA events are the result of 
3′aVariants alterations of PAS or uridylate-rich motifs.

APA-associated RBP binding sites and RNA secondary struc-
ture. Alterations in polyadenylation signals can explain only a small 
percentage of 3′aQTLs, suggesting that most 3′aQTLs affect APA 
via other mechanisms. To test this hypothesis, we analyzed the 
extent to which 3′aQTLs interfere with either the transcriptional or  

posttranscriptional regulation of target genes. First, we used 
DeepBind v.0.11 (ref. 38) to evaluate the enrichment of 3′aVariants 
in 927 binding motifs of 538 DNA-binding proteins and RBPs, in 
each tissue, using randomly shuffled 3′aVariants as a control group. 
We identified 125 motifs that were significantly enriched in 3′aVari-
ants, 17 of which were common among at least 20% of the tissues 
examined (Supplementary Fig. 16). Proteins associated with these 
17 common motifs were significantly enriched (P = 1.06 × 10−5; 
hypergeometric test) with known poly(A) factors, such as PABP39, 
CPEB4 (refs. 39,40), SRSF7 (ref. 41), RBFOX1 (ref. 42) and HNRNPC, 
which was recently described as an APA regulator43.

We then analyzed 166 RBP cross-linking immunoprecipitation 
sequencing (CLIP-seq) datasets, which were available from the 
Encyclopedia of DNA Elements (ENCODE) project44. These data-
sets are particularly useful because 81.2% of RBPs are not included 
in the DeepBind resource. We examined whether 3′aQTLs were 
significantly enriched within the CLIP-seq binding peaks of each 
RBP compared with a random sequence dataset. We further inte-
grated a new computational strategy to predict the trans-regulator 
of APA (Methods and Extended Data Fig. 8) and identified 73 RBPs 
that preferentially bound to regions containing 3′aQTLs, including 
several poly(A) factors, such as CSTF, in addition to many splic-
ing factors (Fig. 5a and Supplementary Table 4). Consistent with a 
potential functional significance, these splicing factors have previ-
ously been linked to alternative 3′UTR usage40,41.

To evaluate the association between 3′aQTL and RNA structural 
features, we decided to use the riboSNitch data45, which are defined 
as DNA variants affecting RNA secondary structure changes by par-
allel analysis of RNA structure experiments. We cross-referenced 
these riboSNitch data with our lead 3′aQTLs. The overlap event was 
defined as high LD (R2 ≥ 0.8) between lead 3′aQTL and riboSNitch 
for the same transcript. We found that 10.6% of riboSNitch data 
overlapped with 3′aQTLs (Supplementary Fig. 17), suggesting a 
strong correlation between 3′aQTLs and RNA secondary structure.

3′aQTL analysis facilitates the identification of APA regulators 
such as LARP4. Among the 73 3′aQTL-enriched RBPs (Fig. 5a), 
we found that 1 tumor suppressor, La-related protein 4 (LARP4), 
with binding sites primarily within 3′UTR regions (Supplementary 
Fig. 18), was selectively bound to 3′aQTL-containing regions across 
most tissues. LARP4 is an RBP that binds to the poly(A) tail of 
mRNA molecules46 and regulates mRNA translation; however, to 
our knowledge, its role in APA regulation has not yet been reported. 
Our observation that LARP4 binding involves regions enriched 
with 3′aQTLs suggests that LARP4 might be an APA regulator. 
Importantly, our approach cannot distinguish whether LARP4 APA 
regulation is mediated through impacting poly(A) site choice in the 

Fig. 5 | LARP4 is an APA regulator. a, Heatmap showing the 3′aVariant significance for RBPs identified by ENCODE in each tissue. The left bar shows 
the color code for each tissue; the top color bar represents the K562 and HepG2 cell lines, separately. Values in the heatmap represent the degree of 
enrichment for 3′aQTLs in RBP binding peaks compared with the control. b, PCR screening gel of clonal 293T lines with homozygous FLAG-LARP4. The 
primers flanking the integration site of a FLAG epitope tag at the N terminus of the LARP4 TSS were used. The representing gel of parental 293T cells, a 
heterozygous targeted line and a homozygous line (n = 3 from 12 clonal lines screened) are shown. c, Western blot analysis of 293T cells transfected with 
either control or LARP4 siRNA to knock down endogenous LARP4 protein. Protein lysates were extracted from whole cells after 72 h of knockdown. The 
gel represents one of two effective siRNAs tested, as shown in the source data files. d, Scatterplot analysis of PAC-seq data comparing distal poly(A) site 
usage between control and LARP4 knockdown cells. e, Representative genome browser images of the PPIE gene, whose poly(A) is regulated by LARP4 and 
binds with LARP4, as assessed by LARP4 CLIP-seq. f–h, Predicted effects of three 3′aQTLs located within the LARP4 binding sites. Each box plot represents 
the PDUI differences in relation to the SNP genotypes (n = 431 for SLC9A3R2 (f), n = 396 for PPIE (g) and n = 431 for HSDL1 (h)). The center horizontal 
lines represent the median values and the boxes span from the 25th to the 75th percentile. The whiskers extend to 1.5× IQR (bottom). i, Quantitative 
RT–qPCR analysis showing the altered APA regulation of three genes in response to CRISPR genome editing to introduce the 3′aQTL that was predicted to 
alter LARP4 binding. The 3′aQTL of each gene was targeted by two independent gRNAs and each gRNA editing was repeated (n = 3, shown by each dot) 
biologically. Data are presented as the mean ± s.d. j, Western blot analysis of nuclear and cytosolic extraction from the homozygous FLAG-LARP4 293T cell 
line. LARP4 subcellular localization was examined by anti-FLAG M2 antibody. The FLAG immunoprecipitates from each fractionation were subjected 
to mass spectrometry for orthogonal analysis, which confirmed the results of the western blot through definitive peptide identification. k, Functional 
annotation of the enrichment analysis for LARP4-associated proteins, based on the mass spectrometry results.
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nucleus or through regulating differential stability of short/long 
mRNA isoforms in the cytoplasm. To test the hypothesis that LARP4 
regulates APA, we first CRISPR-engineered 293T cells to harbor 

a single FLAG epitope tag within both copies of the endogenous 
LARP4 gene (Fig. 5b). We then transfected these cells with either 
control small interfering RNA (siRNA) or LARP4-targeting siRNA 
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and observed the robust depletion of FLAG-LARP4 (Fig. 5c). RNA 
was isolated from both control and knockdown cells and analyzed 
using 3′-end sequencing (poly(A)-ClickSeq (PAC-seq))47. Using 
PAC-seq, we observed broad changes in poly(A) site usage after 
knockdown of LARP4, which is consistent with a role for LARP4 
in APA regulation (Fig. 5d). Importantly, several of the genes that 
contain 3′aQTLs that are predicted to alter LARP4 binding were 
also found to exhibit robust APA in response to LARP4 knockdown  
(Fig. 5e and Extended Data Fig. 9). To further test the model that 
LARP4 can regulate APA, we focused on three genes that exhibit 
changes in APA after LARP4 knockdown and contain 3′aQTLs 
within their LARP4 binding sites, as assessed using the LARP4 
CLIP-seq data (Fig. 5f–h). We designed CRISPR-based homolo-
gous recombination templates that would allow the introduction 
of the LARP4 3′aQTL into 293T cells (Supplementary Table 5).  
Cells transfected with Cas9, the homologous recombination 
template and either of two independent single-guide RNAs 
(sgRNAs) were selected and APA was assessed using quantitative 
reverse-transcription PCR (RT–qPCR). In all three cases, we could 
detect notable changes in the distal poly(A) site selection, which 
agreed with the predicted effects of 3′aQTLs (Fig. 5f–i), suggesting 
that the 3′aQTL is sufficient to alter APA regulation. Finally, we gen-
erated nuclear and cytoplasmic extracts from FLAG-LARP4 cells, 
purified LARP4 (using FLAG affinity resin) and analyzed the puri-
fied complexes using mass spectrometry (Fig. 5j and Supplementary 

Table 6). Consistent with previous reports, LARP4 was primarily, 
but not exclusively, cytoplasmic, and we could robustly detect asso-
ciated proteins involved in poly(A)-binding. Surprisingly, we also 
detected numerous components of the cleavage and polyadenyl-
ation machinery associated with LARP4, suggesting a potential 
direct role in APA regulation (Fig. 5k). Altogether, these results sup-
port a function of LARP4 in APA regulation and further validate the 
use of 3′aQTLs as a discovery tool for APA regulators.

3′aQTLs can explain a significant proportion of disease heri-
tability. The GWAS approach has commonly been used to asso-
ciate genetic variants with complex human traits and diseases. 
However, explaining how these genetic variations, particularly 
noncoding variations, contribute to specific phenotypes can be dif-
ficult. We hypothesized that 3′aQTLs could be used to interpret 
GWAS noncoding variants, particularly those located near 3′UTRs 
(Supplementary Figs. 19 and 20). In this study, we compiled GWAS 
summary statistics for 23 common human diseases and traits from 
previously published studies (Supplementary Table 7) and evaluated 
the enrichment of 3′aVariants within trait-associated GWAS SNPs 
for each tissue using functional genome-wide association analy-
sis48. We identified the enrichment of 3′aVariants within 11.5% of 
tissue-trait pairs. When further compared with known eVariants 
that are enriched for these traits, we observed that, overall, eQTLs 
had larger effects than 3′aQTLs for 26.5% of the tissue-trait pairs 
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percentile. The whiskers extend to 1.5× IQR (bottom). n = 46 tissues examined.
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examined. However, in 9.8% of pairs, we found that 3′aQTLs 
exhibited the increased enrichment of GWAS SNPs compared with 
eQTLs (Supplementary Table 8), including those associated with 
Alzheimer’s disease and rheumatoid arthritis. Notably, many of 
the 3′aVariants were enriched in tissues relevant to their respec-
tive diseased states, such as the brain putamen (basal ganglia) for 
Alzheimer’s disease and the pituitary gland for rheumatoid arthri-
tis (Fig. 6a,b). Of note, 3′aVariants were also enriched in less bio-
logically relevant tissues, which may represent common 3′aVariants 
across many tissues or new trait-associated tissues2.

To quantify the proportion of regulatory variations associated 
with heritability for each trait, we conducted a partitioned heri-
tability analysis, using LD score regression49. Of the traits exam-
ined, the median range of SNP heritability that could be explained 
by 3′aQTLs, sQTLs and eQTLs was 3–7, 13–25 and 10–19% per 
trait, respectively. Notably, 3′aQTLs were particularly effective for 
explaining a large proportion of heritability associated with several 
autoimmune diseases, such as ulcerative colitis, primary biliary 
cholangitis and Alzheimer’s disease. For some diseases, such as mul-
tiple sclerosis, 3′aQTLs contributed little to heritability (Fig. 6c and 
Extended Data Fig. 10). Taken together, although the role of APA in 
the modulation of these diseases has been studied at the single-gene 
level, such as for tau in Alzheimer’s disease50 and TCF7L2 in type 2 
diabetes51, our results suggested that 3′aQTLs can explain a signifi-
cant proportion of disease-associated variants.

Many trait-colocalizing 3′aQTLs are independent of gene 
expression. The enrichment of 3′aQTLs within disease-associated 
loci provide disease-specific knowledge about the overall impact 
of 3′aQTLs but does not necessarily imply a causal relationship. 
Therefore, we investigated the extent to which 3′aQTLs may func-
tion as causal variants for human phenotypes. We used colocal-
ization analysis52, which identifies 3′aQTLs that share the same 
putative causal variants with trait-associated signals, to examine 15 
complex diseases and traits with known minor allele frequencies 
(MAFs). Of note, the colocalization model has limited power for 
the identification of multiple causal variants per gene. In total, 801 
trait-associated variants colocalized with either eQTL or 3′aQTL 
signals. Consistent with previous results1, 57% of trait-associated 
variants colocalized with eQTLs in 1 or more tissues. Interestingly, 
16.1% of trait-associated variants colocalized with 3′aQTLs in at 
least 1 tissue (Fig. 7a). Of note, this 3′aQTL colocalization may still 
be driven by eQTLs or sQTLs (Supplementary Fig. 21). We found 
that 14 colocalizing 3′aQTLs were overlapped with pQTLs34. For 
example, rs503366 is not only a pQTL for MTRF1L, but also the lead 
3′aVariant that colocalized with bipolar disorder GWAS variants 
(the posterior probability of a model with one shared causal vari-
ant (PP4) = 0.922). We also found that 83.7% (1,019 out of 1,218) 
of 3′aQTL-colocalizing genes were not eQTL colocalizing genes  
(Fig. 7b and Supplementary Table 9). We separated all 3′aGenes 
into two groups based on whether they overlapped with eQTLs. 
Within each group, we analyzed the differences of APA usage and 
gene expression with different 3′aQTL alleles. We observed no 
APA usage differences between eQTL-overlapped 3′aGenes and 
non-eQTL-overlapped 3′aGenes (P = 0.06; Supplementary Fig. 22a). 
We further found that eQTL-overlapped 3′aGenes tended to have 
notable gene expression changes (P < 2.2 × 10−16) (Supplementary 
Fig. 22b), whereas non-eQTL-overlapped 3′aGenes had almost 
no associated gene expression changes. To explore the potential 
regulatory mechanisms, we cross-referenced the 3′UTR regions 
of 3′aGenes with the TargetScan human v.6.2 (ref. 53) miRNA 
binding sites and ENCODE RBP CLIP-seq peaks. We found that 
eQTL-overlapped 3′aGenes have overall greater miRNA binding 
site density within the 3′UTR region than non-eQTL-overlapped 
3′aGenes (P = 5.695 × 10−5; Supplementary Fig. 22c). We did not 
find any enrichment of RBP binding sites. These results suggest that 

eQTL-overlapped 3′aGenes tend to affect gene expression through 
miRNA-mediated regulation but not through RBP regulation.

UBE2L3 is a representative example of the 16.3% of genes 
that colocalized with both 3′aQTLs and eQTLs. UBE2L3 is an 
E2 ubiquitin-conjugating enzyme that promotes the activation of 
nuclear factor kappa B signaling during immune responses54. The 
rs66534072 locus in UBE2L3 has been associated with gene expres-
sion levels and confers risk for autoimmune diseases55. However, 
the mechanisms through which these genetic variants affect gene 
expression are unknown. We determined that UBE2L3 can be 
subject to APA and can exhibit dynamic 3′UTR use among dif-
ferent individuals. Moreover, the lead 3′aQTL SNP, rs66534072, 
was significantly correlated with 3′UTR use in UBE2L3 (Fig. 7c). 
Specifically, the C allele was associated with the shortening of the 
UBE2L3 mRNA 3′UTR, whereas the G allele was associated with 
the lengthening of the 3′UTR. We examined the tissues where 
rs66534072 serves as a 3′aQTL for UBE2L3 and found that most are 
known to be affected by autoimmune diseases.

Most 3′aQTL trait-colocalized gene pairs are specific to 3′aQTLs 
and not eQTLs. For instance, MMAB encodes an enzyme involved 
in adenosylcobalamin formation, which is crucial for cholesterol 
degradation56. A total of 288 3′aQTLs were found to associate with 
MMAB 3′UTR use and were directly correlated with total choles-
terol level GWAS loci on chromosome 12 (Fig. 7d). Similarly, vari-
ants on chromosome 16 that were associated with body mass index 
(BMI) also colocalized with 3′aQTLs that regulate 3′UTR length 
changes in ADCY9 (Fig. 7e). We also observed a strong colocaliza-
tion pattern between 3′aQTLs in IRF1 and the significant GWAS 
loci for multiple autoimmune diseases, including ulcerative colitis, 
Crohn’s disease and inflammatory bowel disease (Fig. 7f). IRF1 
is induced by IFN-γ signaling and promotes innate and acquired 
immune responses57. In contrast, except in musculoskeletal tis-
sue, no strong association between eQTL and IRF1 expression was 
observed. Colocalization analyses of musculoskeletal tissue revealed 
no colocalization patterns between disease-associated loci and IRF1 
eQTLs. In contrast, colocalization patterns for IRF1 3′aQTLs and 
autoimmune diseases were identified in multiple tissues, including 
transformed fibroblasts (PP4 = 0.97). These results suggested that 
IRF1-associated 3′aQTLs, more than IRF1-associated eQTLs, can 
explain most of the effects of the IRF1 variations associated with 
these diseases. Collectively, our data suggest that many 3′aQTLs 
contribute to human diseases and traits, independent of their roles 
in the regulation of gene expression.

Discussion
We defined 3′aQTLs as the genetic basis for an emerging human 
molecular phenotype that is responsible for alternative 3′UTR 
usage. By reanalyzing large-scale GTEx data, using our DaPars 
v.2 algorithm, we identified 11,613 APA genes and approximately 
0.4 million 3′aQTLs across 46 human tissues. 3′aQTLs were 
found to be sufficient to alter APA regulation, as demonstrated by 
CRISPR-based experiments and saturation mutagenesis data. In 
contrast with other molecular QTLs, such as eQTLs, 3′aQTLs are 
highly enriched within 3′UTRs. Mechanistically, 3′aQTLs likely 
induce changes in 3′UTR usage by either modulating the strength 
of poly(A) signal motifs, RNA secondary structure or RBP bind-
ing sites. 3′aQTLs that reside outside of gene-transcribed regions 
are likely to involve a more complex mechanistic basis as evidenced 
by recent work revealing connections between DNA methylation, 
gene looping and APA regulation58,59. eQTLs are important molecu-
lar features associated with human phenotypic variations. In this 
study, we demonstrated that 3′aQTLs represent molecular features 
that contribute to phenotypic variation in human populations at 
an unexpectedly similar level as eQTLs. Furthermore, we also vali-
dated the use of 3′aQTLs as a discovery tool for identifying APA 
regulators, such as LARP4.
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We found that 3′aQTLs can explain a substantial propor-
tion of trait heritability. Colocalization analyses found that 16.1% 
of trait-associated loci colocalized with 1 or more 3′aQTLs in 
human tissues. Furthermore, very few of the 3′aQTL-colocalizing 
trait-associated loci overlapped with eQTLs, indicating that 
3′aQTLs and eQTLs are largely independent. We speculate that 
eQTL-independent 3′aQTLs regulate the stability, translation or 
cellular localization of target genes independently of the regulation 
of gene expression. Collectively, the results of our in-depth analyses 
of the genetic influence of APA events in 46 human tissues increase 
the fraction of common noncoding variations that can be associated 
with molecular phenotypes and suggest interpretations that explain 
how natural variations can shape human phenotypic diversity and 
tissue-specific diseases.
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Methods
Mapping of GTEx RNA-seq data. Original RNA-seq reads were aligned 
with the human genome (hg19/GRCh37) using STAR v.2.5.2b60, with the 
following alignment parameters: outSAMtype, BAM; SortedByCoordinate; 
outSAMstrandField, intronMotif; outFilterMultimapNmax, 10; 
outFilterMultimapScoreRange, 1; alignSJDBoverhangMin, 1; sjdbScore, 2; 
alignIntronMin, 20; and alignSJoverhangMin, 8. The resulting sorted BAM files 
were converted into bedGraph formats using BEDTools version 2.17.0 (ref. 61).

Covariate correction. To account for hidden batch effects and other unobserved 
covariates in each tissue, we first corrected the sample genotype for population 
structure. Briefly, we first removed sites marked as ‘wasSplit’ from the GTEx 
analysis freeze variant call format (VCF) using BCFtools v.1.3, leaving 39,741,769 
biallelic sites. The variants were further filtered with a call rate of >99% and MAF 
>5%; LD pruning was performed using PLINK v.2.0. The top three principal 
components from the principal component analysis were consistent with the 
known three main subpopulations, including White, Black or African American 
and Asian, in the GTEx samples. We further used PEER21 with sex, RNA integrity 
number, top 5 genotype principal components and genotyping platforms as the 
known covariates to estimate a set of latent covariates for the PDUI values in each 
tissue. The number of PEER factors was optimized based on suggestions from the 
GTEx Consortium1; for tissue sample sizes <150, 15 PEER factors were chosen. 
Thirty PEER factors were chosen if the sample size ranged from 150 to 250 and 35 
peer factors were chosen for >250 samples. We analyzed the correlation between 
PEER factors and covariates reported for the GTEx samples and noticed that many 
of these covariates were strongly associated with PEER factors, such as nucleic 
acid isolation batch and total ischemic time, which were associated across tissues 
(Extended Data Fig. 1). We also included three measurements for 3′Bias statistics: 
(1) 3′ 50-base normalization, which is the ratio between the coverage at the 3′-end 
and the average coverage of the full transcript, averaged over all transcripts; (2) 5′ 
50-base normalization, which is the ratio between the coverage at the 5′-end and 
the average coverage of the full transcript, averaged over all transcripts; and (3) the 
number of transcripts that have at least one read at their 5′-end. The inferred PEER 
factors were highly correlated with the 3′Bias statistics (Extended Data Fig. 1), 
indicating that most of the 3′Bias effects have been corrected by our PEER analysis.

Furthermore, to comprehensively evaluate the other genotypic covariates, we 
correlated the PEER factors with donor covariates in each tissue. We observed that 
our PEER factors were consistently correlated with several donor covariates such 
as donor death, ischemic time, Hardy scale, EBV immunoglobulin M antibody and 
age (Extended Data Fig. 2).

3′aQTL mapping for each tissue. A whole-genome sequencing variant file for 635 
individuals was obtained from the GTEx database of Genotypes and Phenotypes 
(dbGaP) website (phs000424.v7.p2), under the name ‘GTEx_Analysis_2016-01-15_
v7_WholeGenomeSeq_635Ind_PASS_AB02_GQ20_HETX_MISS15_PLINKQC.
vcf.gz’, from which 17 samples and all the variants that failed to pass the quality 
control step initially defined by the GTEx Consortium1 were removed. Any 
individuals with no RNA-seq data were also removed. 3′aQTL mapping was 
performed separately for each tissue. Subset VCF data for each tissue were 
extracted, using BCFtools. VCF files were transformed into an SNP matrix file, 
including genotyping information, using BioAlcidae v.2.27.1 (ref. 62). SNPs with a 
MAF of <0.01 were filtered and at least 10 counts per allele were required. We then 
tested associations for SNPs within an interval of 1 Mb from the 3′UTR region, 
with normalized PDUI values, in each tissue, using Matrix eQTL22, in a linear 
regression framework.

Permutation analysis was conducted to identify significant 3′aQTL-associated 
gene pairs. Individual labels were randomly sampled 1,000 times and the minimum 
P value for each SNP and gene was recorded after each 3′aQTL mapping. These 
empirical P values were adjusted using the qvalue v.2.0.0 R package63. Genes with 
a q < 0.05 were considered to be significant APA genes. All APA gene-associated 
3′aQTLs were subsequently identified with the FDR set to 5%.

Fine-mapping of causal variants to 3′aQTLs. We used SuSiE30 to fine-map 
3′aQTL. SuSiE can operate on individual-level data (genotypes and APA 
phenotypes) and can efficiently analyze loci containing many independent effect 
variables. We allowed a maximum of 10 independent effects in our analysis. 
Additionally, we verified our SuSiE results with causal variant identification in 
associated regions analysis64, which uses summary statistics (z-scores derived from 
3′aQTL association P values) and LD matrices but is limited to the detection of a 
small number of independent effects per region due to its computational  
capability constraints.

3′aQTL sharing and specificity analyses among tissues. 3′aQTL sharing and 
specificity among tissues were analyzed using MASH31. Briefly, we converted 
3′aQTL association statistics to MASH formats. Lead 3′aQTLs and random SNP 
sets for each APA gene were extracted from each tissue to calculate MASH priors. 
A total of 4,470 genes, with no data missing from any tissue, were retained to train 
the MASH model. Prior covariance matrices were inferred via Empirical Bayes 
matrix factorization, implemented in factors and loadings by adaptive shrinkage; 

the multivariate 3′aQTL model was constructed using MASH. Posterior effect sizes 
were computed by applying the trained model to the lead 3′aQTLs sets. MASH 
aims to elucidate the heterogeneity of 3′aQTL effect sizes across tissues (Fig. 2). 
With MASH, we can learn about which 3′aQTLs have tissue-specific effect sizes 
and which have effect sizes consistent across tissues. This provides interesting 
insights into the genetic architecture of APA in different tissues. The MASH model 
was trained on a large random subset of SNPs31, not the lead SNPs. The trained 
model was then applied to one lead SNP per gene for posterior inferences, to avoid 
dealing with LD between SNPs when more than one SNP in a gene was involved. 
Such ‘one effect per region’ simplification is widely accepted in a similar context to 
circumvent LD complications when it comes to evaluating association signals in a 
small region48,52,65. This essentially limits the scope of the investigation to a subset 
of 3′aQTLs but it is sufficient for our purpose to learn patterns of 3′aQTL sharing 
across tissues. If a lead SNP is only significant in one tissue and not the others, 
it will be considered a tissue-specific 3′aQTL; however, if the lead SNP is also 
significantly associated with APA in other tissues, even though the associations in 
these tissues are not as strong as the tissue based on which it is selected, it will be 
considered a shared 3′aQTL among tissues.

To examine whether MASH-estimated magnitudes were affected by read depth, 
we first downsampled 80% of the raw reads in each sample for the 5 representative 
tissues and reran the whole analysis. The correlations between the same tissues 
with different sequencing depths (100 versus 80%) were much stronger than 
the correlations between different tissues with the same sequencing depths 
(Supplementary Fig. 9a). We also downsampled the samples in each tissue to match 
the lowest coverage level, 15 million reads, among the included tissue samples. Still, 
we observed much stronger correlations between the same tissues with different 
sequencing depths than between different tissues at the same sequencing depth 
(Supplementary Fig. 9b).

Prediction of trans regulator of APA. For a gene G in a tissue type, all samples 
were ranked based on the expression levels of gene G. The top 10 most highly 
expressed samples and bottom 10 least expressed samples were chosen as the 
two groups. If the mean gene expression fold change between the two groups 
was >2 with P < 0.05, these two groups were treated as control and knockdown 
groups. Then, the PDUI values between the groups could be compared to identify 
significant dynamic APA genes between the high and low expression groups of 
gene G. Using this strategy, we calculated the number of 3′UTR shortening or 
lengthening effect of each gene, which regulates significant dynamic APA events 
between the high and low expression groups. The gene will be predicted as a trans 
regulator of APA if P < 0.05. We have validated our method in a few known  
APA regulators, such as CSTF2, which was described as an APA regulator 
promoting 3′UTR shortening. We observed that there was a marked shift of 3′UTR 
shortening in individuals with highly expressed CSTF2 (Extended Data Fig. 8a). 
We also investigated our newly detected APA regulator, LARP4. We often observed 
many APA events when comparing LARP4high and LARP4low individuals (Extended 
Data Fig. 8b).

Colocalization analyses. We utilized a Bayesian colocalization approach to 
identify GWAS signals that could exhibit the same genetic effects between eQTLs 
and 3′aQTLs, using the coloc v.3.2-1 R package52. The full summary statistics for 15 
GWAS were used when the MAF was available. For each GWAS trait, we extracted 
the sentinel SNPs, which were defined as GWAS SNPs with P < 5 × 10−8 and located 
at least 1 Mb away from more significant variants. The colocalized signals were 
searched for within the 100-kb surrounding region of sentinel SNPs. As defined 
by the coloc method, five posterior probabilities (PPs) were calculated. PP0 
represents the null model of no association. PP1 and PP2 represent the probability 
that causal genetic variants are either associated with disease signals only or with 
3′aQTLs only, respectively. PP3 represents the probability that the genetic effects 
of disease signals and 3′aQTLs are independent and PP4 represents the probability 
that disease signals and 3′aQTLs share causal SNPs. The genes were defined as 
colocalization events if PP4 ≥ 0.75 and PP4/(PP4 + PP3) ≥ 0.9. Region visualization 
plots were constructed using LocusZoom v.1.4 (ref. 66). LDs between reference 
SNPs and 3′aQTLs were calculated using PLINK67.

Cell culture and cloning. The HEK 293T cell line (catalog no. CRL-3216; ATCC) 
was grown in high-glucose DMEM supplemented with 10% FCS and 50 U ml−1 
penicillin-streptomycin (Thermo Fisher Scientific). The oligonucleotides used 
for cloning are listed in Supplementary Table 5. pST1374-NLS-flag-linker-Cas9 
and pGL3-U6-sgRNA-PGK-puromycin plasmids for CRISPR targeting were 
a gift from X. Huang (plasmid nos. 44758 and 51133, respectively; Addgene). 
Each pair of oligonucleotides of sgRNAs was annealed and cloned into a 
pGL3-U6-sgRNA plasmid. The identities were confirmed by Sanger sequencing. 
LARP4 RNA interference experiments were performed using a two-hit strategy, as 
described previously68. Briefly, 60 pmol of LARP4 siRNA (SASI_Hs01-00187288; 
Sigma-Aldrich) was diluted in 100 μl of Opti-MEM. For each siRNA, 3 μl of 
RNAiMAX (Thermo Fisher Scientific) was diluted in 100 μl of Opti-MEM and 
incubated for 5 min at room temperature. Diluted siRNA and RNAiMAX were 
mixed and incubated for another 20 min at room temperature. Cells were seeded in 
12-well plates at a density of 4 × 105, in 1 ml of regular growth medium, immediately 
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before adding the complexes. Transfected cells were incubated at 37 °C and 5% 
CO2 for 24 h. For the second forward transfection, 90 pmol of siRNA and 4.5 μl of 
RNAiMAX were used to form transfection complexes, as described for the first 
transfection. The medium was replaced with fresh medium before adding the 
complexes. After another 24 h, cells were expanded to 6-well plates and grown for 
a total of 72 h before being collected. To check protein expression, anti-FLAG-HRP 
M2 (catalog no. A8592; Sigma-Aldrich) in 1:5,000 dilution, anti-alpha Tubulin 
(catalog no. ab15246; Abcam) in 1:2,000 dilution and anti-GAPDH (catalog no. 
AM4300; Thermo Fisher Scientific) in 1:4,000 dilution was used for western blotting.

CRISPR genomic editing. CRISPR was used to precisely incorporate the FLAG 
sequence (gat tac aag gat gac gac gat aag), as described previously69, into all 
endogenously expressed LARP4 proteins, at the N terminus. Briefly, a 100-bp 
genomic sequence surrounding the translation start site (TSS) was input into  
the CRISPOR program (http://crispor.tefor.net/crispor.py) for guide RNA  
(gRNA) prediction.

Two gRNAs were selected based on the following: (1) the shortest distance 
between the Cas9 cutting site (NGG is the protospacer adjacent motif) and 
the FLAG insertion site; and (2) the specificity score, based on the number of 
off-target effects. To design the single-strand DNA donor template, a 200-bp 
genomic sequence (including the 24 bases of the FLAG sequence in the middle) 
surrounding the TSS was synthesized by Integrated DNA Technologies. The 
protospacer adjacent motif on the donor template was mutated silently to avoid 
being attacked by transfected gRNA/Cas9. Equal amounts of gRNA and Cas9 
plasmids (720 ng in total) were mixed with 10 pM (approximately 660 ng) of 
donor template and transfected into 4 × 105 HEK 293T cells in 24-well plates with 
Lipofectamine 2000. Cells were moved to 6-well plates after overnight incubation; 
selection (10 μg ml−1 of blasticidin and 1 μg ml−1 puromycin) was started 24 h after 
transfection for a total of 48 h. Cells were expanded in regular growth medium, 
without selection antibiotics. FLAG western blots were performed to determine the 
signal from pools of cells and confirm the signal from clonal lines. Genomic DNA 
was extracted from those clonal lines with FLAG signals on western blots. PCR was 
performed to amplify the approximately 200-bp fragment containing the FLAG 
sequence; the product was resolved on agarose gels to determine the homogeneity 
of FLAG insertion on all alleles of the target gene.

For 3′aQTL alterations, double-stranded DNA donor templates (approximately 
500 bp from each of three genes) were amplified from HEK 293T genomic DNA. 
3′aQTLs were designed to be located approximately two-thirds downstream from 
the 5′-end for higher CRISPR efficiency70. PCR-based mutagenesis was performed 
to alter the 3′aQTLs. Transfection and selection were performed as described 
above. RNA and genomic DNA were extracted from a pool of cells for distal PAS 
usage measurements and Sanger sequencing, respectively.

PAC-seq. To identify alternative polyadenylation sites, PAC-seq47,71 was adopted 
to sequence LARP4 knockdown samples. Briefly, poly(A) mRNA was enriched 
from 5 μg of total RNA using the NEBNext Poly(A) mRNA Magnetic Isolation 
Module (New England Biolabs), as described by the manufacturer’s protocol. All 
enriched mRNA was reverse-transcribed into complementary DNA. First, 2 μl 
of a 5-mM mixture containing 3′-azido-2′,3′-dideoxyadenosine-5′-triphosphate 
(N-4007, N-4008 and N-4014; TriLink Biotechnologies) and deoxynucleoside 
triphosphate, at a ratio of 1 to 5, was added to the RNA sample together with 
1 μl of 100 μM 3′Illumina_4N_21T primer. Regular RT–qPCR steps, using 
SuperScript III, were performed. The sample was treated with 1 μl of ribonuclease 
H (Thermo Fisher Scientific) for 20 min at 37°C, followed by 10 min at 80°C for 
inactivation. cDNA was purified using AMPure XP beads, as described by the 
manufacturer’s instructions, and eluted in 12 μl of 50 mM of HEPES, pH 7.4. The 
click reaction was performed by first adding 23 μl of premixed Click-Adaptor 
(20 μl of dimethylsulfoxide and 3 μl of 5 μM of Click-Adaptor) to 10 μl of cDNA 
and then adding 2.4 μl of premixed catalyzer (0.4 μl of 50 mM of vitamin C and 
2 μl of 10 mM of Copper(II)-TBTA (Lumiprobe)). After a 30-min incubation at 
room temperature, 2.4 μl of catalyzer was added to the reaction to boost reaction 
efficiency. 5′ Clicked cDNA was purified using AMPure XP beads.

PCR amplification was performed using 5′ short universal primer and 3′ 
indexing primer, which has a unique index for each sample. OneTaq 2X Master 
Mix (New England Biolabs) was used to amplify the library under the following 
conditions: 1 min at 94 °C, 30 s at 55 °C, 10 min at 68 °C and 16 cycles of 30 s at 94 °C, 
30 s at 55 °C, 2 min at 68 °C. Finally, the PCR extension was performed at 68 °C for 
5 min, followed by 4 °C, indefinitely. The library was purified using AMPure XP 
beads; size selection was performed on 2% E-Gel EX Agarose Gels (Thermo Fisher 
Scientific), targeting fragments between 200 and 400 bp. The library was extracted 
from the gel using ZYMO DNA Clean & Concentrator 5 and quantified by a Qubit 
3.0 Fluorometer (Thermo Fisher Scientific) before being sequenced on an Illumina 
next-generation sequencer. PAC-seq data were analyzed with the differential 
poly(A) clustering DPAC72 pipeline using the exon-centric approach, with the --P 
--M --C --A --B and --D options. The results were filtered such that genes or exons 
required a minimum of 10 mean reads in each sample, a 1.5-fold change and an 
adjusted P < 0.01 to be considered significantly differentially expressed. Genes with 
more than one PAS also required a percentage distal PAS usage change of 20% to be 
considered a change in the length of the 3′UTR.

Nuclear and cytosolic protein extraction. Cells were washed and collected in 
cold PBS and resuspended in a fivefold cell pellet volume of Buffer A (10 mM of 
Tris, pH 8, 1.5 mM of MgCl2, 10 mM of KCl, 0.5 mM of dithiothreitol (DTT) and 
0.2 mM of phenylmethylsulfonyl fluoride). Cells were allowed to swell during a 
15-min rotation at 4 °C, then pelleted at 1,000g for 10 min, after which cells were 
homogenized in twofold the original cell pellet volume Buffer A with a Dounce 
pestle B for 20 strokes on ice. Nuclear and cytosolic fractions were separated 
by centrifugation at 2,000g for 10 min. For the cytosolic fraction, 10× Buffer B 
(300 mM of Tris, pH 8, 1.4 M of KCl and 30 mM of MgCl2) was added to the 
supernatant to a final concentration of 1× Buffer B. Debris was removed by 
centrifugation at 15,000g for 30 min at 4°C. For the nuclear fraction, the pellet was 
washed once with Buffer A before resuspending the original cell pellet volume of 
Buffer C (20 mM of Tris, pH 8, 420 mM of NaCl, 1.5 mM of MgCl2, 25% glycerol, 
0.2 mM of EDTA, 0.5 mM of phenylmethylsulfonyl fluoride and 0.5 mM of DTT). 
The sample was homogenized with a Dounce pestle B for 20 strokes on ice and 
rotated for 30 min at 4 °C before centrifugation at 15,000g for 30 min at 4 °C. 
Supernatants were collected from both fractions and subjected to dialysis in Buffer 
D (20 mM of HEPES, 100 mM of KCl, 0.2 mM of EDTA, 0.5 mM of DTT and 20% 
glycerol) overnight at 4°C. Lysates were centrifuged again at 15,000g for 3 min at 
4 °C to remove any precipitates before downstream applications.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw GTEx RNA-seq and genotype files are available to authorized users through 
dbGaP release, under accession no. phs000424.v7.p2. A list of 3′aQTLs, lead 
3′aQTLs and their associated APA genes, isoform usage-controlled 3′aQTLs 
and expression-controlled 3′aQTLs are freely available at Synapse (accession no. 
syn22236281; https://doi.org/10.7303/syn22236281). Raw and processed PAC-seq 
data for the LARP4-depletion experiment have been deposited with the Gene 
Expression Omnibus under accession no. GSE139548. The proteomics data have 
been deposited with the MassIVE database under accession no. MSV000087000. A 
website portal dedicated to trait- and disease-associated 3′aQTLs can be accessed at 
https://wlcb.oit.uci.edu/3aQTL/index.php. Source data are provided with this paper.

Code availability
The open-source DaPars v.2.0 program is freely available at https://github.
com/3UTR/DaPars2.
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Extended Data Fig. 1 | Known technical covariates associated with inferred PEER factors in each tissue. The R2 value in each cell represents the 
percentage of variance explained for each tissue/covariates pair. Only the most relevant sample-specific covariates were used. Gray color represents 
insufficient data to predict correlations. Each color code below indicates a tissue of origin.
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Extended Data Fig. 2 | Known donor covariates associated with inferred PEER factors in each tissue. The R2 value in each cell represents the percentage 
of variance explained for each tissue/covariate pair. Only the most relevant donor-specific covariates were used. Gray color represents insufficient data to 
predict correlations. Each color code below indicates a tissue of origin.
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Extended Data Fig. 3 | PEER factors for gene expression associated with PEER factors for PDUI in each tissue. The R2 value in each cell represents the 
correlation between the top PEER factors for gene expression (rows) and the most relevant PEER factors for PDUI for each tissue (columns). Each color 
code below indicates a tissue of origin.
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Extended Data Fig. 4 | Enrichment of 3′aQTL in different categories of mutagenesis variants annotations. The enrichment score represents the log odd 
ratio and accessed by the program Torus. The x-axis represents three categories of variants with different effects in predicting APA isoform log fold change 
due to the variant. Each color code indicates a tissue of origin. The saturation mutagenesis data with log isoform fold change < 0.15 are not available from 
Bogard et al.
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Extended Data Fig. 5 | The sharing magnitude of 3′aQTLs using different FDRs at 0.01, 0.005, 0.001. Histograms showing the estimated proportion of 
tissues that share lead 3′aQTLs /eQTLs, by magnitude, with other tissues, among all 46 examined tissues, among non-brain tissues only, and among brain 
tissues only.
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Extended Data Fig. 6 | sQTL have a distinct genomic distribution and functional enrichment compared with 3′aQTL. a, Relative position distance 
between sQTL and their associated genes. TSS represents the transcription start site; TES represents the transcription end site. Red line represents 
randomly selected positions within the +/− 1Mb window for each gene. b, 3′aQTL and sQTL enrichment in functional annotations. The enrichment 
is shown as mean with SD across tissues. The proportion of variants was also included for 3′aQTL and sQTL. Data are presented as mean value +/− 
Standard deviation. n = 46 tissues examined.
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Extended Data Fig. 7 | 3′aQTLs are validated by saturation mutagenesis data. a, Saturation mutagenesis of the ADI1 PAS. Shown above is the measured 
wild-type (black) and variant cleavage distribution (red) for the SNP rs1130319. The heatmap below shows the measured isoform fold changes as a result 
of each SNP. The red box color indicates the SNP rs1130319.
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Extended Data Fig. 8 | Trans-regulator APA prediction. a, Scatterplot of the percentage of distal polyA site usage index (PDUI) in CSTF2 over-expressed 
and low-expressed samples where mRNA significantly shortened (blue) or lengthened (red) are colored. b, Scatterplot of PDUI changes for LARP4 
over-expressed and low-expressed samples were shown.
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Extended Data Fig. 9 | Representative genome browser images of the SLC9A3R2 gene. SLC9A3R2 APA is regulated by LARP4 and binds LARP4, as 
assessed by LARP4 CLIP-seq.
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Extended Data Fig. 10 | A partitioned heritability plot for the percentage of phenotypic variance can be explained, for 35 traits, by 3′aQTLs, eQTLs, and 
sQTLs in aggregate. The trait/tissue pairs with heritability not significantly greater than 0 are removed. Centre horizontal lines show median values, boxes 
span from the 25th percentile to the 75th percentile. Whiskers extend to 1.5 × IQR (bottom), where IQR is the interquartile range. n = 46 tissues examined.
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Abstract 
 
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional 
regulation in various cellular processes including cell proliferation and differentiation, but 
the APA heterogeneity among single cells remains largely unknown. Single-cell RNA 
sequencing (scRNA-seq) has been extensively used to define cell subpopulations at the 
transcription level. Yet, most scRNA-seq data have not been analyzed in an “APA-
aware” manner. Here, we introduce scDaPars (Dynamic Analysis of Alternative 
PolyAdenylation from Single-cell RNA-seq), a bioinformatics algorithm to accurately 
quantify APA events at both single-cell and single-gene resolution using either 3’ end 
(10x Chromium) or full-length (Smart-seq2) scRNA-seq data. Validations in both real 
and simulated data indicate that scDaPars can robustly recover missing APA events 
caused by the low amounts of mRNA sequenced in single cells. When applied to cancer 
and human endoderm differentiation data, scDaPars not only revealed cell-type-specific 
APA regulation but also identified cell subpopulations that are otherwise invisible to 
conventional gene expression analysis. Thus, scDaPars will enable us to understand 
cellular heterogeneity at the post-transcriptional APA level. 

 
Keywords 
 
Alternative Polyadenylation, Single-cell RNA-sequencing, Single-cell Genomics, 
Imputation  
  

Introduction 
 
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional 
regulation under diverse physiological and pathological conditions (Elkon et al. 2013; 
Tian and Manley 2017). The process of polyadenylation involves endonucleolytic 
cleavage of the nascent RNA followed by synthesis of a poly(A) tail on the 3’ terminus 
(Tian and Manley 2017). By using different polyadenylation sites (poly(A) sites), which 
are defined by flanking RNA sequence motifs, APA can generate mRNA isoforms with 
various 3’-untranslated regions (3’ UTRs) in the majority of human genes (Derti et al. 
2012; Tian and Manley 2017). While APA in most cases does not alter the protein-
coding regions in those mRNA isoforms, it disrupts important cis-regulatory elements 
located in the 3’ UTRs, including adenylate-uridylate-rich elements (ARE) and binding 
sites of miRNAs and RNA-binding proteins, resulting in altered mRNA stability, 
localization and translation efficiency (Garneau et al. 2007; An et al. 2008; Hoffman et al. 
2016).  
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High-throughput sequencing technologies have revolutionized our understanding 
of APA over the last decade, illustrating both the pervasiveness of dynamic APA events 
and complexity of the APA regulatory processes. Recently, multiple studies have shed 
light on the global regulation of APA in response to changes in cell proliferation and cell 
differentiation in human diseases including cancer (Tian and Manley 2017; Gruber and 
Zavolan 2019). Both proliferating cells and transformed cells often express a multitude 
of alternative mRNA isoforms with shortened 3’ UTRs through APA (Sandberg et al. 
2008), leading to the activation of several proto-oncogenes such as CCND1, by 
escaping miRNA-mediated repression (Mayr and Bartel 2009). On the other hand, 3’ 
UTR lengthening is more prevalent in cell differentiation (Ji et al. 2009; Ji and Tian 
2009). For example, progressive 3’ UTR lengthening is observed during mouse 
embryonic development (Ji et al. 2009), and the generation of induced pluripotent stem 
cells (iPSCs) (dedifferentiation) is accompanied by global 3’ UTR shortening (Ji and 
Tian 2009). Besides regulating cognate transcripts in cis, APA-induced 3’ UTR changes 
can also disrupt competing endogenous RNA (ceRNA) regulation in trans, thus 
repressing several crucial tumor suppressors such as PTEN in breast cancer (Park et al. 
2018). Although these observations imply a possible cell-state- or cell-type-dependent 
manner of APA regulation, the variability of APA among individual cells and the utility of 
APA in revealing novel cell subpopulations remain largely unknown.  
 Single-cell RNA sequencing (scRNA-seq) has become one of the most widely 
used technologies in biomedical research by providing an unprecedented opportunity to 
quantify the abundance of diverse transcript isoforms among individual cells (Shapiro et 
al. 2013; Saliba et al. 2014). However, methods to quantify relative APA usage across 
single cells remain underdeveloped. Recently, Velten et al. (Velten et al. 2015) 
developed an experimental protocol BATseq to quantify various 3’-UTR isoforms at the 
single-cell resolution. By integrating the standard scRNA-seq protocol and the 3’ 
enriched bulk RNA-seq protocol, Velten et al. found that cell types can be well 
separated based exclusively on their 3’-UTR isoform usage, indicating that APA is a 
molecular feature intrinsic to cell states (Velten et al. 2015). While a compelling method, 
BATseq is hampered by its low sensitivity (~5%) and high procedural complexity (Chen 
et al. 2017), thereby not being widely adopted in practice. In contrast, standard scRNA-
seq data is widely available, yet most of the scRNA-seq data has not been analyzed in 
an “APA-aware” manner. Since scRNA-seq only captures a small fraction (typically 5%-
15%) of the total mRNAs in each cell (Stegle et al. 2015), it can falsely quantify genes, 
especially lowly expressed ones, as unexpressed; this phenomenon is termed as 
“dropout”. Existing bulk RNA-seq based APA methods such as DaPars (Xia et al. 2014) 
cannot overcome this vexing challenge when applied directly to scRNA-seq data, as 
they would lead to a high degree of sparsity in the resulting APA profiles. To address 
this sparsity, recently published computational approaches such as scDAPA (Ye et al. 
2020) and scAPA (Shulman and Elkon 2019) extract and combine reads from cells 
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aggregated based on pre-defined cell types.  Alternatively, another study (Kim et al. 
2019) aggregates individual genes into “meta-genes” with reference to common 
functionality. While these strategies cope with the problem of sparsity to some extent, 
they fail to retain the single-cell or single-gene resolution (Supplemental Table S1).  

To fill this knowledge gap, we developed scDaPars (Dynamic analysis of 
Alternative PolyAdenylation from scRNA-Seq), a bioinformatics algorithm for 
quantifying and recovering APA usage at the single-cell and single-gene resolution 
using standard scRNA-seq data. Since APA is reported to be regulated in a cell-state- 
or cell-type-specific manner, scDaPars employs a regression model that enables 
sharing of APA information across related cells to tackle the sparsity, achieving 
considerable robustness when applied to noisy scRNA-seq data. In addition, unlike 
scDAPA and scAPA which are only applicable to 3’ end scRNA-seq datasets, scDaPars 
can be applied to both 3’ end and full-length scRNA-seq data. To the best of our 
knowledge, scDaPars is the first single-cell- and single-gene- level APA quantification 
method for analyzing standard scRNA-seq data.  

 

Results 
 
Overview of the scDaPars algorithm 
Figure 1 presents a schematic illustration of the scDaPars algorithm (see “Methods” for 
detailed definition and computational procedures). Given a scRNA-seq dataset, 
scDaPars first calculates raw relative APA usage, measured by the percentage of distal 
poly(A) site usage index (PDUI), based on the two-Poly(A)-site model introduced in 
DaPars (Xia et al. 2014). scDaPars takes scRNA-seq genome coverage data as input 
and forms a linear regression model to jointly infer the exact location of proximal poly(A) 
sites by minimizing the deviation between the observed read density and the expected 
read density in all single cells. The relative APA usage is then quantified as the 
proportion of the estimated abundances of transcripts with distal poly(A) sites (longer 3’ 
UTRs) out of all transcripts (longer and shorter 3’ UTRs), and therefore, genes favoring 
distal poly(A) site usage (long 3′ UTRs) will have PDUI values near 1, whereas genes 
favoring proximal poly(A) site usage (short 3′ UTRs) will have PDUI values near 0. This 
step (step (I)) will generate a PDUI matrix with rows representing genes and columns 
representing single cells. Of note, the raw PDUI values can only be estimated for genes 
with sufficient read coverages (default coverage of 5 reads per base), which 
automatically separates genes into robust genes (genes unaffected by dropout events) 
and dropout genes for further analysis. Due to the intrinsically low coverage of scRNA-
seq data (Brennecke et al. 2013), the resulting PDUI matrix from step (I)  is overly 
sparse with widespread missing data. To further recover the complete PDUI matrix 
independent of gene expression, we develop a new imputation method by sharing APA 
information across different cells. For a given cell, scDaPars begins by constructing a 
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nearest neighbor graph based on the sparse PDUI matrix generated in step (I) (Fig.1) to 
identify a pool of candidate neighboring cells that have similar APA profiles (step (II)). 
Finally, scDaPars uses a non-negative least square (NNLS) regression model to refine 
neighboring cells based on robust genes and then borrow APA information in these 
neighboring cells to impute PDUIs of dropout genes in each cell (step (III)).  

 
Evaluation of the Accuracy and Robustness of scDaPars 
To quantitatively evaluate the accuracy of imputed APA usage by scDaPars, we used 
384 scRNA-seq libraries of individual human peripheral blood cells (PBMCs) sequenced 
by Smart-seq2 (Picelli et al. 2013) protocol and a matched bulk RNA-seq library from a 
benchmark study by Ding et al. (Ding et al. 2020). Since we can estimate poly(A) sites 
and quantify differential poly(A) sites usage with high sensitivity and specificity in bulk 
RNA-seq datasets (Xia et al. 2014), we treated the results from the matched bulk 
sample as pseudo-gold standard for the following evaluation.  
 First, we showed that scDaPars reliably identified the location of proximal poly(A) 
sites in single cells. We found that ~84% of poly(A) sites predicted from scRNA-seq 
data are within 100bp of those predicted in bulk, whereas only ~44% of randomly 
selected sites from 3’ UTR regions are within 100bp of bulk predictions (Fig.2A). We 
found that ~66.2% of poly(A) sites predicted from scRNA-seq data also overlapped with 
annotated poly(A) sites complied from RefSeq, Ensembl, UCSC gene models and 
poly(A)_DB (Wang et al. 2017) within 100bp, and this overlap showed an approximately 
fivefold enrichment compared with random sites (Fig.2B). In addition, canonical poly(A) 
signal (PAS) AATAAA was successfully identified by de novo motif analysis (Bailey 
2011) within the upstream (-100bp) sequence of single-cell predicted poly(A) sites with 
a p-value (P = 1.2�10-44) similar to that of bulk samples (P = 5.4�10-48) (Fig.2C, 
Supplemental Fig.S1), supporting the validity of scDaPars’s prediction of poly(A) sites. 

Next, we showed that scDaPars was able to recover APA usage for genes 
affected by dropouts in scRNA-seq data. APA is found to be uniquely regulated in 
distinct immune cell types in PBMCs (Kim et al. 2019). Yet the median Pearson’s 
correlation between APA (PDUI values) of single-cell pairs in the same B cell cluster is 
only 0.46 when PDUI values were calculated by DaPars (our previous method for bulk 
RNA-seq) due to dropout effects (Fig. 2D). In contrast, scDaPars successfully 
recovered PDUI values for most of the affected dropout genes (Supplemental Fig.S2) 
and increased the median cell-cell correlation by a large margin (0.79) (P < 2.2�10-16) 
(Fig.2D). We further compared the average APA usage of all single cells with the bulk 
results. The Pearson’s correlation between the average PDUI values of single cells and 
those of the bulk increased from 0.74 to 0.82 after scDaPars imputation (Fig.2E). 
Notably, even though the correlation increase was not large, the regression slope 
increased significantly from 0.59 (DaPars) to 0.8 (scDaPars) (P = 4.89�10-26), indicating 
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APA usage quantified by scDaPars better represents the linear relationship between the 
average of single cells and the corresponding bulk. 
 Finally, we used a simulation study to illustrate scDaPars’s ability to identify 
dynamic APA events (see “Methods”) between two cell types. We created a synthetic 
PDUI matrix of naive and activated CD4 T cells based on bulk RNA-seq data from the 
DICE project (Schmiedel et al. 2018) (see “Methods”). The naive and activated CD4 T 
cells are clearly distinguishable using the reference APA profiles estimated from bulk 
samples (Fig.3A). Additionally, the reference data showed a strong inclination of 3’ UTR 
shortening in activated CD4 T cells (P = 3.8�10-4) (Fig.3D), in line with previous reports 
that 3’ UTR shortening is widely observed upon activation of T cells (Sandberg et al. 
2008). However, manually introduced dropout events obscured this differential 3’ UTR 
pattern, in which only ~38% of differential APA genes remained, and the two cell types 
became less separated by their APA profiles (Fig.3B, E). After we applied the 
imputation steps of scDaPars, ~79% of differential APA genes are recovered and the 
clear separation of these two cell types was restored (Fig.3C, F). We further examined 
the robustness of scDaPars against varying dropout rates. Even though the accuracy of 
dynamic APA events identified by scDaPars decreased as the dropout rate increased, 
scDaPars could still achieve > 0.75 area under the receiver operating characteristics 
(ROC) curve when the proportion of dropout events was as high as 70% (Supplemental 
Fig.S3).  
 
scDaPars outperforms existing methods by providing single-cell-resolution APA 
quantification applicable to both 3’ end and full-length scRNA-seq data 
Several bioinformatics tools have been developed to analyze APA usage using scRNA-
seq data (i.e., scDAPA (Ye et al. 2020) and scAPA (Shulman and Elkon 2019)), yet, 
unlike scDaPars, they were not designed to quantify APA usage at the single-cell 
resolution. During the preparation of this manuscript, we noticed another method Sierra 
(Patrick et al. 2020), which detects differential transcript usage in scRNA-seq data, may 
also be used for quantifying dynamic APA events. To illustrate the superiority of 
scDaPars over these existing methods, we applied scDaPars, scAPA and Sierra to a 
benchmark 10x Chromium dataset containing 902 single cells from three lung 
adenocarcinoma cell lines (Tian et al. 2019) (see “Methods”). scDAPA was excluded 
from this study since it identifies APA events by pair-wise comparison without 
quantifying APA usage. scDaPars outperformed both scAPA and Sierra by generating 
clear and compact cell clusters according to annotated cell lines (UMAP (McInnes et al. 
2018) visualization in Supplemental Fig.S4A, B and C). We used silhouette analysis to 
quantitatively assess the resulting clusters. Compared with scAPA and Sierra, 
scDaPars showed higher silhouette coefficients which indicated the clustering results 
from scDaPars are more congruent with the true cell-line labels (Supplemental Fig.S4D, 
E and F). To further benchmark scDaPars in more complex biological systems, we 
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applied scDaPars, scAPA and Sierra to an immune dataset containing 3362 PBMCs 
(Ding et al. 2020) (see “Methods”). Again, the APA usage quantified by scDaPars 
generated compact and accurate immune cell clusters (Fig.4A, D). In contrast, although 
Sierra outperformed scAPA and was able to separate B cell and CD14+ monocytes 
(Fig.4B, C), both Sierra and scAPA failed to accurately distinguish the five immune cell 
types (Fig.4E, F). Besides generating accurate cell clusters, scDaPars also identified 
169 dynamic APA genes (genes with differential poly(A) site usage) among the five 
immune cell types, most of which (96%) were unseen by existing methods. For example, 
scDaPars identified EIF1 as a dynamic APA gene between B cells and CD14+ 
monocytes. Both cluster- and single-cell level coverage plots corroborated that EIF1 
exhibits 3’ UTR lengthening in B cells compared to CD14+ monocytes (Supplemental 
Fig.S5). Yet, EIF1 was not captured by previous methods (i.e., scAPA), indicating the 
advantage of scDaPars. More importantly, scDAPA, scAPA and Sierra rely on peak 
calling using 3’ end enriched reads in 10x Chromium to quantify APA usage and thus 
are not applicable to data generated by full-length sequencing protocols like Smart-seq2 
which do not contain enriched peaks in the 3’ UTR regions (Picelli et al. 2013). 
 
scDaPars revealed intrinsic tumor APA variations and immune cell 
subpopulations in primary breast cancer  
Global-scale coordinated APA events are commonly observed in cancers (Xia et al. 
2014), and APA induced 3’ UTR shortening was shown to be associated with tumor 
aggressiveness and poor survival of cancer patients (Lembo et al. 2012; Xia et al. 2014). 
However, knowledge of APA regulations in cancer has been largely derived from bulk 
RNA-seq studies. Therefore, while global APA variations between tumor and normal 
cells have been well characterized, little is known about the intertumoral APA 
heterogeneity at the single-cell resolution. To illustrate scDaPars’ capacity of 
characterizing single-cell APA variations in cancers, we applied scDaPars to a Smart-
seq2 (Picelli et al. 2013) scRNA-seq dataset containing 563 single cells from 11 breast 
cancer patients (Chung et al. 2017). In consistent with bulk results, 3’ UTRs were 
shortened in tumor cells compared to normal cells (P < 2.2�10-16) (Fig.5A). Even PDUI 
values before scDaPars imputation could separate tumor cells from non-tumor cells with 
effectiveness comparable to that of gene expression values (Supplemental Fig.S6A), 
suggesting an important role of dynamic APA events in breast cancer progression. As 
expected, scDaPars imputed APA profiles showed a better separation between tumor 
and non-tumor groups (Fig.5B, Supplemental Fig.S7). 
 To further elucidate APA variations among cell subgroups, we analyzed APA 
profiles of tumor and non-tumor cells separately. On the one hand, contrary to a 
previous single-cell APA analysis performed on aggregated “meta-genes” in the same 
breast cancer dataset (Chung et al. 2017), which showed that no differences in APA 
were associated with cancer subtypes or patients (Kim et al. 2019), we found that tumor 
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cells were not only separated into patient-specific clusters based on scDaPars-imputed 
APA profiles (Fig.5C), but also further classified into different molecular subtypes 
(Supplemental Fig.S8), showing evidence of both intertumoral and cancer-subtype-
specific APA heterogeneity as well as scDaPars’s advantage over existing method. On 
the other hand, non-tumor cells, which were derived from the same group of patients as 
tumor cells, were clustered mainly according to their cell types (B cells, Myeloid cells 
and T cells) instead of patients (Fig.5D, Supplemental Fig.S6B). This result not only 
reaffirmed that dynamic APA events are cell-type specific characteristics of immune 
cells, but also indicated that the patient-specific APA profiles observed in tumor cells 
were unlikely due to batch effects in patient samples but rather reflected true 
intertumoral variations in APA.  

In addition, in consistent with prior knowledge of two B cell subclasses 
(proliferating and naive/memory B cells) in this dataset, we observed that B cells were 
classified into two cell subgroups based on scDaPars-imputed APA profiles (Fig.5E) 
with group 2 B cells showed global 3’ UTR shortening compared with group 1 B cells (P 
= 2�10-3) (Fig.5F). We found that most B cell proliferation signature genes from the 
literature (Chung et al. 2017)  were upregulated in group 2 B cells compared to group 1 
B cells (Supplemental Fig.S9, Supplemental Table S2), suggesting that group 2 B cells 
may represent proliferating B cells. Indeed, the proliferating and naive/memory B cells 
determined by the expression of B cell proliferating marker genes are highly congruent 
with scDaPars derived cell subgroups (Supplemental Fig.S10A, B). These results are 
also in line with previous reports that proliferating cells (i.e., group 2 cells) express more 
isoforms with shortened 3’ UTRs through APA (Sandberg et al. 2008). However, 
expression analysis of all genes failed to identify these B cell subgroups (Supplemental 
Fig.S10C), revealing the potential benefits of APA analysis in delineating cell 
subpopulations. In summary, scDaPars improves the characterization of APA variations 
and cell subpopulations in single cells.  

 
scDaPars enables identification of novel cell subpopulations invisible to 
conventional gene expression analysis in endoderm differentiation 
As APA patterns appear to be globally regulated in cell differentiation (Ji et al. 2009; 
Tian and Manley 2017) (i.e., decreased proximal poly(A) site usage in more 
differentiated states of embryonic development), we hypothesized that they could 
provide a new aspect to identify cell subpopulations during differentiation. To test this 
hypothesis, we applied scDaPars to a time-course Smart-seq2 (Picelli et al. 2013) 
scRNA-seq dataset containing 758 cells sequenced at 0, 12, 24, 36, 72 and 96 h of 
differentiation during human definitive endoderm (DE) emergence (Chu et al. 2016). 
scDaPars revealed clear and accurate cell clusters from each time point along the 
differentiation process (Fig.6A). Dimension 2 of the UMAP projection of raw PDUI 
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values reconstructed single-cell orders matching the true differentiation time points, 
reflecting the global APA dynamics during cell differentiation (Supplemental Fig.S11).  
 Next, we investigated whether APA could help delineate novel cell 
subpopulations invisible to gene expression analysis alone. Imputation based on 
observed gene expression has been shown to enhance the identification of cell 
subpopulations (Li and Li 2018). Therefore, to ensure APA is providing additional 
information beyond expression, we first recovered plausible single-cell gene expression 
data using scImpute (Li and Li 2018), a state-of-the-art gene expression imputation 
method. Notably, although the imputed gene expression profile outputs more compact 
clusters than the raw expression, single cells collected from 72 and 96 h of 
differentiation were still largely overlapped (Supplemental Fig.S12). To characterize 
additional cellular heterogeneity, we integrated APA information with imputed gene 
expression using similarity network fusion (SNF) (Wang et al. 2014). By creating and 
converging separate similarity networks for APA and gene expression, SNF reduced 
noisy inter-cluster similarities among cells in 12 and 24 h of differentiation and 
enhanced intra-cluster similarities observed in one or both similarity networks (Fig.6B). 
We then quantitatively compared the clustering results by using spectral clustering 
algorithm (Ng et al. 2002) on different similarity networks with the number of clusters 
� � 6. The clustering results are evaluated by normalized mutual information (NMI) 
(Witten et al. 2016) where ��� � 1 indicates a perfect match between the clustering 
results and the known differentiation time points. While gene expression imputation 
increased NMI from 0.76 to 0.85, integration of APA usages with imputed gene 
expression further increased NMI from 0.85 to 0.89, suggesting the benefits of adding 
APA information.  
 Besides unifying the clustering results of APA and gene expression, the fused 
similarity network also revealed novel and potentially meaningful subpopulations. For 
example, cells at 96 h of differentiation were divided into two previously unidentified 
subpopulations (Fig.6B). Through analyzing APA and gene expression between the two 
subpopulations, we found that APA usage alone can accurately separate the two 
subpopulations (Fig.6C, Supplemental Fig.S13) and subpopulation 2, which was more 
distinct from cells in 72 h of differentiation than subpopulation 1, exhibited global 3’ UTR 
lengthening compared to subpopulation 1 (P = 3.64�10-8) (Fig.6D); whereas the 
imputed gene expression profile alone failed to distinguish the two subpopulations 
(Fig.6C). The APA profile quantified by DaPars also failed to identify the 2 subgroups 
(Supplemental Fig.S14), indicating the superiority of scDaPars.  

Since subpopulation 2 showed global 3’ UTR lengthening, we hypothesized it 
may represent a more differentiated cell subgroup. To test our hypothesis, we 
performed differential gene expression analysis between subpopulation 1 and 2 using 
DESeq2 (Love et al. 2014). As a result, subpopulation 2 was characterized by higher 
expression of endoderm development marker genes including GATA6, EOMES, and 
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SOX17 (Chu et al. 2016) (Fig.6F, Supplemental Table S3). In addition, the 
transcriptional profile of subpopulation 2 also included significantly upregulated 
endoderm development related genes like LHX1, which is important for renal 
development (Reidy and Rosenblum 2009), and HMGA2, which is required for 
epithelium differentiation during embryonic lung development (Singh et al. 2014), 
suggesting subpopulation 2 has a more differentiated phenotype than subpopulation 1. 
To further elucidate the global biological differences between the two subpopulations, 
we performed gene oncology (GO) analysis (Luo et al. 2009). We found that several 
endoderm development related GO terms were highly enriched in the upregulated 
genes in subpopulation 2 (Fig.6E). Furthermore, using the expression of differential 
APA genes, we were able to separate the two subpopulations (Supplemental Fig.S15), 
indicating that some biologically meaningful subpopulations were masked by overall 
gene expression analysis. Finally, we conducted a trajectory analysis by STREAM 
(Chen et al. 2019) to independently show the validity of the identified subpopulations. 
Using cells at 0 h of differentiation as a natural starting point (root), we found that most 
cells are projected onto the inferred branches according to their corresponding 
differentiation time points (Supplemental Fig.S16A, B), and the derived pseudotime 
progression corroborated that cells in subpopulation 2 are more differentiated than 
those in subpopulation 1 (Fig.6G, Supplemental Fig.S16C). Considered collectively, 
scDaPars calculated APA usage offered an additional layer of information in 
characterizing cellular heterogeneity that was otherwise invisible in gene expression 
analysis.  
 

Discussion 
 
Here, we developed scDaPars, a novel bioinformatics algorithm to de novo identify and 
quantify single-cell dynamic APA events using standard scRNA-seq data. Many 
methods have been developed to measure the relative APA usages in RNA-seq data 
from bulk samples (Xia et al. 2014). However, the widespread dropout events in scRNA-
seq data impede these bulk-sample based methods to quantify APA usage among 
single cells (Figs.2D and 2E). To address this technical challenge in scRNA-seq, 
scDaPars first quantifies raw APA usage based on the two-poly(A)-site model 
introduced in DaPars (Xia et al. 2014). Since APA exhibits a cell-type specific pattern 
(Velten et al. 2015; Kim et al. 2019), scDaPars then clusters cells into different cell 
neighbors based on their calculated raw APA profiles. Next, scDaPars imputes missing 
APA usage by borrowing APA information of the same gene from neighboring cells. 
Benchmarking on both real and simulated data show the accuracy of scDaPars in 
predicting poly(A) sites, the ability in recovering missing APA usages, and the 
robustness in identifying dynamic APA events across different cell types (Fig.2 and 3). 
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 Previously, methods for analyzing APA usage using scRNA-seq data mostly 
address the high technical noise in scRNA-seq by creating pseudo-bulk RNA-seq data 
(i.e. pooled reads from cells that are assigned to the same cell cluster) (Shulman and 
Elkon 2019; Ye et al. 2020). Unlike scDaPars, even though these methods perform on 
scRNA-seq data, they do not quantify APA usage at the single-cell resolution but rather 
measure cell-cluster APA usage, which contradicts the purpose of single-cell 
sequencing (Supplemental Table S1). Additionally, previous methods are confined by 
cell cluster assignments determined by conventional gene expression analysis. In 
contrast, scDaPars quantifies single-cell APA usage independent of gene expression, 
which provides an additional layer of APA information that helps identify hidden cell 
states. (Fig.6C). 
 Finally, unlike existing methods, we expect scDaPars to be widely applicable to 
any scRNA-seq datasets. While the main analysis presented in this paper builds on 
scRNA-seq data generated by low-throughput Smart-seq2 (Picelli et al. 2013) protocol 
and the accuracy of scDaPars decreases as the dropout rate increases (Supplemental 
Fig.S3), scDaPars can also be applied to datasets generated by high-throughput high-
dropout-rate droplet-based methods, e.g. 10x Chromium (Zheng et al. 2017). For 
example, scDaPars successfully revealed cell-type specific APA patterns in 3362 
PBMCs sequenced by 10x Chromium (Ding et al. 2020) (Fig.4A). Together, scDaPars 
provides an additional layer of APA information that helps identify cell subpopulations 
invisible to conventional gene expression analysis. 
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Methods 
 
De novo quantification of dynamic APA events 
scDaPars first performs de novo identification and quantification of dynamic APA events 
based on the two-poly(A)-site model introduced in DaPars. The bedGraph files for each 
single cell were used as input and jointly analyzed to calculate the APA usage 
measured as the Percentage of Distal poly(A) site Usage Index (PDUI). For each gene, 
the distal poly(A) site was identified as the end point of the longest 3’ UTR among all 
scRNA-seq samples, and the proximal poly(A) site was inferred by optimizing the 
following linear regression model: 
 
  
 
where 	�

� and 	�
� are the abundances of transcripts with distal and proximal poly(A) 

sites for cell 
, �� is the read coverage of cell 
 normalized by total sequencing depth, 
 
is the length of the longest 3’ UTR, � is the length of the alternative proximal 3’ UTR to 
be inferred, �� and �� are two indicator functions for long and short 3’ UTRs such that 

�� �  �1, � , 1�
  and �� �  �1, � , 1, 0, � ,0�    �,        
 � � . The optimal proximal poly(A) site is selected by 

minimizing the deviation between the observed read density �� and the expected read 
density 	�

��� � 	�
��� in all single cells. The APA usage is then quantified as PDUI for 

each gene in each single cell, with PDUI defined as: 
 

 
 
where 	�

�� and 	�
�� are the optimal expression levels of transcripts with distal and 

proximal poly(A) site for cell 
. The smaller the PDUI is, the less distal poly(A) site is 
used, the shorter the 3’ UTRs. The final output is a PDUI matrix in which rows represent 
genes and columns represent cells. Additionally, PDUIs can only be calculated in this 
step for genes with sufficient read coverage (default coverage of 5 reads per base), 
which automatically separate genes into robust genes and dropout genes for future 
analysis. On average, 50% of the genes in a cell are robust genes after quality control 
and if the dropout rate in the dataset is higher (e.g., in 10x Chromium datasets), the 
average number of robust genes in the data will decrease. There are overlaps between 
robust genes of different cells: in the benchmark dataset in Figure 2, the overlap of 
robust genes between any two cells is ~40%. 
 
Detection of potential neighboring cells and outliers 
Since APA exhibits alterations in different cell types and cell states in a global scale, 
scDaPars recovers missing single-cell level APA usage by borrowing APA information of 

���
�,�,�,…,��������������, ��

�,�,�,…,�,  

����������������� �  

	
���


�
�

�,�,�,…,�
,�

�

�,�,�,…,�
��, �����

∑ 	
�  �  
 ��
��� � ��

����	
�

��
���     (1) 

�����
� ��

��


2� 

 Cold Spring Harbor Laboratory Press on June 2, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


the same gene from neighboring cells. A critical step here is to determine which cells 
are from the same cell subpopulation and therefore are neighboring cells. Instead of 
using observed gene expression, scDaPars uses raw APA usage for this task because 
(1) APA is a feature intrinsic to cell types or cell states; (2) scDaPars quantifies APA 
usage independent of gene expression. We first performed a quantitative comparison of 
clustering using raw APA usage and observed gene expression from the hESC dataset 
in Figure 6 (Supplemental Fig.S17). We found that clustering of raw APA usage 
outperformed that of observed gene expression (Supplemental Fig.S17C, D) partly 
because differentiation is one of the biological processes with the most dramatic APA 
changes. To further illustrate the benefits of quantifying APA independent of gene 
expression, we modified our original scDaPars algorithm so that the initial clustering is 
performed using observed gene expression instead of raw APA usage and re-quantified 
the APA usage of cells from the hESC dataset in Figure 6. We found that the two 
subpopulations identified by original scDaPars were obscured by the modified version 
(Supplemental Fig.S18), indicating the advantage of quantifying APA independent of 
gene expression. 

Due to the technical limitation of scRNA-seq data, it is unlikely to completely 
cluster cells into true subpopulations based on the sparse PDUI matrix generated in last 
step. Instead, the goal of this step is to determine a set of potential neighboring cells 
which scDaPars will fine-tune in the following imputation step.  
 To increase the robustness and reliability of the clustering results and to find 
more plausible neighboring cells, scDaPars applies principal component analysis (PCA) 
to the raw PDUI matrix. While the PDUI matrix is sparse, the modularity of dynamic APA 
provides redundancy in gene dimensions, which can be exploited. Therefore, scDaPars 
selects principal components (PCs) that can together explain at least 40% of the 
variance in the data. Note that the neighboring cells are identified in these PCA 
dimensions while the imputation is performed on the full PDUI matrix.  
 

������� � ��������, 0.4�                     �3� 
 

Next, scDaPars identifies and removes outlier cells from the analysis. The outlier 
cells may be the result of technical errors or may represent true rare biological 
variations, in either case, scDaPars will not use these outlier cells to impute missing 
APA usage in other cells. We calculate the distance matrix �	
	 between cells based on 
the PCA transformed data �������. For each cell  , we define the Euclidean distance 

of cell   to its nearest neighbor as !�, resulting a set " �  #!�, � , !	$. We denote the 
first quantile of " as %� and its third quantile as %
 and the distance between %� and %
 
as interquartile range �%&. The outlier cells are defined as cells which are separated by 
more than 1.5 �%& to the third quantile %
.  
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 The remaining non-outlier cells #1, � , �$\'()*
+, are then clustered into 
subpopulations using graph-based community detection algorithm. The single cells are 
the vertices in the graph, and community detection in graphs will identify groups of 
vertices with high probability of being connected to each other than to members of other 
groups. We use R package RANN with default parameters to first identify the 
approximate nearest neighbors and convert neighbor relation matrix into an adjacency 
matrix. We then use igraph (Csardi and Nepusz 2006) to represent the resulting 
adjacency matrix as a graph and apply walkstrap (Pons and Latapy 2005) algorithm to 
identify communities of vertices (cells) that are densely connected. Suppose scDaPars 
divides cells into 1 subpopulations in this step, for each cell  , its potential neighboring 
cells �� are the other cells in the same cell subpopulation �.  

 
�� � #
 2 �, 
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Imputation of missing APA usage 
After potential neighboring cells �� for each cell are determined, we impute APA usage 
cell by cell. Recall that PDUIs can only be estimated for genes with sufficient read 
coverage, scDaPars thereby automatically separates genes into robust genes and 
dropout genes when calculating the PDUI matrix. Here, we denote the set of robust 
genes for cell   as &� and the set of dropout genes that will be imputed in this step as 
��. scDaPars then learns the cells’ similarities through the robust gene set 4������,� 
and impute the APA usage of �� by borrowing information from the same gene’s APA 
usage in other neighboring cells learned from &� . To fine-tune the grouping of 
neighboring cells from ��, we use non-negative least squares (NNLS) regression: 
 
 

 
where �� represents the indices of cells that are potential neighboring cells of cell  , 
��������������, � is a vector of response variables representing &� rows in the  -th 

column (cell  ) of the original PDUI matrix, ������, 	�
 is a sub-matrix of the original 

PDUI matrix with dimensions |&�| � |��|. The goal is to find the optimal coefficients 6�
7777 

of length |��| that can minimize the deviation between APA usage of &� in cell   and 
those in potential neighboring cells. The advantage of using NNLS is that it has the 
property of leading to a sparse estimate of 6�, whose components may have exact 
zeros, so that true neighboring cells of cell   are conveniently selected from ��. Once 
6�
7777 is computed, we have a vector of weighted neighbors associated with each cell in 
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our data. scDaPars use this coefficient 6�
7777 estimated from the set &� to impute the APA 

usage of genes in the set �� in cell  . All of the above analyses are conducted in R (R 
Core Team 2020). 
 

�����,�
77777777777 �  ; �����,�,                       if 8 2 &�

�����,	�
· 6�

7777,              if 8 2  ��

                �7�@ 
 
Differential percentage of distal APA usage index (PDUI) (Dynamic APA events) 
We used the following two criteria to define the significant dynamic APA events: first, 
given the PDUI values for cells in two cell types, the Benjamini-Hochberg corrected 
Mann-Whitney U p-value between two cell types (FDR) is less than 0.05; second, the 
absolute difference of mean PDUIs in cell type 1 and cell type 2 is greater than 0.2.  
 

A B�& C 0.05D�������� ���� � � �������� ���� �D  E 0.2                �8�@ 
 

 
Preprocessing of scRNA-seq data 
The scRNA-seq datasets used in this manuscript are all publicly available and are 
summarized in Supplemental Table S4. The 2 single-cell PBMC data are available at 
the Gene Expression Omnibus (GEO) under accession code GSE132044. The breast 
cancer data are available at GEO under accession code GSE75688. The time-course 
definitive endoderm data are available at GEO under accession code GSE75748. The 
lung adenocarcinoma cell line data are available at GEO under accession code 
GSE118767. The DICE immune data used to generate synthetic dataset were obtained 
from dbGaP under study accession code phs001703.v1.p1. For low-throughput 
datasets generated by Smart-seq2 (Picelli et al. 2013) protocol, we downloaded the 
publicly available FASTQ files from GEO database and aligned the reads using STAR 
2.5.2 (Dobin et al. 2013) with default parameters, generating one BAM file for each 
single cell. For high-throughput datasets generated by 10x Chromium (Zheng et al. 
2017), we downloaded the FASTQ files and aligned the reads using Cell Ranger 3.0.2. 
We then selected reads with correct unique molecular identifier (UMI) using Drop-seq 
tools FilterBAM (Macosko et al. 2015) and remove reads with duplicated UMIs using 
UMI-tools dedup (Smith et al. 2017). We next merged reads originated from same cells 
together and generated one BAM file for each single cell. The BAM files are used as 
inputs for subsequent scDaPars analysis. The average dropout rate (Percentage of 
missing data) for Smart-seq2 datasets is ~50% in our study. The 10x Chromium dataset 
in our study has a dropout rate of ~65%. 
 
Generation of synthetic dataset 
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The synthetic dataset was created based on bulk RNA-seq data generated from 13 
immune cell types (Schmiedel et al. 2018). The different immune cell types are isolated 
so that each sample only contains cells from one cell type. We used DaPars to estimate 
the APA usage in these bulk samples and generated an APA matrix, in which rows 
represent genes and columns represent samples. Since widespread dynamic APA 
events were reported in Naïve and activated CD4 T cells, we selected only samples that 
belong to these two cell types for the following simulation.  
 We down-sampled the resulting bulk APA matrix to emulate the APA profiles 
generated from single-cell data. We first calculated the dropout rate for each gene in the 
benchmark immune dataset (Ding et al. 2020). Next, for each gene in the bulk APA 
matrix, the dropout rate is randomly selected from the set of real dropout rates with 
replacement. Finally, we used Bernoulli distribution with p equals to the selected 
dropout rate and n equals to the number of samples to introduce dropouts into the 
synthetic dataset. The final dropout introduced data has a ~50% dropout rate which is 
similar to the dropout rate of real datasets. Notice that the generation of the synthetic 
dataset is independent from the models of scDaPars, so that it can be used to evaluate 
scDaPars in a fair way. 
 
Benchmark comparison of scDaPars 
To illustrate the advantage of scDaPars, we applied scDaPars, scAPA and Sierra to two 
benchmark 10x Chromium datasets. scAPA measures differential usage of poly(A) sites 
between different cell types by the proximal poly(A) site usage index (proximal PUI). 
Since we want to test scAPA’s ability for quantifying single-cell-level APA usage, we 
input single-cell coverage into scAPA to generate a cell by transcript proximal PUIs 
matrix to perform the clustering analysis. The Sierra pipeline does not yield PDUI like 
measurements. Instead, it generates a peak count matrix in which peak coordinates are 
annotated according to the genomic features they fall on including UTRs, exons, or 
introns. In order to calculate APA usage from the peak count matrix, we first selected 
peaks falling on the 3’ UTRs and only kept transcripts with more than one peak. We 
then transferred the peak count matrix into an APA matrix by calculating the relative 
usage of the most distal peak. The resulting APA matrix were used for the clustering 
analysis. Finally, we performed silhouette analysis by silhouette () in R package cluster 
v2.1.0. to quantitatively evaluate the clustering accuracy of the three methods.  
 

 
Software Availability 
 
The source codes and the R package scDaPars are available as Supplemental Code. 
scDaPars is also freely available at GitHub (https://github.com/YiPeng-Gao/scDaPars).  
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Figure Legends 
 
Figure 1. A schematic illustration of the scDaPars algorithm. 
(I) scDaPars predicts both distal and proximal poly(A) sites by joint analysis of all single-
cell samples and quantifies the raw relative APA usage by the proportion of estimated 
abundances of transcripts with distal poly(A) sites (long isoform). (II) scDaPars 
determines potential neighboring cells by applying community detection methods in 
APA profiles generated in step(I). (III) scDaPars uses NNLS regression model to refine 
neighboring cells and impute missing values by borrowing APA information from 
neighboring cells. 
 
Figure 2. Evaluation of APA detection accuracy of scDaPars using human PBMCs 
datasets. 
(A) Fraction of poly(A) sites predicted in matched bulk RNA-seq data recovered in 
single cells using scDaPars or random control. Poly(A) sites predicted in scRNA-seq are 
considered true if they are located within cutoff distance from the bulk results. The 
cutoffs range from 0 to 100bp with 10bp increment.  
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(B) Percentage of scDaPars predicted poly(A) sites or random control overlapped with 
annotated poly(A) sites from RefSeq, Ensembl, UCSC gene models and poly(A)_DB. 
The confidence interval was derived by taking random sites 10 times. 
(C) The top-scoring signal identified by de novo motif analysis (DREME) from the 
upstream (-100bp) of scDaPars predicted poly(A) sites from single cells.  
(D) Boxplot showing Pearson’s correlations between PDUI values of B-cell pairs 
estimated by DaPars and scDaPars (Wilcoxon test P < 2.2�10-16).  
(E) Scatter plots of PDUI values between average of all single cells and bulk results 
estimated by DaPars (left) and scDaPars (right). Red line represents the theoretical 
linear relationships between bulk and average of all single-cell PDUIs, and blue 
represents the actual linear relationships estimated from data. 
 
Figure 3. Evaluation of scDaPars in identifying dynamic APA events between two 
cell types using naive and activated CD4 T cells. 
(A) – (C) Scatterplots showing UMAP results of 54 naive CD4 T cells and 31 activated 
CD4 T cells based on (A) Reference APA profiles or (B) Dropout events introduced APA 
profiles or (C) scDaPars corrected APA profiles.  
(D) – (F) Heatmaps showing APA profiles of 136 differential APA genes (FDR <= 0.05 
and PDUI differences >= 0.2) in the (D) reference data (E) dropout events introduced 
data and (F) scDaPars corrected data. Rows represent differential APA genes and 
columns represent cells. 88 out of 136 differential APA genes have shorter 3’ UTRs in 
activated CD4 T cells in the reference data. 
 
Figure 4. scDaPars outperforms existing methods by quantifying APA usage in 
single-cell resolution.  
(A) – (C) Scatterplots showing UMAP results of 3362 PBMCs based on (A) scDaPars 
quantified APA usage or (B) scAPA quantified APA usage or (C) Sierra quantified APA 
usage. 
(D) – (F) Silhouette plots for clustering results from (D) scDaPars, (E) scAPA and (F) 
Sierra. The x-axis represents cells and y-axis is the corresponding silhouette coefficient 
Si for each cell. The silhouette coefficient measures how similar a cell is to its own 
cluster compared to other clusters, therefore a higher silhouette coefficient indicates a 
better clustering result and a negative coefficient may suggest the cell is assigned to the 
wrong cluster. The red dashed line is the average Si for all cells.  
 
Figure 5. scDaPars reveals tumor-specific and immune-cell-type specific APA 
landscape in primary breast cancer. 
(A) Scatter plot of PDUI values in Tumor and Normal cells. For each gene, the mean 
PDUI values in tumor cells (y-axis) are plotted against that in normal cells (x-axis). 
Genes with shortened or lengthened 3’ UTR (FDR <= 0.05 and PDUI difference >= 0.2) 
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in tumor cells are shown in red and blue. Bar plot shows the number of shortening 
genes or lengthening genes in tumor cells and p-value is calculated using single-tailed 
binomial test.  
(B) Scatter plot gives UMAP results calculated from scDaPars restored APA profiles. 
Each dot represents a cell, and cells are labeled based on cell index provided in the 
original publication. 
(C) Scatter plot of UMAP results of tumor cells. Cells are labeled by patient information.  
(D) Scatter plot of UMAP results of immune cells. Cells are labeled by cell type 
information.  
(E) Scatter plot of UMAP results of B cells based on scDaPars results.  
(F) Scatter plot of PDUI values in group 1 B cells and group 2 B cells. For each gene, 
the mean PDUI values in group 2 B cells (y-axis) are plotted against that in group 1 B 
cells (x-axis). Genes with shortened or lengthened 3’ UTR (FDR <= 0.05 and PDUI 
difference >= 0.2) in group 2 B cells are shown in red and blue. Bar plot shows the 
number of shortening genes or lengthening genes in group 2 cells. 
 
Figure 6. scDaPars helps identify novel cell subpopulations during human 
embryonic development. 
(A) Scatter plot shows UMAP results of single cells based on scDaPars recovered APA 
profiles. Cells are labeled based on cell differentiation time points given in the original 
publication.  
(B) Cell-by-cell similarities represented by similarity matrices generated by R package 
SNFtool. 
(C) Scatter plots of UMAP results of cells in 96h of differentiation based on scDaPars 
results (left) and imputed gene expression (right). Cells are labeled by results from (B).  
(D) Scatter plot shows mean PDUI values of genes in subpopulation 2 (x-axis) and sub- 
population 1 (y-axis). Genes with 3’ UTR shortening and lengthening (FDR <= 0.05 and 
PDUI differences >= 0.2) in subpopulation 2 are labeled in blue and red respectively. 
Bar plot shows the number of genes with shortening or lengthening in subpopulation 2 
and p-value is calculated using single-tailed binomial test.  
(E) Selected GO terms enriched in the upregulated genes in subpopulation 2.  
(F) Example gene expression levels in two subpopulations.  
(G) Stream plot from STREAM which shows cell density along different trajectories at a 
given pseudotime. 
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SUMMARY

Alternative polyadenylation (APA) contributes to
transcriptome complexity by generating mRNA iso-
forms with varying 30 UTR lengths. APA leading to
30 UTR shortening (30 US) is a common feature of
most cancer cells; however, the molecular mecha-
nisms are not understood. Here, we describe a wide-
spread mechanism promoting 30 US in cancer
through ubiquitination of the mRNA 30 end process-
ing complex protein, PCF11, by the cancer-specific
MAGE-A11–HUWE1 ubiquitin ligase. MAGE-A11 is
normally expressed only in the male germline but
is frequently re-activated in cancers. MAGE-A11 is
necessary for cancer cell viability and is sufficient
to drive tumorigenesis. Screening for targets of
MAGE-A11 revealed that it ubiquitinates PCF11, re-
sulting in loss of CFIm25 from the mRNA 30 end
processing complex. This leads to APA of many
transcripts affecting core oncogenic and tumor
suppressors, including cyclin D2 and PTEN. These
findings provide insights into the molecular mecha-
nisms driving APA in cancer and suggest therapeutic
strategies.

INTRODUCTION

Alternative polyadenylation (APA) of messenger RNA (mRNA) is a

widespread phenomenon that frequently occurs in a large pro-

portion of human genes (Elkon et al., 2013; Ji et al., 2009; Mayr

and Bartel, 2009; Sandberg et al., 2008). Recent studies have

shown that at least 70% of mammalian genes have multiple pol-

yadenylation sites (PASs) in their 30 untranslated regions (UTRs)

(Derti et al., 2012; Hoque et al., 2013). Selection of the PAS is co-

ordinated by recognition of core sequence elements in the

mRNA by the mRNA 30 end processing complex that is

composed of several protein complexes, including CPSF, CFI,

CFII, and CstF complexes, and single proteins, such as

PABPN1, RBBP6, and SYMPK (Elkon et al., 2013; Shi et al.,

2009; Tian and Manley, 2017). Modulation of components of

these complexes can lead to the use of cryptic PASs, resulting

in APA (Martin et al., 2012; Masamha et al., 2014; Yao

et al., 2012).

The consequences of APA can be significant, with effects on

post-transcriptional gene regulation, including mRNA stability,

translation, nuclear export, and cellular localization (reviewed

in Tian and Manley, 2017). One well-noted consequence of

APA resulting in 30 UTR shortening (30 US) is mRNA evasion of

microRNA (miRNA)-based repression (Hoffman et al., 2016;

Mayr and Bartel, 2009; Sandberg et al., 2008). In addition to

regulating cognate transcripts in cis, 30 US can lead to

competing-endogenous RNA (ceRNA) regulation in trans such

that the shortened 30 UTRs no longer sequester miRNAs and

the released miRNAs can be directed to repress their ceRNA

partners (Salmena et al., 2011).

APA can be a regulated process that is required for normal

physiological functions, including cellular differentiation,

neuronal activity, and spermatogenesis (Flavell et al., 2008; Ji

and Tian, 2009; Li et al., 2016). For example, APA leading to 30

UTR lengthening of transcripts in the brain is frequent and results

in diverse protein isoforms with differential subcellular localiza-

tion (Ciolli Mattioli et al., 2019; Miura et al., 2013). Furthermore,

30 US is associated with T lymphocyte activation and induced

proliferation (Sandberg et al., 2008), as well asmale germ cell dif-

ferentiation (MacDonald and Redondo, 2002).

Aberrant APA is often associated with disease, including in

cancer, where global 30 US is a hallmark of most tumors (Fu

et al., 2011; Masamha et al., 2014; Mayr and Bartel, 2009; Xia

et al., 2014). Pan-cancer analysis revealed that >90% of APA

events lead to 30 US (Xia et al., 2014). Several oncogenes are

known to be affected, including the cyclin D1 cell cycle regulator,
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whose levels are increased due to 30 US (Mayr and Bartel, 2009).

Our recent study also suggests that 30 US in breast cancer can

repress tumor suppressor genes in trans by disrupting ceRNA

crosstalk (Park et al., 2018). Despite these observations, the

mechanisms that promote APA are not well established.

Although 30 US in a subset of glioblastomas can be attributed

to CFIm25 downregulation (Masamha et al., 2014), the genetic

underpinnings for the vast majority of tumors is largely unknown.

MAGE genes are conserved in all eukaryotes and are defined

by a commonMAGE homology domain (MHD), which consists of

tandem winged helix motifs (Doyle et al., 2010; Lee and Potts,

2017; Newman et al., 2016). A subset of human MAGE proteins

is categorized as cancer-testis antigens (CTAs) because they are

physiologically restricted to the testis but are aberrantly ex-

pressed in cancers (Pineda et al., 2015; Simpson et al., 2005).

Recently, MAGE CTAs have gained growing interest as hall-

marks of cancers because of their broad expression in aggres-

sive cancers, correlation with poor clinical prognosis, and their

oncogenic ability to promote increased tumor growth and

metastasis (Pineda et al., 2015; Weon and Potts, 2015). We

and others have shown that MAGE proteins function as sub-

strate adaptors through their ability to recruit novel proteins to

specific E3 ubiquitin ligases to promote their ubiquitination and

often degradation (Doyle et al., 2010; Hao et al., 2013; Pineda

et al., 2015). Thus, MAGE proteins may represent a way in which

tumors co-opt germ cell functions to rewire key signaling path-

ways in cancer cells by reprogramming ubiquitin ligases. How-

ever, the molecular mechanisms and oncogenic potential of

most MAGE CTAs, including MAGE-A11, are unknown.

Here, we show that the normally germ-cell-restricted MAGE-

A11 is aberrantly expressed in cancer and acts as a potent onco-

gene that drives tumorigenesis by promoting APA leading 30 US
of many transcripts. MAGE-A11 acts as a substrate adaptor for

the HUWE1 E3 ubiquitin ligase to promote aberrant ubiquitina-

tion of the PCF11 subunit of the mRNA 30 end processing com-

plex in cancer cells. This leads to the loss of CFIm25 from the

mRNA 30 end processing complex and results in 30 US of tran-

scripts that have enrichment of CFIm25 binding sites upstream

of their distal PASs. Importantly, expression of a non-degradable

PCF11 mutant suppressed MAGE-A11 oncogenic activity and 30

US. Analysis of the transcripts affected by MAGE-A11 revealed

core oncogenic and tumor suppressor genes and pathways.

This includes 30 US of the cyclin D2 oncogene leading to dereg-

ulation of the Rb tumor suppressor pathway. Furthermore,

ceRNA partners of 30 US transcripts included many tumor sup-

pressor genes, such as PTEN that is downregulated by MAGE-

A11, resulting in activation of the Akt growth signaling pathway.

These findings provide insights into the function of MAGE-A11

and help explain the molecular mechanisms driving APA in

cancer.

RESULTS

MAGE-A11 Is Aberrantly Expressed in Cancer and Is
Necessary and Sufficient to Drive Tumor Growth
To thoroughly examine the expression pattern ofMAGE-A11, we

analyzed its expression by qRT-PCR in 26 disease-free human

tissues and found that it is normally restricted to expression in

the testis and placenta (Figure 1A). These findings were

confirmed in 51 human tissues from the GTEx project (Fig-

ure S1A) and at the protein level by immunohistochemistry,

showing expression of MAGE-A11 in germ cells of the testis

and syncytiotrophoblasts in placental tissue (Figures S1B and

S1C). Like other CTA genes, MAGE-A11 is aberrantly expressed

in tumors (Bai et al., 2005; Lian et al., 2012; Su et al., 2013; Xia

et al., 2013). Our analysis of The Cancer Genome Atlas (TCGA)

transcriptomic data revealed that MAGE-A11 is frequently ex-

pressed in many patient tumors, including lung squamous cell

carcinoma (>60%), ovarian carcinoma (>40%), and head and

neck squamous cell carcinoma (>40%) (Figure 1B). Furthermore,

immunohistochemistry staining of ovarian carcinoma and lung

squamous cell carcinoma tumor microarrays confirmed

MAGE-A11 protein (Figures S1D and S1E) in 35% of samples

(n = 211), regardless of tumor stage or grade (Figure S1F).

To determine whether the aberrant expression of MAGE-A11

in tumor cells is simply a passenger event due to global genomic

dysregulation or whether MAGE-A11 has a more active role in

driving tumorigenesis, we performed a series of gain- and loss-

of-function studies to elucidate the role of MAGE-A11 in driving

cancer cell growth. First, we examined whether multiple cancer

cells require the expression of MAGE-A11 for viability. Intrigu-

ingly, transient knockdown of MAGE-A11 in H520 lung squa-

mous cell carcinoma cells and DAOY medulloblastoma cells

resulted in dramatic decrease in cell viability (Figure 1C). Further-

more, knockout of MAGE-A11 decreased the proliferation rate of

DAOY and H520 cells, which could be rescued by re-expression

of MAGE-A11 (Figures 1D and S1G–S1I). Furthermore, knockout

of MAGE-A11 reduced other hallmarks of cancer, such as clono-

genic growth and anchorage-independent growth of H520 and

DAOY cells (Figures 1E–1G, S1J, and S1K). Re-expression of

MAGE-A11 rescued anchorage-independent tumor growth (Fig-

ure 1G). Consistent with these findings, knockout of MAGE-A11

slowed xenograft tumor growth, and re-expression of MAGE-

A11 rescued tumor growth in mice (Figures 1H and S2A–S2E).

Finally, to determine whether overexpression of MAGE-A11 is

sufficient to drive tumorigenic phenotypes, we stably expressed

MAGE-A11 in A2780 or OV56 ovarian cancer cells that do not

naturally express MAGE-A11. Strikingly, expression of MAGE-

A11 accelerated anchorage-independent growth of A2780 cells

(Figure S2F) and xenograft tumor growth of A2780 and OV56

cells in mice (Figures 1I, 1J, S2G, and S2H). Together, these

results suggest that MAGE-A11 is normally restricted to expres-

sion in the testis and placenta but is aberrantly expressed in a

variety of cancers, where it is necessary and sufficient to drive

tumorigenesis.

MAGE-A11 Promotes Ubiquitination and Proteasome-
Dependent Degradation of PCF11
To elucidate the molecular mechanisms of MAGE-A11 onco-

genic activity, we performed unbiased analysis of MAGE-A11 in-

teracting proteins by tandem affinity purification (TAP) coupled

to liquid chromatography-tandem mass spectrometry (LC-MS/

MS). Only 4 proteins, PCF11, CLP1, POLR2A, and POLR2B, in

addition to the MAGE-A11 bait, were identified repeatedly and

specifically in TAP-MAGE-A11 cells compared to TAP-vector

controls (Figures 2A and S3A). Remarkably, all four proteins
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Figure 1. MAGE-A11 Is Aberrantly Expressed in Cancer and Is Necessary and Sufficient to Drive Tumor Growth

(A) qRT-PCR analysis of the normalized expression of human MAGE-A11 in the indicated tissues (n = 3).

(B) Percentage of patient tumors expressing MAGE-A11 is shown.

(C) H520 lung squamous cell carcinoma cells and DAOY cerebellar medulloblastoma cells were transfected with control, MAGE-A11 no. 1, MAGE-A11 no. 2, or

MAGE-A11 pool siRNAs, and cell viability was measured by alamarBlue assay 72 h later.

(D) MAGE-A11-knockout DAOY cells or those reconstituted with MAGE-A11 were counted for cell proliferation at the indicated time points.

(E and F) Wild-type H520 cells or MAGE-A11-knockout H520 clones were assayed for clonogenic growth (E) and for anchorage-independent growth in soft agar

colony formation assays (F).

(G) Re-expression of MAGE-A11 rescues anchorage-independent growth of MAGE-A11-knockout H520 cells.

(H) Knockout of MAGE-A11 in DAOY decreases xenograft tumor growth in mice (n = 6 for wild-type group; n = 12 for MAGE-A11-knockout group).

(I and J) Stable expression of MAGE-A11 in MAGE-A11-negative A2780 (I) and OV56 (J) ovarian cancer cells increases xenograft tumor growth in mice (n = 8 per

group). Data are mean ± SD. *p < 0.05.
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Figure 2. MAGE-A11 Promotes Ubiquitination and Degradation of PCF11

(A)MAGE-A11 interacts with 30 mRNAprocessing complex proteins. HEK293 cells stably expressing TAP-vector or TAP-MAGE-A11were subjected to pull-down

followed by SDS-PAGE and LC-MS/MS (n = 4). Note spectral counts for all indicated proteins were 0 in TAP-vector samples.

(B) Interaction between MAGE-A11 and 30 mRNA processing proteins were validated by immunoprecipitation (IP). HEK293FT cells stably expressing FLAG-

vector or FLAG-MAGE-A11were subjected to pull-downwith anti-FLAG followed by SDS-PAGE and immunoblotting for endogenous PCF11, RNAP II, and CLP1.

(C) Recombinant glutathione S-transferase (GST)-PCF11, but not GST-CLP1, binds in vitro translated Myc-MAGE-A11.

(legend continued on next page)
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are known to interact within the context of the mRNA 30 end pro-

cessing complex. PCF11 and CLP1 belong to the cleavage

factor II (CFII) subcomplex that directly interacts with RNA poly-

merase II (RNAPII) via p-S2 residues in the RNAPII CTD-binding

PCF11 CID domain (Licatalosi et al., 2002; Meinhart and Cramer,

2004). We confirmed that MAGE-A11 interacts with the CFII

complex and RNAPII in cells by co-immunoprecipitation (coIP)

(Figure 2B). Further analysis revealed that the MAGE-A11

directly binds PCF11, but not CLP1 (Figure 2C), in vitro.

Previously, we have reported that many MAGE proteins bind

to specific E3 ubiquitin ligases and modulate ubiquitination of

target proteins (Doyle et al., 2010; Hao et al., 2013, 2015; Pineda

et al., 2015; Weon et al., 2018). Consistent with this, we found

that MAGE-A11 increased PCF11 ubiquitination (Figure 2D).

Knockout of MAGE-A11 increased PCF11 protein levels in

DAOY and H520 cells (Figure 2E) that could be rescued by re-

expression of MAGE-A11 (Figures 2F and S3B). These results

were confirmed by protein half-life measurements that showed

increased stability of PCF11 in MAGE-A11 knockout cells (Fig-

ures 2G and 2H). Furthermore, MAGE-A11 overexpression

decreased PCF11 levels in A2780, OV56, and HEK293FT cells

in a proteasome-dependent manner (Figures 2I and 2J). Impor-

tantly, this effect was specific to PCF11, as MAGE-A11 expres-

sion did not alter levels of CPSF, CstF, and CFI complexes or

PCF11-interacting proteins (Figure S3C).

MAGE-A11 Recruits PCF11 to the HUWE1 E3 Ubiquitin
Ligase for Ubiquitination and Degradation
Next, we utilized the previously described ubiquitin-activated

interaction trap (UBAIT) approach (O’Connor et al., 2015) to iden-

tify which E3 ubiquitin ligase partners with MAGE-A11 to pro-

mote PCF11 ubiquitination and degradation. Follow-up analysis

of the candidate E3 ligases revealed that HUWE1 is required for

the MAGE-A11-mediated ubiquitination and degradation of

PCF11. We confirmed that MAGE-A11 interacted with HUWE1

(Figure 3A) and recruited PCF11 to theHUWE1 ligase (Figure 3B),

consistent with the function of MAGEs as substrate adapters.

Depletion of MAGE-A11 or HUWE1 decreased ubiquitination of

PCF11 (Figure 3C) and increased PCF11 protein levels (Fig-

ure 3D). Furthermore, MAGE-A11 induced PCF11 degradation

in a HUWE1-dependent manner (Figure 3E). These results

were confirmed by protein half-life measurements that showed

increased stability of PCF11 upon HUWE1 knockdown in

DAOY cells naturally expressing MAGE-A11 (Figure 3F).

Together, these results suggest that MAGE-A11 targets PCF11

for ubiquitination and degradation by the HUWE1 E3 ubiquitin

ligase.

MAGE-A11 Promotes Alternative Polyadenylation
Leading to 30 US in Tumors
Because PCF11 is one of the polyA cleavage factors responsible

for mRNA 30 end processing, we examined whether MAGE-A11

regulation of PCF11 would alter PAS choice, leading to APA

and changes in 30 UTR length. We performed high-depth (2.5 3

108 reads) RNA sequencing (RNA-seq) and applied our previ-

ously described bioinformatics algorithm DaPars (dynamic anal-

ysis of alternative polyadenylation from RNA-seq) (Masamha

et al., 2014; Xia et al., 2014) to identify 30 UTRalterations between

control and MAGE-A11-expressing HEK293FT cells. The differ-

ence in 30 UTR length between samples was quantified as a

change in percentage of distal PAS usage index (PDUI). MAGE-

A11 expression resulted in 268 APA events, with the majority,

213, being 30 US events in which the proximal PAS (pPAS) was

preferentially used (Figures 4A and 4B). Similar results were

also obtained using the APAtrap algorithm (Ye et al., 2018) with

a large number of 30 US transcripts identified by both approaches

(c2 p < 0.00001). In contrast to MAGE-A11 expression, knockout

of MAGE-A11 in DAOY cells resulted in significantly more tran-

scriptswith 30 UTR lengthening (p = 0.008254; Figure S4A). These

results suggest that MAGE-A11 promotes 30 US of transcripts.

Next, to examine whetherMAGE-A11 induces 30 US in tumors,

we analyzed APA events in A2780 and OV56 xenograft tumors

from mice. We identified 531 and 275 significant APA events

driven by MAGE-A11 in OV56 and A2780 tumors, respectively

(Figures 4C–4E). These APA events were almost exclusively 30

US (95% and 84% of APA events in OV56 and A2780 tumors,

respectively; Figures 4C and 4D). This included a statistically en-

riched (p = 1.01�8) core set of common 30 US transcripts altered

in each tumor type, with a large number of cell-type-specific 30

US transcripts. Furthermore, analysis of TCGA transcriptomics

datasets from human ovarian carcinoma and lung squamous

carcinoma patient tumors for 30 UTR usage revealed a significant

number of transcripts (106 [85% of APA events] and 151 [87% of

APA events], respectively) with 30 US in MAGE-A11-expressing

tumors compared to MAGE-A11-negative control tumors (Fig-

ures 4F–4H). Notably, many of the transcripts with APA had

altered mRNA levels, consistent with disruption of cis-regulatory

elements in the 30 UTR of these transcripts (Figures S4B–S4F).

Together, these results suggest that MAGE-A11 regulation of

PCF11 drives APA leading to 30 US in tumors.

MAGE-A11-Induced PCF11 Ubiquitination Dissociates
CFIm25 from RNAPII
Previous studies have shown that changes in the levels of spe-

cific components of the mRNA 30 end processing complex can

(D) Expression of MAGE-A11 promotes PCF11 ubiquitination. Ubiquitinated proteins from FLAG-vector or FLAG-MAGE-A11 stably expressing HEK293FT cells

were isolated with tandem ubiquitin binding entity (TUBE)-agarose followed by SDS-PAGE and immunoblotting for endogenous PCF11.

(E) Knockout of MAGE-A11 increases PCF11 protein levels. Wild-type or MAGE-A11 knockout DAOY or H520 cells were blotted for the indicated proteins.

(F) Re-expression of MAGE-A11 decreases PCF11 protein levels in MAGE-A11 knockout H520 cells. Increasing amounts of MAGE-A11 were stably expressed in

MAGE-A11 knockout-H520 cells.

(G and H) Knockout of MAGE-A11 increases PCF11 protein stability in DAOY cells. MAGE-A11 wild-type or knockout DAOY cells were treated with 100 mg/mL

cycloheximide for the indicated times. Cell lysates were immunoblotted (G) and quantitated (H; n = 3). Data are mean ± SD. *p < 0.05.

(I) MAGE-A11 promotes proteasome-dependent PCF11 degradation. HEK293FT cells stably expressing FLAG-vector or FLAG-MAGE-A11 were treated with

10 mM MG132 for 4 h before immunoblotting.

(J) Stable expression of MAGE-A11 decreases PCF11 protein levels in A2780 and OV56 cells. Cell lysates were blotted for the indicated proteins.
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lead to APA. Although depletion of CFIm25 by small interfering

RNA (siRNA)-mediated knockdown led to 30 US, depletion of

PCF11 produced 30 UTR lengthening (Baejen et al., 2017; Kamie-

niarz-Gdula et al., 2019; Li et al., 2015; Masamha et al., 2014;

Ogorodnikov et al., 2018). In contrast, our data suggest that

MAGE-A11-induced PCF11 ubiquitination leads to 30 US (Fig-

ure 4). Importantly, there was very little overlap (10 transcripts)

in MAGE-A11-indued 30 US transcripts (213 transcripts) and

PCF11 siRNA-induced 30 UTR lengthened transcripts (545 tran-

scripts), suggesting that dynamic MAGE-A11-induced ubiquiti-

nation of PCF11 has distinct outcomes compared to static

siRNA-mediated knockdown of PCF11. To explore this further,

we examined whether MAGE-A11 ubiquitination of PCF11 could

alter the architecture of the mRNA 30 end processing complex.

We found that MAGE-A11 expression resulted in significant

reduction in CFIm25 association with RNAPII by coIP (Figures

5A, 5B, and S5A). Moreover, this effect was more pronounced

in comparison to siRNA-mediated knockdown of PCF11 (Figures

5A, 5B, and S5A). Consistent with these findings, there is signif-

icant overlap (42%; p = 7.8�55) in the 30 US transcripts upon

CFIm25 knockdown in HeLa cells (Masamha et al., 2014) and

MAGE-A11 overexpression in HEK293FT cells (Figure S5B).

Next, we determined whether ubiquitination and/or degradation

of PCF11 are required for MAGE-A11-induced CFIm25 dissoci-

ation from RNAPII. CFIm25 dissociation from RNAPII by

MAGE-A11 is HUWE1 dependent, confirming the importance

of ubiquitination (Figure 5C). However, this effect was indepen-

dent of PCF11 degradation, as rescue of PCF11 levels in

MAGE-A11-expressing cells by MG132 led to stabilization of

PCF11 but failed to rescue CFIm25 association with RNAPII
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Figure 3. MAGE-A11 Recruits PCF11 to the HUWE1 E3 Ubiquitin Ligase for Ubiquitination and Degradation

(A) MAGE-A11 interacts with PCF11 and HUWE1. HEK293FT cells stably expressing FLAG-vector or FLAG-MAGE-A11 were subjected to pull-down with anti-

FLAG followed by SDS-PAGE and immunoblotting for anti-HUWE1 and anti-PCF11.

(B) MAGE-A11 promotes PCF11 binding to HUWE1 E3 ubiquitin ligase. HEK293FT cells stably expressing FLAG-vector or FLAG-MAGE-A11 were treated with

10 mM MG132 for 4 h followed by IP with anti-HUWE1, SDS-PAGE, and immunoblotting for the indicated proteins.

(C) MAGE-A11-induced ubiquitination of PCF11 depends on HUWE1 E3 ligase. DAOY or H520 cells were transfected with the indicated siRNAs for 72 h and

treated with 10 mM MG132 for 4 h followed by pull-down with TUBE-agarose, SDS-PAGE, and immunoblotting for PCF11.

(D) Depletion of MAGE-A11 or HUWE1 increases PCF11 protein levels. DAOY or H520 cells were transfectedwith the indicated siRNAs for 72 h and blotted for the

indicated proteins.

(E) MAGE-A11-induced PCF11 degradation is dependent on HUWE1. Wild-type or HUWE1 knockout HEK293T cells stably expressing FLAG-vector or FLAG-

MAGE-A11 were immunoblotted for the indicated proteins.

(F) Knockdown of HUWE1 increases PCF11 protein stability in DAOY cells that express MAGE-A11. siControl or siHUWE1 DAOY cells were treated with

100 mg/mL cycloheximide for the indicated times. Cell lysates were immunoblotted for the indicated proteins.
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Figure 4. MAGE-A11 Promotes Alternative Polyadenylation Leading to 30 UTR Shortening in Tumors

(A) Transcriptome analysis of HEK293FT cells stably expressing FLAG-vector or FLAG-MAGE-A11 reveals that MAGE-A11 promotes 30 US. Scatterplot of
percentage of distal polyA site usage index (PDUI) in control and MAGE-A11-overexpressing cells shows shortened 30 UTRs (n = 213) or lengthened 30 UTRs
(n = 55) in genes by overexpression of MAGE-A11. False discovery rate (FDR)% 0.05,DPDUIsR 0.2 and 2-fold change of PDUIs between control andMAGE-A11

overexpression are colored. The shifting toward pPAS is significant (p < 2.2 3 10�16; binomial test).

(B) Representative RNA-seq density plots for genes with 30 UTR shortening are shown. Numbers on y axis indicate RNA-seq read coverage.

(C and D) Scatterplot of PDUIs fromboth datasets ofmouse xenografts in Figures 1I and 1J using the same cutoffs as in (A). Data fromOV56 and A2780 tumors are

shown in (C) and (D), respectively. The shifting toward pPAS is significant (p < 2.2 3 10�16; binomial test).

(E) Representative examples of genes with 30 UTR shortening from datasets shown in (C) and (D) are shown.

(F andG) Global analysis of 30 UTR changes in ovarian cancer (F) or lung squamous cell carcinoma (G) patient samples with either negative or high levels ofMAGE-

A11. Scatterplot of PDUIs from both datasets of patient samples is shown. The shifting toward pPAS is significant (p < 2.2 3 10�16; binomial test).

(H) Representative examples of genes show 30 UTR shortening in patient samples with negative (black) or high MAGE-A11 expression levels (red).

1212 Molecular Cell 77, 1206–1221, March 19, 2020



A

- RNAP II

180 -

180 -

72 -

In
pu

t (
10

%
)

- FLAG-A11

- CFIm25

- PCF11

26 -

- RNAP II

- FLAG-A11

- CFIm25
Ve

ct
or

M
AG

E-
A1

1

si
C

on
tro

l

si
PC

F1
1

180 -

72 -

IP
: R

N
AP

 II 26 -

C

In
pu

t (
10

%
)

si
C

on
tro

l

si
H

U
W

E1

IP
: R

N
AP

 II

si
C

on
tro

l

si
H

U
W

E1

- CFIm2526 -

Vector A11

- FLAG-A1172 -

- RNAP II
180 -

- HUWE1
180 -

180 - - PCF11

- CFIm2526 -

72 - - FLAG-A11

- RNAP II180 -

B

G

0

20

40

60

0 100 200-100-200

U
G

U
A 

m
ot

if 
co

un
t

Distance to cleavage site

0

20

40

60

0 100 200-100-200

U
G

U
A 

m
ot

if 
co

un
t

Distance to cleavage site

MAGE-A11 insensitive transcriptsMAGE-A11 sensitive transcripts

Distal sites
Proximal sites

- CFIm25

180 -

26 -

72 -

In
pu

t (
10

%
)

- FLAG-A11

- RNAP II

- PCF11

180 -

- CFIm25

- RNAP II

Ve
ct

or

M
AG

E-
A1

1

26 -

IP
: C

FI
m

25

180 -

H

Ve
ct

or

M
AG

E-
A1

1

0.0

0.5

1.0

1.5 *

C
FI

m
25

 R
el

at
iv

e 
En

ric
hm

en
t

(C
C

N
D

2 
/ R

PL
P0

)

Distal sites
Proximal sites

F

0.00

0.05

0.10

10 1550

O
bs

er
ve

d 
fre

qu
en

cy

# UGUA within 3’ UTR per Kb

P = 1.05 x 10-21
0.15

3’UTR shortened 
3’UTR without change

0.20

+ MG132

-FLAG-A1172 -

-PCF11180 -

-GAPDH34 -

-RNAP II
180 -

-CFIm2526 -

-RNAP II
180 -

-CFIm2526 -

-PCF11180 -

IP
: C

FI
m

25
In

pu
t (

10
%

)

72 - -CFIm68

26 - -CFIm25

72 - -FLAG-A11

180 - -PCF11

180 - -RNAP II

-CFIm6872 -

-CFIm2526 -

-PCF11180 -

-RNAP II180 -

Ve
ct

or

M
AG

E-
A1

1

Ve
ct

or

M
AG

E-
A1

1

+ MG132

Ve
ct

or

M
AG

E-
A1

1

In
pu

t (
10

%
)

IP
: R

N
AP

 II

D E

Figure 5. MAGE-A11-Induced PCF11 Ubiquitination Dissociates CFIm25 from RNAPII

(A and B) Overexpression of MAGE-A11 induces dissociation of CFIm25 from RNAPII compared to knockdown of PCF11. HEK293FT cells were transfected with

the indicated siRNAs for 72 h or stably expressing FLAG-vector or FLAG-MAGE-A11 were followed by IP with anti-RNAPII (A) and IP with anti-CFIm25 (B), SDS-

PAGE, and immunoblotting for the indicated proteins.

(legend continued on next page)
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(Figures 5D and 5E). Notably, PCF11 interaction with RNAPII was

not altered by MAGE-A11 in MG132-treated cells (Figure 5D).

These results suggest that MAGE-A11-induced PCF11 ubiquiti-

nation, but not degradation, causes remodeling of the mRNA 30

end processing complex that leads to dissociation of CFIm25.

Moreover, simple steady-state depletion of PCF11 by siRNA

does not mimic the effect of MAGE-A11-induced ubiquitination

of PCF11.

Consistent with the dissociation of CFIm25 from RNAPII play-

ing an important role in MAGE-A11-induced 30 US, sequence
analysis of MAGE-A11-sensitive transcripts revealed signifi-

cantly more CFIm25 binding motifs (UGUA) compared to unaf-

fected transcripts (Figure 5F). Furthermore, analysis of UGUA

motif distribution near distal and proximal PASs, as described

previously (Zhu et al., 2018), showed motif enrichment upstream

of distal PASs in MAGE-A11-sensitive transcripts, but not prox-

imal PASs or transcripts unaffected by MAGE-A11 (Figures 5G

and S5C–S5F). This was not the case for transcripts lengthened

by PCF11 siRNA-mediated knockdown (Figures S5G and S5H).

Collectively, these findings provide insights into how PCF11

ubiquitination affects the mRNA 30 end processing complex

through loss of CFIm25 that leads to 30 US of transcripts with en-

riched UGUA motifs upstream distal PASs. To further test this

model, we performed crosslinking immunoprecipitation and

qPCR (CLIP-qPCR) to determine the abundance of CFIm25

associated with a transcript, CCND2, which undergoes 30 US
upon MAGE-A11 expression. Expression of MAGE-A11 signifi-

cantly reduced the abundance of CFIm25 associated with the

CCND2 transcript in relation to a non-MAGE-A11-regulated tran-

script, RPLP0 (Figure 5H).

Regulation of PCF11 Is Essential for MAGE-A11-
Induced Tumorigenesis and APA
To determine whether regulation of PCF11 is required for MAGE-

A11 oncogenic activity, we identified a non-degradable PCF11

mutant. The degronmotif in PCF11 required forMAGE-A11 bind-

ing was mapped to amino acids 653–702 (Figures 6A, 6B, and

S6A–S6D). Mutation of conserved residues in PCF11 (Fig-

ure S6E) identified I689A mutant that abolished PCF11 interac-

tion with MAGE-A11 (Figures 6C and S6F) and disrupted ubiqui-

tination and degradation by MAGE-A11 (Figure 6D). Importantly,

introduction of PCF11 I689A into A2780 cells, by a transgene or

homozygous mutation using CRISPR/Cas9, rescued PCF11

protein levels (Figures 6E and 6G) and completely or partially

(depending on the clone) blockedMAGE-A11-induced xenograft

tumor growth in mice (Figures 6F, 6H, S6G, and S6H). Impor-

tantly, MAGE-A11-driven APA was dependent on its regulation

of PCF11, as expression of the non-degradable PCF11 I689A

mutant by transgene or CRISPR/Cas9 homozygous knockin pre-

vented MAGE-A11-induced APA in A2780 cells (Figures 6I, 6J,

and S6I). These results suggest that the ability of MAGE-A11 to

regulate PCF11 is critical for its oncogenic activity.

MAGE-A11-Induced 30 US Modulates Core Oncogenic
and Tumor Suppressor Pathways
To identify those 30 US events that impact levels of their encoded

proteins, we performed unbiased, quantitative proteomics using

tandem mass tagging (TMT)-LC/LC-MS/MS (Niu et al., 2017) in

isogenic DAOY cells with or without MAGE-A11 expression

(Table S3). Consistent with previous results, PCF11was downre-

gulated upon MAGE-A11 expression (Figure 7A). More impor-

tantly, we found several 30 US transcripts with altered protein

levels, including theCCND2 (cyclin D2) oncogene that was upre-

gulated upon MAGE-A11 expression (Figure 7A). We validated

these results by expressing MAGE-A11 in an independent cell

line, HEK293FT, and again saw 30 US of the CCND2 transcript

(Figures 7B and S7A) and increased protein levels (Figures 7C

and 7D). As a member of the D-type cyclins, cyclin D2 has

been widely implicated in cell cycle transition, differentiation,

and cellular transformation (Evron et al., 2001; Sherr, 1995),

and its overexpression is highly correlated with poor prognosis

in various cancers (Mermelshtein et al., 2005; Sicinski et al.,

1996; Takano et al., 1999, 2000). Cyclin D-Cdk4/6 inactivates

retinoblastoma (Rb) tumor suppressor by progressive multi-

phosphorylation to release transcription factors, such as E2F

(Narasimha et al., 2014; Sherr, 1995). MAGE-A11 increased

phospho-Rb (S807 and S811) in HEK293FT cells and MAGE-

A11 expression in ovarian and lung squamous cell carcinoma

patient tumor samples correlated with increased phospho-Rb

(S807/811; Figures 7E, 7F, and S7B). To determine whether

cyclin D2 upregulation upon MAGE-A11 expression contributes

to MAGE-A11-driven proliferation, cyclin D2 was knocked down

in DAOY cells with or without MAGE-A11 expression and prolif-

eration rates were determined. Knockdown of cyclin D2

decreased proliferation of MAGE-A11 expressing DAOY, but

not MAGE-A11 knockout DAOY (Figure 7G), thus implicating up-

regulation of cyclin D2 byMAGE-A11 as an important contributor

to MAGE-A11-mediated cellular proliferation.

To better understand howCCND2 30 USmay upregulate cyclin

D2 protein levels, we determinedwhether inhibitory factors, such

(C) HUWE1 is required for MAGE-A11-induced dissociation of CFIm25 from RNAPII. HEK293FT FLAG-vector or FLAG-MAGE-A11 stable cell lines were

transfected with the indicated siRNAs for 72 h followed by IP with anti-RNAPII, SDS-PAGE, and immunoblotting for the indicated proteins.

(D) PCF11 ubiquitination, but not degradation, promotes CFIm25 dissociation from RNAPII. HEK293 FLAG-vector or FLAG-MAGE-A11 stable cell lines were

treated with or without 10 mM MG132 for 4 h prior to collection, anti-RNAPII IP, SDS-PAGE, and immunoblotting.

(E) MAGE-A11 dissociates CFIm25 from PCF11. Cells were treated as described in (D) before IP with anti-CFIm25, SDS-PAGE, and immunoblotting for the

indicated proteins.

(F) The number of UGUAmotifs within 30 US or unaffected transcripts in MAGE-A11 overexpressing HEK293FT cells. Equal numbers of transcripts with no 30 UTR
changes were randomly selected.

(G) The UGUAmotif frequency within MAGE-A11-sensitive transcripts is highly enriched upstream of distal PAS compared to proximal PAS (DPDUI value% 0.05;

p > 0.5) for 30 US transcripts, but not MAGE-A11-insensitive transcripts.

(H) MAGE-A11 reduces CFIm25 associated with 30 US transcript CCND2. CLIP-qPCR analysis was performed from HEK293FT cells using control immuno-

globulin G (IgG) or CFIm25 antibodies. Abundance of CCND2 or control RPLP0 was determined by qRT-PCR. Normalized (CFIm25/IgG) ratios of CCND2 and

RPLP0 are shown. Data (n = 3) are mean ± SD. *p < 0.05.
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as miRNAs, may repress cyclin D2 expression in MAGE-A11-

negative HEK293FT cells. We used the approach pioneered by

others to overexpress the 30 UTR ofCCND2 to act as a ‘‘sponge’’

for potential miRNAs and other factors binding to the endoge-

nous CCND2 transcript (Mallon and Macklin, 2002; Matoulkova

et al., 2012; Rutnam and Yang, 2012). We found that expression

of the CCND2 30 UTR upregulated cyclin D2 protein levels in

MAGE-A11-negative, but not MAGE-A11-positive, cells (Figures

7H and S7C). In order to determine which particular miRNA(s)

might mediate cyclin D2 repression, we analyzed the predicted

miRNA binding sites (TargetScan; Agarwal et al., 2015) lost

upon CCND2 30 US and correlated these to miRNA expression

datasets (miRmine; Panwar et al., 2017) to identify relevant

miRNAs. Using this approach, we identified miR-191-5p, a pre-

viously reported miRNA targeting CCND2 (Di Leva et al., 2013),

as a likely candidate. We found that the miR-191-5p mimic

downregulated cyclin D2 protein levels and miR-191-5p antago-

miR increased cyclin D2 protein levels in MAGE-A11-negative

cells, but not in MAGE-A11 expressing cells (Figures 7I and

7J). These results suggest that MAGE-A11-mediated 30 US of

CCND2 leads to increased cyclin D2 protein levels, in part

through loss of miR-191-5p repression.

In addition to 30 US of oncogenes leading to their activation in

cis through evading miRNA-mediated repression, we and

others have also shown that these now-liberated miRNAs can

downregulate competing endogenous mRNAs (ceRNAs) in

trans (Park et al., 2018). Using our previously established

computational approach to predict the trans effect of 30 US to

their ceRNA partners (Park et al., 2018), we found that many

30 US ceRNA partners in ovarian cancer or lung squamous

cell carcinoma patient samples with high MAGE-A11 levels

are tumor suppressors (Figure 7K). Notably, the top ceRNA

identified in MAGE-A11 lung squamous cell carcinoma was

the tumor suppressor PTEN (Table S4). Consistently, MAGE-

A11 expression markedly downregulated PTEN levels and

increased downstream phospho-AKT (T308) in HEK293FT cells

(Figures 7L and S7D) and ovarian carcinoma patient tumor

samples (Figure 7M). To determine whether this effect depends

on miRNA targeting of the PTEN 30 UTR, we utilized a luciferase

reporter plasmid containing the PTEN 30 UTR. MAGE-A11

expression repressed PTEN 30 UTR luciferase activity (Fig-

ure S7E). These results suggest that MAGE-A11-induced 30

US has both cis and trans effects on oncogenes (cyclin D2)

and tumor suppressors (PTEN), respectively, to alter key cell

growth and signaling pathways.

DISCUSSION

The eukaryotic mRNA 30 end processing complex plays an

essential role in defining the transcriptome. This molecular ma-

chine interacts with the transcription machinery to define

mRNA termination through cleavage of pre-mRNA and polyA

tail addition. Recent transcriptomic studies have shown that a

majority of mammalian genes have multiple PASs and APA con-

tributes to the complexity of the transcriptome by generating

mRNA isoforms with varying 30 UTR lengths (Derti et al., 2012;

Mayr and Bartel, 2009; Sandberg et al., 2008). Interestingly,

widespread shortening of mRNA by APA is found in many types

of cancers, but themolecular mechanisms contributing to APA in

cancer have been unclear. Our findings elucidate a previously

undefined molecular mechanism contributing to the widespread

30 US in tumors.

The regulation of PCF11 ubiquitination by the cancer-specific

E3 ubiquitin ligase MAGE-A11–HUWE1 led to changes in the

mRNA 30 end processing complex and increased the number

of 30 US transcripts in cancers. Interestingly, PCF11 is a sub-stoi-

chiometric component of the mRNA 30 end processing complex

in many human cells and tissues (Kamieniarz-Gdula et al., 2019).

Thus, even small fluctuations in PCF11may impact mRNA 30 end
processing and the dynamics of PCF11 association with the

mRNA 30 end processing complex may be important. This is

consistent with our findings that MAGE-A11-induced ubiquitina-

tion of PCF11 confers unique phenotypes compared to steady-

state siRNA knockdown of PCF11. Furthermore, PCF11 couples

mRNA 30 end processing with mRNA export (Johnson et al.,

2009) and phosphorylation of PCF11 CID by WNK1 is critical

for release of transcripts from chromatin-associated RNAPII

(Volanakis et al., 2017). Therefore, nuclear export of mature tran-

scripts in tumor cells could potentially be regulated by MAGE-

A11-mediated PCF11 ubiquitination.

Analysis of the transcripts affected by MAGE-A11-induced

ubiquitination of PCF11 revealed many oncogenes and tumor

suppressors. First, we and others have shown that 30 US of on-

cogenes results in their increased production through evading

miRNA-mediated repression. Indeed, the alternative isoforms,

especially shorter transcripts of genes encoding cyclin D1, cyclin

Figure 6. Regulation of PCF11 Is Essential for MAGE-A11-Induced Tumorigenesis and APA
(A) Summary of in vitro binding assays from Figures S6A–S6C mapping the degron region of PCF11 recognized by MAGE-A11.

(B) HEK293FT cells stably expressing FLAG-MAGE-A11 were transfected with PCF11 wild-type or PCF11 653–702 deletion construct for 48 h before IP with anti-

FLAG followed by SDS-PAGE and immunoblotting for anti-Myc.

(C) PCF11 I689A or L692A mutants have diminished interaction with MAGE-A11. HEK293FT cells stably expressing FLAG-MAGE-A11 were transfected with the

indicated constructs for 48 h before IP with anti-FLAG followed by SDS-PAGE and immunoblotting for anti-Myc.

(D) PCF11 I689A mutant fails to be ubiquitinated and degraded by MAGE-A11. HEK293FT cells stably expressing FLAG-vector or FLAG-MAGE-A11 were

transfected with indicated constructs for 48 h before IP with anti-Myc followed by SDS-PAGE and immunoblotting for anti-His.

(E and F) Non-degradable PCF11 I689A was stably expressed in MAGE-A11-expressing A2780 (E), and xenograft tumor growth was determined (F). Data are

mean ± SD (n = 6 per group). *p < 0.05.

(G) CRISPR-Cas9-mediated knockin of non-degradable PCF11 I689A mutant into A2780 prevents degradation of PCF11 by MAGE-A11.

(H) Stable expression of MAGE-A11 in PCF11 I689A knockin A2780 clones does not increase xenograft tumor growth in mice (n = 6 per group). Data are mean ±

SD. *p < 0.05.

(I and J) Expression (I) or knockin (J) of non-degradable PCF11 I689A rescues 30 US in A2780 MAGE-A11-expressing tumors. Scatterplot of PDUIs (as described

in Figure 4A) from mouse xenografts shown in (F) or (H) is shown. The pPAS is not significant (p = 0.652, I; p = 0.301, J; binomial test).
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Figure 7. MAGE-A11-Induced 30 UTR Shortening Modulates Oncogenes and Tumor Suppressors

(A) Quantitative whole-cell proteomics using TMT labeling (n = 5) revealed upregulation of CCND2 (cyclin D2) oncogene upon MAGE-A11 expression in DAOY

MAGE-A11 KO cells.

(B) RNA-seq tracks for CCND2 showing reduced 30 UTR reads in MAGE-A11-expressing cells.

(legend continued on next page)
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D2, and FGF2, are more prominently detected in cancers

compared to normal tissues (Mayr and Bartel, 2009). Further-

more, 30 US of cyclin D1 in lymphomas correlates with increased

cyclin D1 expression and proliferation of the lymphoma cells

(Rosenwald et al., 2003). Interestingly, we found that MAGE-

A11 induced 30 US of cyclin D2, but not cyclin D1 or cyclin D3,

resulting in increased protein products (Figures 7C, 7D, and

7I). These results suggest that MAGE-A11 may selectively regu-

late gene expression throughmodulation of APA leading to 30 US
in cancers. Second, we report that 30 US possesses a significant

role as ceRNAs for tumor-suppressor genes in trans (Park et al.,

2018). Intriguingly, the ceRNA partners of 30 US genes upon

expression of MAGE-A11 are strongly enriched for tumor sup-

pressors in lung squamous cell carcinoma (p = 1.93�26) and

ovarian cancer (p = 7.71�21). Remarkably, these are notable tu-

mor suppressors, such as PTEN, whose downregulation re-

sulted in upregulation of Akt pro-survival signaling. These find-

ings indicate MAGE-A11 may orchestrate gene expression

changes in cis and in trans by modulating APA that results in re-

programming critical cellular signaling pathways, such as cell cy-

cle and Akt signaling, to drive tumorigenesis. These findings may

have important implications on therapeutic strategies for treating

cancer, as MAGE-A11 expression status may confer predictive

power to the response of cells against therapies, such as

CDK4/6 inhibitors and AKT pathway inhibitors.

APA is known to be differentially regulated across tissue types

and developmental stages such that an APA signature, ratio of

distal versus proximal PAS choice, can be found. For example,

compared to mammalian somatic cells, male germ cells have

remarkable APA leading to 30 US of many transcripts. In partic-

ular, PAS choice in male germ cells is often unique compared

to somatic cells and results in testis-specific transcripts (Li

et al., 2016; MacDonald, 2019; MacDonald and Redondo,

2002). It is not fully appreciated what leads to the widespread

alternative PAS usage in germ cells leading to 30 US but has

been suggested to involve changes in the composition of the

polyadenylation machinery, including CFIm (Edwalds-Gilbert

et al., 1997; McMahon et al., 2006; Sartini et al., 2008; Takagaki

and Manley, 1998). Our findings suggest that MAGE-A11–

HUWE1 may be important factors in promoting APA in male

germ cells. Consistently, HUWE1 has been shown to be impor-

tant for spermatogonial differentiation and entry into meiosis

(Bose et al., 2017). Furthermore, we suggest that the ability of

MAGE-A11 to induce APA in cancer cells is not a neomorphic ac-

tivity but rather is a conserved function of MAGE-A11 in cancer

and germ cells.

Overall, our results suggest that dynamic regulation of the

mRNA 30 end processing machinery by ubiquitination can serve

as a mechanism to control APA in various biological and patho-

logical states.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-MAGE-A11 This paper N/A

Rabbit polyclonal anti-PCF11 Bethyl Laboratories Cat# A303-706A; RRID:AB_11204946

Rabbit polyclonal anti-RNAP II Cell Signaling Technology Cat# 14958; RRID:AB_2687876

Rabbit monoclonal anti- anti-CLP1 Abcam N/A

Rabbit monoclonal anti- anti-HUWE1 Novus Biologicals Cat# NB100-652; RRID:AB_2264587

Rabbit monoclonal anti-GAPDH Cell Signaling Technology Cat# 2118; RRID:AB_561053

Mouse monoclonal anti-FLAG Sigma-Aldrich Cat# F3165; RRID:AB_259529

Rabbit polyclonal anti-Myc Sigma-Aldrich Cat# C3956; RRID:AB_439680

Mouse monoclonal anti-Actin Abcam Cat# ab6276; RRID:AB_2223210

Mouse monoclonal anti-Tubulin Sigma-Aldrich Cat# T5168; RRID:AB_477579

Rabbit polyclonal anti-CCND1 ABclonal Cat# A11022; RRID:AB_2758370

Rabbit polyclonal anti-CCND2 ABclonal Cat# A1773; RRID:AB_2763815

Rabbit polyclonal anti-CCND3 ABclonal Cat# A0746; RRID:AB_2757375

Rabbit polyclonal anti-phospho-Rb S807/811 Cell Signaling Technology Cat# 9308; RRID:AB_331472

Mouse monoclonal anti-Rb Cell Signaling Technology Cat# 9309; RRID:AB_823629

Rabbit polyclonal anti-PTEN Bethyl Laboratories Cat# A300-701A; RRID:AB_2174186

Rabbit monoclonal anti-phospho-Akt T308 Cell Signaling Technology Cat# 4056; RRID:AB_331163

Rabbit monoclonal anti-Akt Cell Signaling Technology Cat# 4691; RRID:AB_915783

Rabbit polyclonal anti-CPSF160 Bethyl Laboratories Cat# A301-580A; RRID:AB_1078859

Rabbit polyclonal anti-CPSF100 Thermo Fisher Scientific Cat# A301-581A; RRID:AB_1078861

Rabbit polyclonal anti-CPSF73 Bethyl Laboratories Cat# A301-091A; RRID:AB_2084528

Rabbit polyclonal anti-CSTF64 Bethyl Laboratories Cat# A301-092A; RRID:AB_873014

Rabbit anti-TauCSTF64 Bethyl Laboratories Cat# A301-487A; RRID:AB_999545

Rabbit polyclonal anti-CPSF68 Bethyl Laboratories Cat# A301-356A; RRID:AB_937781

Rabbit polyclonal anti-CPSF59 Bethyl Laboratories Cat# A301-359A; RRID:AB_937869

Mouse monoclonal anti-NUDT21 Proteintech Cat# 66335-1-Ig; RRID: N/A

Rabbit anti-XRN2 Bethyl Laboratories Cat# A301-103A; RRID:AB_2218876

Mouse IgG control Santa Cruz Biotechnology Cat# sc-2025; RRID:AB_737182

Donkey Anti-Rabbit IgG, HRP Conjugated GE Healthcare Cat# NA934; RRID:AB_772206

Sheep Anti-Mouse IgG, HRP Conjugated GE Healthcare Cat# NA931; RRID:AB_772210

Bacterial and Virus Strains

DH5a Competent Cells Thermo Fisher Scientific Cat# 18265017

XL1-blue Competent Cells Agilent Technologies Cat# 200130

One shot Stbl3 Life Technologies Cat# C7373-03

BL21-codon plus(DE3)-RILP Agilent Technologies Cat# 230280

Chemicals, Peptides, and Recombinant Proteins

ECL detection reagent GE Healthcare Cat# RPN2209

ECL prime detection reagent GE Healthcare Cat# RPN2236

Protein A beads Bio-Rad Cat# 1560005

Protein G Agarose Thermo Fisher Scientific Cat# 20389

Protein A/G PLUS agarose Santa Cruz Biotechnology Cat# sc-2003

Anti-FLAG M2 Beads Sigma Cat# A2220

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

All materials generated in this study are available through request to Lead Contact Patrick Ryan Potts (ryan.potts@stjude.org).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TUBE2-Agarose LifeSensors Cat# UM402

Effectene transfection reagent QIAGEN Cat# 301425

Lipofectamine RNAiMAX Thermo Fisher Scientific Cat# 13778030

Lipofectamine 2000 Invitrogen Cat# 11668027

RNAStat60 TelTest Cat# Cs-112

RNeasy Kit QIAGEN Cat# 74104

TEV Protease Sigma-Aldrich Cat# T4455

Calmodulin-Sepharose 4B GE Healthcare Cat# 17-0529-01

Glutathione Sepharose 4B GE Healthcare Cat# 17-0756-05

Critical Commercial Assays

High Capacity cDNA Reverse Transcription kit Thermo Fisher Scientific Cat# 4368813

TNT SP6 Quick In Vitro TNT Kit Promega Cat# L2080

BCA protein assay kit Thermo Fisher Scientific Cat# 23227

AlamarBlue� Cell Viability Reagent Thermo Fisher Scientific Cat# DAL1100

Experimental Models: Cell Lines

HEK293 ATCC Cat# CRL-1573

HEK293T Choe et al., 2016 N/A

HEK293T HUWE1 KO Choe et al., 2016 N/A

HEK293FT Thermo Fisher Scientific Cat# R70007

A2780 A gift from Michael White, UT Southwestern N/A

DAOY ATCC Cat# HTB-186

H520 A gift from John Minna UT Southwestern N/A

OV56 A gift from Michael White, UT Southwestern N/A

DAOY MAGE-A11 KO This paper N/A

H520 MAGE-A11 KO This paper N/A

Experimental Models: Organisms/Strains

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ:

NOD scid gamma mice

The Jackson Laboratory 005557; RRID: IMSR_JAX:005557

Oligonucleotides

See Table S5 This paper N/A

Software and Algorithms

ImageJ software ImageJ https://imagej.nih.gov/ij

GraphPad Prism 7 GraphPad https://www.graphpad.com

STAR version 2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR

DaPars Xia et al., 2014 https://github.com/ZhengXia/dapars

MAT3UTR Park et al., 2018 https://github.com/thejustpark/MAT3UTR

DESeq2 Anders and Huber, 2010 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

HTSeq Anders et al., 2015 https://htseq.readthedocs.io/en/

release_0.11.1/count.html

Deposited Data

Sequencing data NCBI Gene Expression Omnibus GEO: GSE134898

Proteomics data MassIVE UCSD MSV000084123
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
6-8 week old male NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NOD scid gamma) mice from Jackson Labs were used for xenograft growth

assays. Animals were group housed under standard conditions. All studies were approved by the St. Jude Children’s Research Hos-

pital institutional review committee on animal safety.

Cell lines
HEK293FT, HEK293T, HEK293, A2780, and DAOY cells were grown in DMEM supplemented with 10% (v/v) FBS, 2 mM L-glutamine,

100 units/mL penicillin, 100 units/mL streptomycin, and 0.25 mg/mL amphotericin B. H520 cells were grown in RPMI supplemented

with 5% (v/v) heat inactivated serum. OV56 cells were grown in DMEM:HAMS F12 (1:1) supplemented with 5% (v/v) FBS, 2 mM

L-glutamine, 0.5 mg/mL hydrocortisone, and 10 mg/mL insulin. HEK293T HUWE1 knockout cells were described previously (Choe

et al., 2016). Cell lines were authenticated by STR analysis. Sex of cells used: Female, HEK293FT, HEK293T, HEK293, A2780,

OV56; Male, DAOY, H520. All cells were maintained at 37�C in 5% CO2.

Microbe strains
DH5a (Thermo Fisher Scientific, #18265017) and XL1-blue (Agilent #200130) competent cells were used for standard molecular clon-

ing and plasmid amplification. One shot Stbl3 competent cells (Life Technologies #C7373-03) were used for lentiviral plasmid cloning

and plasmid amplification. BL21-codon plus (DE3)-RILP competent cells (Agilent Technologies, #230280) were used for recombinant

protein production and purification. Bacteria were cultured under standard conditions at 37�C, 225 rpm.

METHOD DETAILS

Cell culture transfections
siRNA and plasmid transfections were performed using Lipofectamine RNAiMAX, Lipofectamine 2000 (Invitrogen) and Effectene

(QIAGEN) according to the manufacturers’ protocol.

Generation of stable overexpression cell lines
HEK293FT and DAOY cells were transfected with either HA-FLAG-vector or HA-FLAG-MAGE-A11 using Effectene according to the

manufacturer’s protocol in 6 cm2 plates. After 48 hours, cells were selected with 1 mg/mL of puromycin over 2 weeks. HEK293 cells

were transfected with either tandem affinity purification (TAP)-vector or TAP-MAGE-A11 using Effectene in 6 cm2 plates. After

48 hours, cells were selected with 1 mg/mL of puromycin over 2 weeks. HEK293FT cells were transfected with TAP-MAGE-A11-

UBAIT or TAP-MAGE-A11-UBAIT GG deletion using Effectene in 6 cm2 plates. After 48 hours, cells were selected with 1 mg/mL

of puromycin over 2 weeks. A2780, H520 and OV56 cells were transduced with Myc-vector or Myc-MAGE-A11 lentivirus using poly-

brene in 6-well plates. Two days after lentiviral transduction, cells were selected over 2 weeks using 2.5 mg/mL of blasticidin (GIBCO).

siRNA and miRNAs
siRNA transfections were performed using Lipofectamine RNAiMAX according to the manufacturer’s protocol. All siRNAs were pur-

chased from Sigma. siRNA targeting sequences; siControl, 50-ACUACAUCGUGAUUCAAACUU; siMAGE-A11 #1, 50- CAAGAU

AAUUGAUUUGGUU; siMAGE-A11 #2, 50-CUGAUAGACCCUGAGUCCU; siPCF11 #1, 50-GUACCUUAUGGAUUCUAUU; siPCF11

#2, 50- GUAUCUCACUGCCUUUACU; siPCF11 #3, 50- CAACGUUAUGACAGUGUUA; siPCF11 #4, 50-CAAUUGUUCCUGAUAU

ACA. siCCND2 #1, 50-CUCAUGACUUCAUUGAGCA; siCCND2 #2, 50-CUGUGUGCCACCGACUUUA; siCCND2 #3, 50-GAGGAAGU

GAGCUCGCUCA; siHUWE1 #1, 50- CAUGAGACAUCAGCCCACCCUUAAAA; siHUWE1 #2, and 50- CACACCAGCAAUGGCUGC

CAGAAUU.miRNAmimetics were purchased fromSigma. miRNA antagomirs were purchased fromApplied Biological Materials Inc.

Antibodies

MAGE-A11 rabbit polyclonal antibody was generated against bacterially expressed MAGE-A11 (amino acids 197-429) (Cocalico

Biologicals, Inc). Commercial antibodies used: anti-PCF11 (Bethyl Laboratories, A303-706A), anti-RNAP II (Cell Signaling Technol-

ogy, 14958S), anti-CLP1 (Abcam, ab133669), anti-HUWE1 (Novus Biologicals, NB100-652), anti-GAPDH (Cell Signaling Technology,

2118S), anti-FLAG (Sigma, F3165), anti-Myc (Roche, 11666606001), anti-Actin (Abcam, ab6276), anti-Tubulin (Sigma, T5168), anti-

CCND1 (ABclonal, A11022), anti-CCND2 (ABclonal, A1773), anti-CCND3 (ABclonal, A0746), anti-phospho-Rb S807/811 (Cell

Signaling Technology, 9308T), anti-Rb (Cell Signaling Technology, 9309T), anti-PTEN (Bethyl Laboratories, A300-701A), anti-phos-

pho-Akt T308 (Cell Signaling Technology, 4056S), anti-Akt (Cell Signaling Technology, 4691S), anti-CPSF160 (Bethyl Laboratories,

A301-580A), anti-CPSF100 (Bethyl Laboratories, A301-581A), anti-CPSF73 (Bethyl Laboratories, A301-091A), anti-CstF64 (Bethyl

Laboratories, A301-092A), anti-TauCstF64 (Bethyl Laboratories, A301-487A), anti-CFIm68 (Bethyl Laboratories, A301-356A), anti-

CFIm59 (Bethyl Laboratories, A301-359A), anti-CFIm25 (Proteintech, 66335-1-Ig), anti-XRN2 (Bethyl Laboratories, A301-103A),

Donkey anti-Rabbit IgG (GE, NA934V), and Sheep anti-Mouse IgG (GE, NA931V).
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Tandem affinity purification
Ten 15 cm2 plates of HEK293 cells stably expressing TAP-vector or TAP-MAGE-A11 were lysed with TAP lysis buffer (10% (v/v) glyc-

erol, 50 mMHEPES-KOH pH 7.5, 100 mMKCl, 2 mMEDTA, 0.1% (v/v) NP-40, 10 mMNaF, 0.25 mMNA3VO4, 50 mM b-glyerolphos-

phate, 2mMDTT, and 1X protease inhibitor cocktail) and cleared supernatants were bound to IgG-Sepharose beads (GE Amersham)

and then washed in lysis buffer and TEV buffer (10 mM HEPES-KOH pH 8.0, 150 mM NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 mM DTT,

and 1X protease inhibitor cocktail). Protein complexes were cleaved off the beads by TEV protease and incubated with calmodulin-

Sepharose beads (GE Amersham) in calmodulin binding buffer (10 mM HEPES-KOH pH 8.0, 150 mMNaCl, 1 mMMg acetate, 1 mM

imidazole, 0.1% NP-40, 6 mM CaCl2, 10 mM 2-mercaptoethanol) and then washed, eluted with SDS sample buffer, subjected to

SDS-PAGE, and stained with GelCode Blue stain (Thermo Fisher Scientific) before protein identification by LC-MS/MS.

RNA preparation and quantitative reverse transcription PCR Analysis (qRT-PCR)
RNA was extracted from cultured cells using RNAStat60 (TelTest) according to manufacturer’s instructions. Total RNA was treated

with DNase I (Roche) and converted to cDNA using High Capacity Reverse Transcription kit (Life Technologies). cDNA and appro-

priate primers were plated in triplicate in a 384-well plate and gene expression levels were measured using SYBR green master mix

(Applied Biosystems). Oligonucleotides used for qRT-PCR: MAGE-A11 forward, 50-GAGGATCACTGGAGGAGAACA; reverse,

50-TCTTTGCTCAAGAGGCATGAT; CCND2 forward, 50-TTCCCTCTGGCCATGAATTAC; reverse, 50-GGGCTGGTCTCTTTGAGTTT;

CCND2 30-UTR forward #1, 50-CTTCTGGTATCTGGCGTTCTT; reverse #1, 50-CAGGCTTGTCTGAGGAATGT; CCND2 30-UTR for-

ward #2, 50-GGACACCTTGTGTTTAGGATCA; reverse #2, 50-GGGAGAAGGAAGCACCATAAA; CCND2 30-UTR forward #3,

50-CAAGCCTACCCGACTCTATTTAC; reverse #3, 50-CCCAAGGATGGGAAAGAGAAA; CCND2 30-UTR forward #4, 50-TACTGGGT

CATCCTTGGTCTAT; reverse #4, 50-TTGTCTTCTCCTCTGGCTTTG.

Clonogenic growth and anchorage-independent growth soft agar assays
For clonogenic growth assays on plates, wild-type or knockout cells were plated in 6-well plates in triplicate. After 2-3 weeks, cells

were fixed and stained with 0.05% (w/v) crystal violet and counted. For anchorage-independent growth soft agar assays, cells were

suspended in 0.375% Noble agar (Difco) supplemented with regular growth medium and overlaid on 0.5% Noble agar. Cells were

incubated for 2-4 weeks before colonies R 100 mm in size were counted.

Immunoprecipitation and immunoblotting
HEK293FT cells were plated in 6 cm2 plates and transfected 24 hours later with Effectene (QIAGEN) according to the manufacturer’s

protocol. After 48 hours, cells werewashed and scraped in cold PBS, spun down, and resuspended in lysis buffer (50mMTris pH 7.4,

150 mM NaCl, 1 mM DTT, 0.1% (v/v) Triton X-100, 10 mM N-Ethylmaleimide (NEM), and 1X protease inhibitor cocktail). Cell lysates

were incubated with appropriate antibodies overnight at 4�C and then with protein A beads for 2 hours at 4�C. Beads were then

washed with lysis buffer three times and eluted with 2X SDS sample buffer. For immunoblotting, samples in SDS sample buffer

were resolved on SDS-PAGE gels and then transferred to nitrocellulosemembranes prior to blocking in TBSTwith 5% (w/v)milk pow-

der or 3% (w/v) bovine serum albumin and probing with primary and secondary antibodies (GE Healthcare). Protein signal was visu-

alized after addition of ECL detection reagent (GE Healthcare) according to manufacturer’s instructions.

Recombinant protein purification and in vitro binding assay
GST-PCF11, GST-CLP1 or GST tag alone were induced in BL21 (DE3) cells at 16�C with isopropyl b-D-1-thiogalactopyranoside

(IPTG). GST-tagged proteins were purified from bacterial lysates in lysis buffer (50 mM Tris pH 7.7, 150 mM KCl, 0.1% (v/v) Triton

X-100, 1 mM DTT, 1 mg/mL lysozyme) with glutathione Sepharose (GE Amersham) and eluted with 10 mM glutathione. For

in vitro binding assay, Myc-tagged proteins were in vitro translated using the SP6-TNT Quick rabbit reticulocyte lysate system

(Promega) according to manufacturer’s instructions. Purified GST-tagged proteins were bound to glutathione Sepharose beads

for 1 hour in binding buffer (25 mM Tris pH 8.0, 2.7 mM KCl, 137 mM NaCl, 0.05% (v/v) Tween-20, and 10 mM 2-mercaptoethanol)

and thenwere blocked for 1 hr in binding buffer containing 5% (w/v) milk powder. In vitro translated proteins were then incubatedwith

the bound beads for 1 hour, washed, and the proteins were eluted in SDS-sample buffer, boiled, and subjected to SDS-PAGE and

immunoblotting.

Tandem ubiquitin binding entity (TUBE) ubiquitination assay
HEK293FT, DAOY or H520 cells (1-2 10 cm2 plates) were lysed with TUBE lysis buffer (50mMTris pH 7.5, 150mMNaCl, 1 mMEDTA,

1% (v/v) NP-40, 10% (v/v) glycerol, 20 mM N-Ethylmaleimide (NEM), and 1X protease inhibitor cocktail), and the lysates were bound

to TUBE-agarose (LifeSensors) overnight at 4�C. Beads were subsequently washed three times in wash buffer (20 mM Tris pH 8.0,

150 mM NaCl, 0.1% (v/v) Tween 20) and then the ubiquitinated proteins were eluted in SDS-sample buffer, boiled, and subjected to

SDS-PAGE and immunoblotting.

Cell viability assay
To assess cell viability after siRNA knockdown, 1 X 104 cells/mL were transfected with 50 nM siRNA using Lipofectamine RNAiMAX

according to themanufacturer’s protocol and incubated for 72-96 hours prior to changing themedia and adding alamarBlue (Thermo
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Fisher Scientific) and incubating for 4 hours at 37�C. Plates were read by measuring the fluorescence with excitation wavelength at

540 nm and emission wavelength at 590 nm on an Enspire plate reader.

Xenograft tumor growth assays
3 X 106 DAOYwild-type andMAGE-A11 knockout cells were mixed with matrigel (Corning) before injection into the flank of NOD scid

gammamice (Jackson Lab) (n = 6 for wild-type group, n = 12 for MAGE-A11-knockout group). MAGE-A11 negative A2780 and OV56

ovarian cancer cells weremade to stably expressMyc-vector orMyc-MAGE-A11 before injection of 3 X 106 cells in PBSwithmatrigel

into NOD scid gamma mice (n = 8 per group). Tumor size was measured 2-3 times a week during the duration of the experiment.

LightSwitch luciferase reporter assay
HEK293FT cells were seeded in a 96-well white plate (Corning Costar) in triplicate. After 24 hours, cells were transfected with 100 ng

of LightSwitch luciferase reporter construct with PTEN 30-UTR (SWTICHGEAR genomics) or 100 ng Renilla luciferase reporter using

Lipofectamine 2000 according to the manufacturer’s instructions and incubated for 24 hours. The luciferase assays were performed

according to the manufacturer’s protocol (SWTICHGEAR genomics).

RNA-seq
Total RNA was extracted from cultured cells or xenograft tumors using RNeasy kit (QIAGEN) according to manufacturer’s instruc-

tions. RNA quality was assessed by 2100 Bioanalyzer RNA 6000 Nano assay (Agilent). Libraries were prepared using TruSeq

Stranded mRNA kits (Illumina) and subjected to 100 cycle paired-end sequencing on the Illumina HiSeq platform.

CRISPR/Cas9 genome editing
Genetically modified cell lines were generated using CRISPR-Cas9 technology. Briefly, MAGEA11 KO DAOY cells were created by

transiently co-transfecting 400,000 cells with 500 ng of each gRNA expression plasmid (cloned into Addgene plasmid #43860), 1 mg

Cas9 expression plasmid (Addgene plasmid #43945), and 200 ng of pMaxGFP via nucleofection (Lonza, 4D-Nucleofector X-unit) us-

ing solution P3 and program EN-158 in small (20 ml) cuvettes according to themanufacturer’s recommended protocol. MAGEA11 KO

H520 cells were created by transiently co-transfecting 400,000 cells with 500 ng of each gRNA expression plasmid (cloned into

Addgene plasmid #43860), 1 mg Cas9 expression plasmid (Addgene plasmid #43945), and 200ng of pMaxGFP via nucleofection

(Lonza, 4D-Nucleofector X-unit) using solution P3 and program EH-100 in small (20 ml) cuvettes according to the manufacturer’s rec-

ommended protocol. PCF11 I689A cells were created by transiently co-transfecting 400,000 cells with 500 ng of gRNA expression

plasmid (cloned into Addgene plasmid #43860), 1 mg Cas9 expression plasmid (Addgene plasmid #43945), 2.1 mg of ssODN, and

200 ng of pMaxGFP via nucleofection (Lonza, 4D-Nucleofector X-unit) using solution P3 and programCA-137 in small (20 ml) cuvettes

according to the manufacturer’s recommended protocol. Five days post-nucleofection, cells were single-cell sorted by FACS to

enrich for GFP+ (transfected) cells, clonally expanded and verified for the desired targeted modification via targeted deep

sequencing followed by analysis using CRIS.py (Connelly and Pruett-Miller, 2019). Clones were identified for each modification

and assessed in relevant assays. The sequences for genome editing reagents and applicable primers are listed below.

TCGA 30-UTR analysis
The original TCGA RNA-seq gene expression data were obtained from the UCSC Cancer Genomics Hub (CGHub). All of the patients

in a tumor type were ranked based on the CPM (count per million) values of MAGE-A11 gene. The top 10 most highly MAGE-A11-

expressed patients and bottom 10 least MAGE-A11 expressed patients were chosen as two groups. The significant dynamics

30-UTR usage genes between these two groupswill be identified if themean percentage of distal polyA usage (PDUI) change between

Name Sequence (50 to 30)

hMAGEA11 KO reagents

hMAGEA11.sgRNA.g1 GACGGCGGGACUAUGGGGGG

hMAGEA11.sgRNA.g2 UGUGGCCCUGAAGCAUGCAU

hMAGEA11.NGS.F partial Illumina adaptors (upper case) CACTCTTTCCCTACACGACGCTCTTCCGATCTagcaaggctccctctctgctgtcag

hMAGEA11.NGS.R partial Illumina adaptors (upper case) GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtctccaagtcacccgatggaagaga

hPCF11 I689A reagents

hPCF11 sgrna CAGCUAUUUCAGUAUCAAGA

hPCF11 I689A ssODN I689A and blocking modifications

(upper case)

agtgaacgtttagcatctggtgaaattacacaggatgacttccttgttgttgtgcatcaaGCtcgacagctattt

caAtaCcaGgaaggtaaacatagatgcaatgtacgggatagtcctacagaagaaaataaaggtggatta

hPCF11.NGS.F partial Illumina adaptors (upper case) CACTCTTTCCCTACACGACGCTCTTCCGATCTcccctatacagacgagtgaacg

hPCF11.NGS.R partial Illumina adaptors (upper case) GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtgaatgctgaacctgtgtcct
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these two groups is larger than 0.2 and mean fold change is larger than 1.5, also the p value calculated from Student’s t test is less

than 0.05. Finally, we observedMAGE-A11 promotes strong 30-UTR shortening in two tumor types including ovarian cancer (OV) and

lung squamous cell carcinoma (LUSC).

RNA-seq data analysis
RNA from cells with MAGE-A11 knocked out or overexpressed, and PCF mutant-expressing cells and controls were sequenced

by HiSeq. The raw paired-end RNA-seq reads were filtering out low-quality reads using Trim Galore, and then aligned to

the human genome (hg19/GRCh37) using STAR version 2.5.2b (Dobin et al., 2013) using the following alignment parameters: –

outSAMtype BAM SortedByCoordinate –outSAMstrandField intronMotif –outFilterMultimapNmax 10 –outFilterMultimapScoreRange

1 –alignSJDBoverhangMin 1 –sjdbScore 2 –alignIntronMin 20 –alignSJoverhangMin 8. The resulted BAM files were converted into

bedgraph format using bedtools version 2.17.0 (Quinlan and Hall, 2010). For each gene, the read count were calculated by HTSeq

(Anders et al., 2015), and then CPM values based on read count were used. The read coverage was visualized at UCSC Genome

Browsers (Goldman et al., 2015). Differential gene analysis was performed using DESeq2 (Anders and Huber, 2010).

DaPars analysis
DaPars (Feng et al., 2018; Xia et al., 2014) was used to identify the most significant APA events between two conditions. We require

that significant APA events should meet three criteria. First, the adjusted p value of PDUI differences was controlled at 5%. Second,

the absolute mean difference of PDUI must be no less than 0.2. Third, the mean PDUI fold change must be no less than 1.5.

CFIm25 motif analysis
MAGE-A11 sensitive transcripts were defined as those transcripts with significant 30-US upon MAGE-A11 overexpression, while

MAGE-A11 insensitive transcripts were an equal number of randomly selected unaffected transcripts (PDUI differences less than

0.05; p value larger than 0.5). For each DaPars predicted PAS, the nearest annotated PAS was defined as the true PAS. The anno-

tated PASs were compiled frommultiple domains including Refseq, ENSEMBL, UCSC gene models and PolyA_DB version 3 (Wang

et al., 2018) databases. The sequences of 200 nucleotides upstream and downstream of the PASs were used for motif analysis. The

CFIm25 motif density was calculated by counting the number of UGUA motif (smoothed over 7 nucleotide) along these specified

annotation features, which included proximal and distal PAS.

CLIP-qPCR
Cross-linking immunoprecipitation and QPCR (CLIP-QPCR) was carried out as previously described (Yoon and Gorospe, 2016).

Briefly, HEK293FT/HA-FLAG-Vector or HEK293FT/HA-FLAG-MAGE-A11 cells (10 15 cm2 dishes) were washed in ice-cold, magne-

sium-free PBS and irradiated on ice with 150mJ/cm2 of UVC (254 nm) in a Stratalinker 2400 (Agilent). Cells were collected in ice-cold

PBS, pelleted, lysed in NP-40 lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM KCl, 0.5% (v/v) NP-40), and centrifuged for 15 min at

10,000 xg at 4�C. Supernatants were collected and subjected to immunoprecipitation. Cell lysates were incubated with 20 mL

pre-coupled antibody-protein A/G PLUS-agarose beads (Santa Cruz Biotechnology) for 3 hr at 4�C rotating. Antibodies (10 mg)

used were as follows: normal mouse IgG control (Santa Cruz, sc-2025) and anti-CFIm25 (Proteintech, 66335-1-Ig). Beads were

then washed three times in NP-40 lysis buffer, treated with 20 units of RNase-free DNase I for 15 min at 37�C, and proteins degraded

by treatment with 0.5 mg/mL proteinase K (Invitrogen) in 0.5% SDS at 55�C for 15 min. RNA was then separated by phenol:

chloroform extraction, followed by ethanol precipitation. RNA was then converted to cDNA using the High Capacity cDNA reverse

transcriptase kit (Invitrogen) according to manufacturer’s instructions. qPCR analysis was performed on cDNA using PowerUp

SYBRGreenmaster mix (Applied Biosystems) according tomanufacturer’s instructions using the following primers:CCND2 forward,

50-TTCCCTCTGGCCATGAATTAC; reverse, 50-GGGCTGGTCTCTTTGAGTTT and RPLP0 forward 50-TCTACAACCCTGAAGTGCTT

GAT-30, RPLP0 reverse 50-CAATCTGCAGACAGACACTGG-30. Data were analyzed by DDCt method normalizing to RPLP0 and con-

trol normal IgG pulldowns.

Trans-effect analysis of 30-US
We used MAT3UTR (Park et al., 2018) for the detection of trans-effect of MAGEA11-induced 30-UTR shortening in ceRNA in two tu-

mor types OV and LUSC. The Briefly, MAT3UTR can predict ceRNA partner expression changes by using its 30-UTR shortening gene

expression, 30-UTR shortening gene level, microRNA binding sites and miRNA expression. The miRNA binding sites were compiled

from a collection of TarBase, miRecords, miRTarBase and predicted miRNA-binding sites from TargetScanHuman version 6.2. Exon

and CDS annotation for TCGA and miRNA expression were downloaded from Xena UCSC Genome browsers. The enrichment of

ceRNA partner genes with tumor suppressor gene (TSG) and oncogene (OG) was calculated by fisher exact test. The annotation

of TSG and OG were from TUSON prediction (Davoli et al., 2013) with top 500 genes (p < 0.01) selected.

Mass spectrometry analysis
Protein samples were digested and the resulting peptides were analyzed by an optimized LC-MS/MS platform (Pagala et al., 2015).

For quantitative TMT analysis, the digested peptides were labeled with individual TMT reagents, equally pooled, and fractioned by

basic pH reversed phase LC chromatography. Each fraction was then analyzed using acidic pH reverse phase nanoscale LC-MS/MS

Molecular Cell 77, 1206–1221.e1–e7, March 19, 2020 e6



(Bai et al., 2017). The collected MS data were processed for protein identification and quantification by database search using the

JUMP software suite (Wang et al., 2014).

DATA AND CODE AVAILABILITY

Proteomics data are available at MassIVE MSV000084123. RNA-seq data are available at NCBI GEO: GSE134898.
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Widespread mRNA 3′​ UTR shortening through alternative 
polyadenylation1 promotes tumor growth in vivo2. A prevail-
ing hypothesis is that it induces proto-oncogene expression 
in cis through escaping microRNA-mediated repression. 
Here we report a surprising enrichment of 3′​UTR shortening 
among transcripts that are predicted to act as competing-
endogenous RNAs (ceRNAs) for tumor-suppressor genes. 
Our model-based analysis of the trans effect of 3′​ UTR 
shortening (MAT3UTR) reveals a significant role in altering 
ceRNA expression. MAT3UTR predicts many trans-targets 
of 3′​ UTR shortening, including PTEN, a crucial tumor-sup-
pressor gene3 involved in ceRNA crosstalk4 with nine 3′​UTR-
shortening genes, including EPS15 and NFIA. Knockdown of 
NUDT21, a master 3′​ UTR-shortening regulator2, represses 
tumor-suppressor genes such as PHF6 and LARP1 in trans in a 
miRNA-dependent manner. Together, the results of our anal-
ysis suggest a major role of 3′​ UTR shortening in repressing 
tumor-suppressor genes in trans by disrupting ceRNA cross-
talk, rather than inducing proto-oncogenes in cis.

Widespread 3′​ UTR shortening (3′​US) through alternative 
polyadenylation (APA) occurs during enhanced cellular prolifera-
tion and transformation1,5–8. Recently, we reported that NUDT21-
mediated 3′​US promotes glioblastoma growth, further underscoring 
its significance to tumorigenesis2. A prevailing hypothesis is that 
a shortened 3′​ UTR results in activation of proto-oncogenes in 
cis through escaping microRNA (miRNA)-mediated repression. 
Indeed, several well-characterized oncogenes, such as CCND1, have 
been shown to use 3′US to increase their protein levels, but mostly 
in cell lines5. However, in recent PolyA sequencing7 and our TCGA 
RNA sequencing (RNA-Seq) APA analysis1 (5 and 358 tumor/nor-
mal pairs, respectively), most oncogenes with 3′​US previously iden-
tified in vitro5 displayed almost no changes in their 3′​UTR lengths in 
tumors (Fig. 1a). For example, we identified 1,346 recurrent (occur-
rence rate >​20%) 3′US genes in 358 tumor/normal pairs1. However, 
CCND1 is not on that list as its 3′​US occurred in only a very small 
portion (8 out of 358; 2.2%) of tumors (Fig. 1b). Furthermore, simi-
lar to random genes, 3′​US genes from all 5 previous APA studies 
have little overlap with the top 500 (P <​ 0.01) high-confidence onco-
genes as defined on the basis of distinct somatic mutational patterns 
of >​8,200 tumor/normal pairs9 (Fig. 1c). These results challenge 

the previous hypothesis and suggest a different function of 3′​US 
for tumorigenesis.

Aside from regulating its cognate transcript in cis, the 3′​UTR 
has also been implicated in competing-endogenous RNA (ceRNA) 
regulation in trans10. Although the scope is not fully understood, 
ceRNA is generally thought to form global regulatory networks 
(ceRNETs) controlling important biological processes11. For exam-
ple, the tumor suppressor PTEN’s ceRNAs, CNOT6L and VAPA, 
have been shown to regulate PTEN and phenocopy its tumor-sup-
pressive properties12. As the ceRNA’s regulatory axis is mostly based 
on miRNA-binding sites on 3′​ UTRs, we hypothesize that when 
genes with shortened 3′​ UTRs no longer sequester miRNAs, the 
released miRNAs would then be directed to repress their ceRNA 
partners, such as tumor-suppressor genes, in trans, thereby contrib-
uting to tumorigenesis.

To test this hypothesis, we first used well-established strategies 
to reconstruct two ceRNETs from 97 TCGA breast tumors and their 
matched normal tissues, respectively, based on miRNA-binding-
site overlap and co-expression13,14 between genes of active ceRNA 
regulation (Methods). In general, transcripts are less correlated 
between each other in tumors than in normal tissues, partially due 
to tumor heterogeneity15 and global reduction of miRNA expression 
in tumors16 (Fig. 2a). As expected, the loss of co-expression results 
in a much smaller (tenfold reduced) ceRNET for tumors than for 
normal tissues (Fig. 2b).

To investigate the role of 3′​US in ceRNET disruption, we focused 
on estrogen-receptor-positive (ER+) breast tumors, which comprise 
the majority (68/97) of TCGA breast tumor samples. We built nor-
mal and tumor ceRNETs using the same procedure as above. Using 
the DaPars algorithm1, we identified 427 3′​US genes recurring in 
>​20% of tumors. Close inspection indicates that 3′​US is associ-
ated with ceRNET disruption. For example, we identified PTEN 
and EPS15 as a ceRNA pair in normal ceRNET (4 miRNA-bind-
ing-site overlap and ρ =​ 0.63 co-expression). However, since EPS15 
underwent 3′​US in 23 (33.8%) out of 68 tumors, thereby losing 
its capability to compete with PTEN for miRNAs, it lost (ρ =​ 0.32) 
the co-expression (and ceRNA) relationship with PTEN in tumors 
(Fig. 2c). Globally, the top 100 ceRNAs with the most significant 
3′​US genes all lost their interactions in tumors, while 12 out of 
100 ceRNAs lacking 3′​US retained (P =​ 0.0002) their interactions. 
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Furthermore, in separate ceRNETs from 30 tumor/normal pairs 
with the least and most amount of 3′​US (upper panel in Fig. 2d), 
more 3′​US is clearly associated with more ceRNET loss (38.6 versus 
16.4 in fold decrease, P <​ 1 ×​ 10−16, lower panel in Fig. 2d). From 
these findings, we conclude that 3′​US is strongly associated with 
ceRNA network disruption in tumors.

To understand the function of 3′​US-mediated ceRNET disrup-
tion, we selected 381 3′​US genes and 2,131 of their ceRNA partner 
genes (3′​US ceRNAs), including 591 3′​US ceRNA hub and 1,540  
3′​US ceRNA non-hub genes, in the normal ceRNET (Supplementary 
Table 1, Methods). We hypothesized that 3′​US genes released their 
miRNAs to repress their ceRNA partners in trans. Consistent with 
our hypothesis, expression changes of 2,131 3′​US ceRNA genes in 
tumors are anti-correlated (r =​ −​0.21; P =​ 5 ×​ 10−24) with the degree 
of 3′​US of the associated 3′US genes (Supplementary Fig. 1a). 
As a result, among 976 genes in normal ceRNET downregulated 
in tumors, 816 (83.6%) are ceRNAs of 3′​US genes. Surprisingly,  
3′​US ceRNA hub genes are enriched in tumor-suppressor genes 
(P ~ 1 ×​ 10−20) but not in oncogenes (Fig. 3a), suggesting that the 
3′​US represses tumor suppressors in trans. For example, 3′​US of 
EPS15 would contribute to downregulating its ceRNA partner PTEN 
in tumors (Fig. 2c). Globally, 160 expressed tumor-suppressor genes 
from 3′US ceRNAs are more likely downregulated than 226 control 
tumor-suppressor genes not in ceRNET (P =​ 8 ×​ 10−3, Fig. 3b), indi-
cating a significant association between 3′​US and tumor-suppressor 
gene repression.

Additional analyses on sequence features partially explain why 
3′​US genes, but not tumor suppressors in their ceRNA partners, 

are likely to have alternative proximal polyadenylation sites, lead-
ing to 3′​US (Supplementary Note). We have also analyzed TCGA 
450K methylation array data and found that the 3′​US-mediated 
ceRNA repression is independent of promoter hypermethylation 
(Supplementary Note).

To better quantify the trans effects of 3′​US, we developed a 
mathematical model (MAT3UTR) based on its 3′US gene(s) 
expression, 3′​US level, miRNA-binding site(s) and miRNA 
expression(s) (Methods). In 1,548 differentially expressed 3′​US 
ceRNAs, MAT3UTR can explain 47.6% of variation in gene expres-
sion (Supplementary Fig. 3c). In contrast, the MAT3UTR-control 
model, which considers miRNA expression but not 3′​US, explains 
only 27.2% of variation (Supplementary Fig. 3d), consistent with 
previous reports17 that miRNA alone has a weak role in regulating 
gene expression. The results suggest that the trans effects of 3′​US 
plays a major role in regulating ceRNA gene expression.

MAT3UTR predicts many trans-target genes of 3′​US, includ-
ing PTEN, in ceRNA crosstalk11–13 (top 1% MAT3UTR score, 
Supplementary Table 2). In normal ceRNET, PTEN is predicted to 
be a ceRNA of nine 3′​US genes (Fig. 3c). When we ranked 97 breast 
tumor/normal pairs by the amount of 3′​US across these nine genes 
(upper panel in Fig. 3d), tumors with more 3′​US showed more down-
regulation of PTEN (P =​ 0.03, lower panel in Fig. 3d). Furthermore, 
MAT3UTR can explain 86.9% of the variation in PTEN’s expression 
across tumors (Supplementary Fig. 3g), suggesting that the trans 
effects of 3′​US play a major role in downregulating PTEN.

To empirically test the hypothesis that 3′US can downregulate 
PTEN in trans, we focused on EPS15 among the nine 3′​US genes 
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Fig. 1 | 3′US genes are not strongly associated with oncogenes. a, TCGA RNA-Seq data for CCND1 demonstrates no change in 3′​UTR usage between 
tumors (yellow) and matched normal samples (blue). A similar pattern was also observed in PolyA-seq7 of CCND1. b, Δ​PDUI values for 3′​US genes (red) 
and all genes (gray) in 358 TCGA tumor/normal pairs1 (upper panel). A negative Δ​PDUI represents 3′​UTR shortening. The lower panel shows Δ​PDUI 
values for CCND1 across 358 tumor/normal pairs1. Significant CCND1 3′​ UTR shortening occurred only in a very small portion (8 out of 358; 2.2%) of 
tumors. c, Overlap P values and the ratios between previously identified 3′​US genes and oncogenes. ‘Random (n =​ 100)’ represents the averaged P value 
from 100 random sampling of 100 RefSeq genes. The error bar represents standard variation values of P values from 100 random trials.
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(Methods). We observed that depletion of EPS15 by siRNA in MCF7 
cells reduces PTEN expression (Fig. 3e). To ascertain whether this 
effect depends on miRNA-based targeting of the PTEN 3′​ UTR, we 
used a luciferase reporter vector with the PTEN 3′​ UTR (pLight-
Switch-PTEN 3′​ UTR) to test the effect of EPS15 knockdown on 
its expression. We observed that reduction of EPS15 reduces PTEN 
3′​ UTR luciferase activity (Fig. 3f). To further understand whether 
the crosstalk is miRNA-dependent, we depleted DICER1 to abol-
ish miRNA biogenesis and found that loss of DICER1 can relieve 
the influence of EPS15 knockdown on PTEN 3′​ UTR expression  
(Fig. 3g). Finally, overexpression of the EPS15 3′​ UTR increased the 
number of PTEN-positive cells (Fig. 3h,i). Thus, EPS15 3′​US may 
impact PTEN expression.

To gain insights into the global cause-and-effect relationship 
between 3′​US and the repression of tumor-suppressor genes, we 
revisited our previous data from NUDT21-knockdown HeLa cells, 
since NUDT21 is one of the master regulators of 3′​US 2. We identi-
fied 1,168 3′​US ceRNAs in NUDT21-knockdown cells solely on 
the basis of significant miRNA-binding-site overlap with 1,450  

3′​US genes, since co-expression cannot be effectively estimated 
from two replicates of our experiments. With 9,914 expressed 
RefSeq genes with no significant miRNA-binding-site overlap 
with 3′​US genes as random controls, the tumor-suppressor genes 
remain strongly enriched in 3′​US ceRNAs (P ~ 1 ×​ 10−38, Fig. 4a). 
Among 57 tumor-suppressor genes in 3′​US ceRNAs, 33 (57.9%) 
showed repression in NUDT21-knockdown samples; whereas a 
smaller portion (44.5%) of 339 control tumor-suppressor genes 
showed repression (P ~ 0.03, Fig. 4b), suggesting that NUDT21-
mediated 3′​US represses tumor-suppressor genes in trans. In spite 
of potentially higher false positives due to lack of co-expression in 
ceRNA identification, these results are highly consistent with our 
observations in TCGA breast cancer. On the basis of these results, 
we posit that repression of tumor-suppressor ceRNAs would cor-
relate with increased occupancy of AGO2 in the RISC complex. 
To formally test this hypothesis, we isolated cytoplasmic fractions 
from control or NUDT21-knockdown cells and conducted RNA 
immunoprecipitation (RIP) using anti-AGO2 antibodies. On 
average, we observed ~200-fold enrichment of ceRNAs in Ago2 
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RIP complexes relative to control IgG (Supplementary Fig. 4b). 
Reduced expression of NUDT21 does not impact AGO2/DICER1 
expression and GAPDH messenger RNA binding to AGO2  
(Fig. 4c,d and Supplementary Fig. 4b). Furthermore, we sequenced 
miRNAs from control and NUDT21-knockdown cells, and found 
that miRNAs are equally likely to be upregulated or downregulated 
(Supplementary Fig. 4d), ruling out a general effect on miRNA 
biogenesis. Importantly, we could detect increased association 
of multiple tumor-suppressor ceRNAs with AGO2 following  

NUDT21 depletion that ranged from 1.5-fold to nearly 7-fold  
(Fig. 4d). These results demonstrate that 3′​US can lead to reduc-
tion of tumor-suppressor genes through their increased associa-
tion with repressive AGO2 complexes.

To further validate the miRNA-dependent, repressive trans 
effects of 3′​US, we monitored expression of the tumor-suppres-
sor genes PHF6 and LARP1 and their ceRNA partners, YOD1  
and LAMC1 (Supplementary Table 3). We consistently observed 
that PHF6 and LARP1 expression levels were decreased in 
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the PTEN 3′​ UTR and EPS15-targeting siRNAS. Data are the average luciferase activity ±​ standard deviation from three independent experiments (P =​ 0.011 
and P <​ 0.001, two-sided t-test). g, PTEN 3′​ UTR luciferase reporter activity in MCF7 cells transfected with EPS15- and DICER-targeting siRNAS. Data are 
the average luciferase activity ±​ standard deviation from three independent experiments (P =​ 0.045, P =​ 0.003 and P =​ 0.645, two-sided t-test).  
h, Indirect immunofluorescence of MCF7 cells transfected with either a heterologous reporter containing a vector-derived 3′​ UTR (Con.) or the EPS15 
3′​ UTR together with a GFP construct. PTEN was detected by anti-PTEN antibody conjugated with Alexa Fluor-594. The arrows highlight PTEN+ transfected 
cells. A representative image is shown from three independent experiments. Scale bar, 20 µ​M. i, The number of PTEN-positive cells in the transfected cells 
with either the EPS15 3′​ UTR (n =​ 335) or the control 3′​ UTR (n =​ 357) from three images.
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NUDT21-knockdown cells while both YOD1 and LAMC1 expres-
sion levels were increased (Fig. 5a). To determine whether the 
3′​ UTR mediated this effect, we transfected luciferase reporters 
containing the 3′​ UTR of either PHF6 or LARP1 into control or 
NUDT21-knockdown cells and measured luciferase activity. We 
found that both reporters were downregulated after NUDT21 
knockdown (Fig. 5b). Both PHF6 and LARP1 have been shown 
as tumor-suppressor genes9,18,19 and downregulation of PHF6 or 
LARP1 in HeLa cells increases cell growth, confirming their tumor 
suppressive activity (Supplementary Fig. 5).

To further investigate the mechanism of tumor-suppressor 
ceRNA downregulation, we chose PHF6 on the basis of MAT3UTR 
analysis and experimental results (Methods). We selected two miR-
NAs targeting PHF6 (Fig. 5c), which were released by 3′US of YOD1 
(miR-3187-3p as the highest and miR-549 as the sixth highest in 
terms of βmiRjin equation (3); Methods and Supplementary Table 4). 
Neither of these miRNAs was found to change its expression follow-
ing NUDT21 knockdown (Supplementary Fig. 4d). However, PHF6 
expression was partially rescued by an antagomir blocking the 
activity of miR-549 and completely rescued by an antagomir target-
ing miR-3187-3p (Fig. 5d). Moreover, PHF6 3′​ UTR-mediated lucif-
erase activity was partially rescued by the miR-3187-3p antagomir 

or YOD1 siRNA (Fig. 5e). To understand whether reduced expres-
sion of PHF6 depends on YOD1 levels, we transfected YOD1 
cDNA into cells depleted of YOD1 and found that re-expression of 
YOD1 could not restore either the expression of endogenous PHF6  
(Fig. 5f) or the expression of the PHF6 3′​ UTR-mediated lucif-
erase (Fig. 5g), suggesting that the trans effect on PHF6 is due to 
the 3′​ UTR of YOD1. Finally, to determine whether the crosstalk 
between PHF6 and YOD1 is miRNA-dependent, we also showed 
that depletion of DICER1 abolishes PHF6 and YOD1 crosstalk  
(Fig. 5h). Collectively, the data strongly suggest that NUDT21-
mediated 3′​US causes tumor-suppressor gene repression in trans in 
a miRNA-dependent manner.

Although analyzing ceRNA crosstalk in light of 3′​US has been 
briefly suggested20–22, our MAT3UTR analysis of 97 breast cancer 
RNA-Seq data followed by functional validation suggests a wide-
spread causal role of 3′US in repressing tumor-suppressor genes 
in trans. While the trans effect further emphasizes the impor-
tance of APA in tumor progression, it also provides an additional  
layer of gene regulation and underscores the need for further 
investigation into other potential mechanisms23,24 that could per-
turb ceRNA crosstalk, such as RNA editing and competition with  
RNA-binding proteins.
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Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0118-8.
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Fig. 5 | NUDT21-mediated 3′​UTR shortening represses the tumor-suppressor genes PHF6 and LARP1. a, Western blot of 3′​US ceRNA tumor-suppressor 
genes (PHF6/LARP1) and 3′​US genes (LAMC1/YOD1) in NUDT21-knockdown cells. A representative image is shown from three independent experiments. 
b, Activity of the PHF6 3′​ UTR and LARP1 3′​ UTR luciferase reporter constructs in NUDT21-knockdown cells relative to control siRNA-transfected cells.  
The data are the average of luciferase activity ±​ standard deviation from three independent experiments (P =​ 0.037 and 0.05; P =​ 0.016 and 0.025,  
two-sided t-test). c, NUDT21 knockdown induces 3′​ UTR shortening and upregulation of YOD1, allowing miR-3187-3p and miR-549 to repress PHF6.  
d, Western blot analysis using the indicated antibodies on lysates from HeLa cells transfected with siRNA for NUDT21 (si-NUDT21-4) and two antagomirs 
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Methods
Tumor-suppressor genes and oncogenes. The tumor-suppressor genes and 
oncogenes used in this study were defined by the TUSON algorithm from genome 
sequencing of >​8,200 tumor/normal pairs9, namely residue-specific activating 
mutations for oncogenes and discrete inactivating mutations for tumor-suppressor 
genes. TUSON is a computational method that analyzes patterns of mutation in 
tumors and predicts the likelihood that any individual gene functions as a tumor-
suppressor gene or oncogene. We ranked genes by their TUSON prediction  
P values from the most to the least significant and used the top 500 genes (P <​ 0.01) 
as the reference tumor-suppressor genes or oncogenes. After removing 30 genes 
in common, 470 tumor-suppressor genes and oncogenes were used for the 
enrichment analysis. Note that there were very few breast tumor-specific tumor-
suppressor genes and oncogenes (36 and 3 with breast q-value ≤​ 0.5, respectively) 
and 90% of them were found in the top 500 pan-cancer predictions.

Previously identified 3′US genes in cancers. Xia et al. identified 1,187 3′​US genes 
across 7 TCGA cancer types1. Mayr and Bartel selected 23 3′​US genes from 27 
cancer cell lines5. Fu et al. identified 428 3′​US genes in human breast cancer cell 
lines6. Lin et al. reported 120 3′​US genes in major cancers and tumor cell lines7. 
Morris et al. found 286 3′​US genes in human colorectal tumor samples8. The 3′​US 
genes of Xia et al. were randomly sampled to 100 genes for a fair comparison.

Selection of miRNA-binding sites. Predicted miRNA-binding sites were obtained 
from TargetScanHuman version 6.225. Only those with a preferentially conserved 
targeting score (Pct) more than 0 were used1. Experimentally validated miRNA-
binding sites were obtained from TarBase version 5.026, miRecords version 427 
and miRTarBase version 4.528. The binding sites found in indirect studies such as 
microarray experiments and high-throughput proteomics measurements were 
filtered out29. Another source is the microRNA target atlas composed of public 
AGO-CLIP data30 with significant binding sites (q-value <​0.05). The predicted and 
validated binding site information was then combined to use in this study.

TCGA breast tumor RNA-Seq and miRNA-Seq data. Quantified gene  
expression files (RNASeqV1) for primary breast tumors (TCGA sample code 
01) and their matching solid normal samples (TCGA sample code 11) were 
downloaded from the TCGA Data Portal31. We used 97 breast tumor samples  
that have matched normal tissues. A total of 10,868 expressed RefSeq genes 
(fragments per kilobase of transcript per million mapped reads (FPKM) ≥​ 1 in  
>​80% of all samples) were selected for downstream analyses. To better quantify 
gene expression in the presence of 3′US, we used only coding regions (CDS) to 
quantify mRNA expression. Exon and CDS annotation for TCGA data and  
miRNA expressions (syn1445790) were downloaded from Sage Bionetworks’ 
Synapse database.

CeRNA identification in TCGA breast tumors. CeRNAs were identified by 
miRNA-binding-site overlap and expression correlation13,14. Only microRNAs with 
intermediate expression (between 0.01 and 100 in averaged fragments per million 
mapped fragments (FPM)) were used to capture dynamic interactions14. After 
removing genes with fewer than six such miRNA-binding sites, gene pairs with 
significant miRNA-binding-site overlap (<​0.05 in Benjamini–Hochberg-corrected 
P value) were selected. Among them, pairs correlated (>​0.6 in Pearson’s correlation 
coefficient) (P <​ 1 ×​ 10−10) in gene expression were defined as ceRNAs. To 
account for mRNAs with variable 3′​ UTRs, we used only CDS to quantify mRNA 
expression. Genes that are connected with >​500 ceRNAs were defined  
as hub genes.

Model-based analysis of trans effect of 3′US (MAT3UTR). Suppose transcript 
x has a constitutive proximal 3′​ UTR (pUTR) and a distal 3′​ UTR that might be 
shortened in tumors (dUTR) (Supplementary Fig. 3a). We define xMiRs( , miR )j  as 
the amount of binding sites for miRNA miR j in x.

= +

× ×

x x x

x x

MiRs( , miR ) (pUTR( , miR ) dUTR( , miR )

PDUI( )) FPKM( )
(1)j j j

where xpUTR( , miR )j  and xdUTR( , miR )j  are the numbers of miRj binding sites 
in pUTR and dUTR of x, and FPKM x( )  is expression of x. PDUI indicates the 
percentage of dUTR usage index1. Note that equation (1) can also estimate for 
genes with no distal 3′​ UTR by setting = .PDUI 1

To estimate the trans effect of 3′​US on gene y′​, we define X to be a set of 3′​US 
genes that are ceRNA partners of y′​ (Supplementary Fig. 3b) and Y to be a set of 
ceRNA partners to ∈x X , including y′​. Only moderately expressed miRNAs are 
considered, since they are likely to bind all possible binding sites. Thus, we can 
roughly use the amount of miRNA-binding sites to represent the miRNA function. 
The miR j-binding effect on each copy of y′​ can be defined as follows:

∑ ∑
′ =

+
∈ ∈

y
x y

TransE( , miR )
FPM(miR )

MiRs( , miR ) MiRs( , miR ) (2)j
j

x X j y Y j

where FPM(miR )j  is the miR j expression level. Since miRNA can bind to any 
binding sites in the genes connected by the ceRNA relationship ( ∪X Y ), both  
X and Y need to be considered.

The high-dimensional MAT3UTR input data are often highly correlated with 
each other (for example, 588 miRNAs in equation (2)). Therefore, MAT3UTR 
employs the ridge regression that is known to address the dimensionality and 
collinearity32,33 in biological data. Indeed, the ridge regression yields a remarkably 
higher prediction power than classical linear regression. For example, MAT3UTR 
has a much smaller mean square error (0.38) than classical linear regression (mean 
square error =​ 10.84) (Supplementary Fig. 3f).
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subject to β∑ ≤′ ′∈ tymiR 3 UTR( ) miRj j , the ridge regression penalty. ′MAT UTR y3 ( )  is 
the trans effect of 3′​US; βmiRj

 is the regression coefficient of miR j; ϵ ′y  is the gene-
specific error term. We use R2 to show how much variation in gene expression can 
be explained by the MAT UTR3  model. We also used 10-fold cross-validation (CV) 
to choose the optimal regularization parameter t with 75% of data for training and 
the remaining 25% for testing. CV error is measured by mean-squared error. Then, 
to estimate β, we fit the ridge regression with the entire data set using the selected 
regularization parameter as chosen by CV.

As a result, y′​ would be more repressed following 3′​US, if: y′​ contains more 
miRNA-binding sites in its 3′​ UTR; X and Y contain fewer miRNA-binding sites; 
and more transcripts in X undergo 3′​US. The MAT3UTR-control model, which 
considers miRNA expression but not 3′US, is defined as:

∑ β- ′ = × + ϵ
′ ′

′
∈

yMAT3UTR control( ) log
FPM(miR )

FPM(miR ) (4)
y

j

j
y
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where FPM(miR )j  is the miR j expression level. For model comparison between 
MAT3UTR and MAT3UTR-control, we randomly selected 75% of data for training 
and the remaining 25% for testing. We perform random division 100 times to evaluate 
the performance of the MAT3UTR and MAT3UTR-control models, where 10-fold 
CV also confirms that MAT3UTR has a 2-fold higher prediction power on gene 
expression variation than the MAT3UTR-control model (Supplementary Fig. 3e).

Selecting genes for experimental validations. To test the trans repressive effect 
of 3′US on PTEN, we chose EPS15 on three grounds. First, its expression is easily 
detected in MCF-7 cells; second, analysis of RNA-Seq from MCF-7 cells34 indicates 
distal polyA site usage of the EPS15 transcript; third, the EPS15 3′​ UTR contains 
four microRNA target sites that compete with the PTEN 3′​ UTR.

To investigate the tumor-suppressor ceRNA downregulation mechanism, we 
chose PHF6, because among 57 tumor-suppressor genes in 3′​US ceRNAs, PHF6 
was predicted as a strong (sixth highest in MAT3UTR score, Supplementary  
Table 3) trans-target of 3′​US, was significantly downregulated (second highest in 
gene expression) and was the most enriched in AGO2 RIP complexes of the ceRNA 
tested (Fig. 4d).

Statistical analyses. Differential expression analyses were carried out by edgeR 
(version 3.8.6)35 (tumor samples versus normal samples) with false discovery rate 
(FDR) control at 0.05. The significance of observed values for a particular class 
compared to its control is calculated from one-tailed Pearson’s χ​2 test. Each variable 
follows either a binomial or multinomial distribution and each case consists of at 
least five counts, which meets the assumption of Pearson’s χ​2 test. To test whether 
there is a significant enrichment of tumor-suppressor genes or oncogenes among 
a gene list of our interest, we conducted hypergeometric tests with normalized 
overlap counts, since assessing overlap between sets meets all criteria to use 
hypergeometric tests, including trials without replacement. To compare means of 
two groups that have different variances, we used Welch’s t-test, which does not 
assume equal population variance. To check the normality assumption for the  
t-test, we conducted a Shapiro-Wilk normality test for small samples (n <​ 50).  
All statistical computations were performed in the Python scipy stats package 
(version 0.15.1) or R (version 3.1.1).

RNA-Seq for NUDT21 depletion experiment. We previously sequenced two 
control and two NUDT21 depletion samples of HeLa cells by HiSeq 2000  
(LC Sciences)2. After trimming adaptors using Trim Galore (version 0.4.1),  
paired-end RNA-Seq reads of 101 base pairs in each end were used to reconstruct 
the transcriptome in the Tuxedo protocol36 (TopHat 2.0.6 and Cufflinks 2.1.1). 
The resulting FPKM values were normalized for comparison using Cuffdiff 2.2.0. 
Further analyses are based on 10,681 expressed (FPKM ≥​ 1 in >​3 samples) RefSeq 
genes. We sequenced miRNAs from control and NUDT21-knockdown cells to 
utilize only miRNAs with intermediate expression in ceRNA identification.

CeRNA identification in the NUDT21-knockdown experiment in the HeLa cell 
line. Due to the small sample size (two for each condition wild-type and NUDT21 
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knockdown), ceRNAs were identified solely on the basis of miRNA-binding-
site overlap. We considered only binding sites for miRNAs with intermediate 
expression (between 0.01 and 100 in averaged FPM). A total of 1,450 3′US genes 
identified by DaPars had significant miRNA-binding-site overlap with 1,168 
ceRNA genes (3′US ceRNA partners).

MiRNA-Seq for the NUDT21 depletion experiment. HeLa cells were transfected 
with control or NUDT21 siRNA. NUDT21 depletion was validated as previously 
described2. Small RNA libraries were generated from one control and one 
NUDT21 depletion sample using the Illumina Truseq Small RNA Preparation kit, 
and sequenced on Illumina GAIIx. Raw sequencing reads (40 nucleotides) were 
obtained using Illumina’s Sequencing Control Studio software following image 
analysis and base-calling by Illumina’s Real-Time Analysis (v 1.8.70). Then a script 
ACGT101-miR v 4.2 (LC Sciences) was used for data analysis, where reads are 
mapped to the reference database (miRbase). The script also normalizes the counts 
by a library size parameter for comparison.

CeRNA tumor-suppressor repression in HeLa cells with NUDT21 knockdown. 
Parental HeLa cells were purchased from ATCC (cat. no. CCL-2) and maintained 
in Eagle’s minimum essential medium (Lonza, cat. no. 12-604F) with 10% fetal 
bovine serum. The cells were made mycoplasma free by incubating with Plasmocin 
(InvivoGen, cat. no. ant-MPT) for two weeks before transfection with three 
different siRNAs for NUDT21 (Sigma Aldrich, ID: SASI_Hs01_00146875~77) and 
negative control siRNA (Sigma Aldrich, ID:SIC002) using previously established 
approaches2. Western blotting was also performed as described in our previous 
work2 using antibodies raised against: PHF6 (Santa Cruz, cat. no. sc-271767), 
YOD1 (abcam, ab178979), NUDT21 (Proteintechlab, cat. no. 10322-1-AP) and 
GAPDH (Sigma, G9545). To block miRNA function, we selected two miRNAs with 
a strong trans effect targeting PHF6 (miR-3187-3p and miR-549) and HeLa cells 
were co-transfected with siRNA for NUDT21 and the two antagomirs, to block the 
two predicted miRNAs, miR-549 and miR-3187-3p in the PHF6 3′​ UTR. The two 
antagomirs were designed37 and synthesized from Sigma-Genosys: Antagomir-
3187-3p: 5′​-[mU]s[mU]s[mG]mG][mC][mC][mA][mU][mG][mG][mG][mG]
[mC][mU][mG] [mC][mG]s[mC]s[mG]s[mG]s-chol-3′​; and Antagomir-549:  
5′​-[mU]s[mG]s[mA][mC] [mA][mA][mC][mU][mA][mU][mG][mG][mA][mU]
[mG][mA][mG][mC]s[mU]s[mC]s[mU]s-chol-3′​. PHF6 and YOD1 expression 
were detected by western blotting and quantified by Image Lab software (version 
5.2.1) from Bio-Rad.

Detection of ceRNA tumor-suppressor gene enrichment by RIP with 
quantitative PCR. HeLa cells were seeded in a 6-well plate at 4 ×​ 105 cells per 
well and transfected with a Cas9 and single-guide RNA (sgRNA) plasmid 
targeting NUDT21 or with Cas9 and GFP as a control. sgRNAs for NUDT21 (top, 
ccggccgcccaatcgctcgcagac; bottom, aaacgtctgcgagcgattg ggcgg) were synthesized 
(Sigma), and the annealing double-stranded DNA was cloned into pGL3-U6-
sgRNA-PGK-puromycin. The transfected cells from three wells were combined 
and then selected with 10 µ​g ml−1 blasticidin for three days. NUDT21-knockdown 
efficiency was determined by western blot with NUDT21 antibody. RIP was 
performed with anti-AGO2 antibody, and AGO2-associated RNAs were purified 
and measured by quantitative real-time PCR38. Briefly, the cells were harvested and 
lysed with 100 µ​l polysome lysis buffer (100 mM KCl, 5 mM MgCl2, 10 mM Hepes 
pH 7.0, 0.5% NP50, 1 mM DTT and 1×​PI cocktail). The cell lysate was centrifuged 
at 10,000g for 15 min and added to magnetic beads (A+​G) with 5 µ​g anti-Ago2 
antibody or normal mouse IgG suspended in 900 µ​l of NET2 buffer (50 mM Tris-
Cl pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40, 17.5 mM EDTA pH 8.0, 
1 mM DTT and 100 units ml−1 RNaseOUT). The beads were washed six times with 
NT2 buffer (50 mM Tris-Cl pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40). 
Beads were resuspended in 150 µ​l proteinase K buffer (50 mM Tris-Cl pH 7.4, 
150 mM NaCl, 1 mM MgCl2, 0.05% NP-40 and 1% SDS) with 9 µ​l proteinase K. 
Samples were incubated at 55 °C for 30 min and isolate total RNAs with 150 µ​
l phenol–chloroform. The total RNA was reverse transcribed and the candidate 
ceRNAs were determined by quantitative real-time PCR using primers described in 
Supplementary Table 5 (Bio-Rad real-time PCR system).

LightSwitch luciferase reporter assay with PTEN, PHF6 and LARP1 3′ UTR. 
LightSwitch luciferase reporter constructs with PTEN, PHF6 and LARP1 3′​ UTR 
were purchased from SWITCHGEAR genomics. Briefly, HeLa cells were seeded 
in a 96-well white TC plate in 100 µ​l total volume to yield ≥​80% confluence at the 
time of transfection. For each transfection, the following reagents were combined: 
50 nM siRNA and/or miRNAs and/or antagomir RNA, individual GoClone 
reporter (30 ng µ​l−1) 3.33 µ​l and 1 ng Rluc reporter. Lipofectamine 2000 was diluted 
in OPTI-MEM medium at 1:10 and incubated at room temperature for 5 min and 
then added to each tube. Following a 20-min incubation at room temperature,  

80 µ​l of pre-warmed (37 °C) OPTI-MEM medium per replicate was added for a 
total of 100 µ​l per replicate transfection. All 100 µ​l of the transfection mixture was 
added to each well and incubated overnight. The luciferase reporter assays were 
performed according to the manufacturer’s protocol (Invitrogen).

Immunofluorescence staining for PTEN in MCF7 cells with EPS 3′ UTR. 
pLightSwitch-EPS15 3′​ UTR construct was purchased from SWITCHGEAR 
genomics and transfected into MCF7 cells. PTEN expression was detected by 
immunofluorescence staining with anti-PTEN antibody from Cell Signaling. 
Briefly, 1 ×​ 105 MCF7 cells were seeded in 4-well chamber slides overnight, 
and transfected with pLightSwitch-EPS15 3′UTR/GFP constructs at 10:1 or 
pLightSwitch-3′​ UTR/GFP constructs as a control. One day after transfection,  
the cells were fixed with 90% cold methanol at −​20 °C overnight. The next day, 
0.5% Triton X-100 in PBS was added and incubated at room temperature for  
30 min. Samples were blocked in 3% BSA in PBS at room temperature for 1 h. 
PTEN antibody was used at 1:200 dilution in 3% BSA/PBS and 200 μ​l per well 
was added to the chamber slides and incubated for 1 h at room temperature. 
After washing three times, the cells were incubated with Alexa-594-conjugated 
secondary antibody in 3% BSA/PBS for 1 h at room temperature, in the dark.  
The cells were rinsed three times with PBS, with the third wash containing DAPI. 
The coverslips were mounted in anti-fade mounting medium and detected by 
immunofluorescence microscopy. Both PTEN- and GFP-positive cells were 
counted in EPS15 3′​ UTR/GFP cells and pLightSwitch-3′​ UTR/GFP control cells.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The open source MAT3UTR program (version 0.9.2) is freely 
available at https://github.com/thejustpark/MAT3UTR with necessary example 
data for this analysis.

Data availability. Raw and processed miRNA-Seq data for the NUDT21-depletion 
experiment have been deposited to GEO under the accession number GSE78198.
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    Experimental design
1.   Sample size

Describe how sample size was determined. computational analyses used all 97 breast tumor samples that have 
matched normal breast samples in the database. 

2.   Data exclusions

Describe any data exclusions. no data were excluded

3.   Replication

Describe whether the experimental findings were reliably reproduced. all attempts at replication were successful

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

We used all 97 breast tumor samples that have matched normal breast 
samples in the database. Since there's no sampling, there's no 
randomization.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

There was no group allocation, because we used all 97 samples of normal 
and tumor conditions. Since there's no group allocation (or sampling), 
blinding is not relevant.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. All statistical computations were performed in python scipy stats package 
(version 0.15.1) or R (version 3.1.1). Gene differential expression analysis 
was done by edgeR (version 3.8.6). 

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No restrictions on availability of unique materials.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

All the antibodies used are commercial available and validated indicated in 
company website and their references.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. HeLa and MCF7 cell lines are purchased from ATCC.

b.  Describe the method of cell line authentication used. The cell lines are authenticated by the provider and store in our lab with 
low passage.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

They were tested and showed mycoplasma free.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

None of the cell lines is listed in the database of commonly misidentified 
cell lines maintained by ICLAC.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

no animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

the study did not involve human research participants.
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CFIm25 links alternative polyadenylation to
glioblastoma tumour suppression
Chioniso P. Masamha1*, Zheng Xia2*, Jingxuan Yang3, Todd R. Albrecht1, Min Li3, Ann-Bin Shyu1, Wei Li2 & Eric J. Wagner1

The global shortening ofmessengerRNAs through alternative poly-
adenylation (APA) that occurs during enhanced cellular prolifera-
tion represents an important, yet poorly understood mechanism of
regulatedgeneexpression1,2. The39untranslated region (UTR) trun-
cation of growth-promotingmRNA transcripts that relieves intrin-
sicmicroRNA- andAU-rich-element-mediated repressionhas been
observed to correlatewith cellular transformation3; however, the im-
portance to tumorigenicity of RNA 39-end-processing factors that
potentially govern APA is unknown. Here we identify CFIm25 as a
broad repressor of proximal poly(A) site usage that, when depleted,
increases cell proliferation. Applying a regression model on stand-
ard RNA-sequencing data for novel APA events, we identified at
least 1,450 geneswith shortened 39UTRs afterCFIm25knockdown,
representing 11%of significantly expressedmRNAs inhuman cells.
Marked increases in the expression of several known oncogenes, in-
cluding cyclin D1, are observed as a consequence of CFIm25 deple-
tion. Importantly, we identified a subset of CFIm25-regulatedAPA
genes with shortened 39UTRs in glioblastoma tumours that have
reduced CFIm25 expression. Downregulation of CFIm25 express-
ion in glioblastoma cells enhances their tumorigenic properties and
increases tumour size,whereasCFIm25overexpression reduces these
properties and inhibits tumourgrowth.These findings identify a piv-
otal role of CFIm25 in governing APA and reveal a previously un-
knownconnectionbetweenCFIm25andglioblastomatumorigenicity.
Recently, it has become increasingly clear that mRNA 39-end for-

mation is subject to dynamic regulation under diverse physiological
conditions2–5. Over 50% of human genes have multiple polyadenyla-
tion signals, thereby increasing the potential diversity in mRNA tran-
script length6. The formation ofmRNA transcripts using these distinct
poly(A) sites (PASs) is carriedout byAPA,with themost common form
involving differential use of alternative PASs located within the same
terminal exon (reviewed in ref. 7). Processing at the PAS most prox-
imal to the stop codon (pPAS) removes negative regulatory elements
that reducemRNAstability or impair translationefficiency, suchasAU-
rich elements (AREs)8 and microRNA (miRNA) targeting sites9,10. It
has been reported that both rapidlyproliferating cells1,2 and transformed
cells3,11 preferentially expressmRNAswith shortened 39UTRs.Despite
these observations, the mechanisms that control the extensive distal-
to-proximal PAS switch observed in proliferative and/or transformed
cells, the relationship between cause and effect, and the critical target
genes subject to this regulation, are not well characterized.
Tomeasure relative changes in endogenous APA events, we devised

aquantitativepolymerase chain reactionafter reverse transcription (qRT–
PCR)assay tomonitor the transcript-specific useof thedistal PAS (dPAS)
while normalizing for totalmRNAlevels for three test transcripts, cyclin
D1 (CCND1),DICER1 and TIMP2, known to undergo APA3,12. Using
this approach, we readily detected appreciable usage of dPASs for all
three genes in HeLa cells (Extended Data Fig. 1). This was somewhat
surprising given their highly transformed state, but is consistent with

previous reports that not all transformed cells tested exhibit apprecia-
ble 39UTR shortening1,3. Previous studies implicatemultiplemembers
of the cleavage and polyadenylation (CPA) machinery as potentially
regulating poly(A) site selection12–15. To test the relative contribution
of these factors to the APA of the three test genes, we used systematic
RNA interference (RNAi) (Fig. 1a–c).We observed only small changes
in the relativeuseof thedPASafter knockdownofmembers of the cleav-
age andpolyadenylation specificity factor (CPSF), cleavage stimulation
factor (CSTF) and cleavage factor IIm (CFIIm) complexes (Fig. 1d–f).
By contrast,wedetected significant reduction indPASusage after knock-
downof themembers of theCFImcomplex.These results are consistent
with a recent report that CFIm68 depletion decreases 39UTR length14;
however, themost notablePASswitchingwas found tooccur after knock-
downofCFIm25.We therefore focused all further analyses onCFIm25.
Traditionalmethods of global PASprofiling usemRNApartitioning

and digestion to sequence poly(A) junctions within messages1,16,17. To
identify global targets ofCFIm25with amore streamlined approach re-
quiring less samplemanipulation,weperformedhigh-depth (.33 108

reads)RNAsequencing (RNA-seq) after knockingdownCFIm25 inpar-
allelwithacontrolknockdown.Wedetermined that23%ofRNA-seq reads
canbeuniquelymapped to39UTRsof expressedgenes leading toapproxi-
mately 200-fold sequence coverage (ExtendedData Fig. 2a, b).We first
analysed the three test genes and observed markedly reduced read den-
sitywithin the 39UTRs in response toCFIm25 depletion (Fig. 2a). These
results not only confirmour qRT–PCR findings thatHeLa cells robustly
use thedPAS for all three test genesunder basal conditions but alsodem-
onstrate that considerable39UTRshortening inducedbyCFIm25knock-
down is readily visualizedby analysing the readdensity ofRNA-seqdata.
On the basis of this promising observation, we applied a novel bio-

informatics algorithm termed ‘dynamic analysis of alternative poly-
adenylation from RNA-seq’ (DaPars; see Methods) for the de novo
identification of all instances of 39UTRalterations between control and
CFIm25 knockdown cells, regardless of a pre-annotated pPAS within
each RefSeq transcript. DaPars uses a linear regression model to iden-
tify the exact location of this novel proximal 39UTR as the optimal fit-
ting point (Fig. 2b, red point) as well as the abundance of both novel
and annotated UTRs. The degree of difference of 39UTR usage bet-
ween the samples was then quantified as a change in percentage dPAS
usage index (DPDUI),which is capable of identifying lengthening (pos-
itive index) or shortening (negative index) within the 39UTR. When
applied to the 12,273 RefSeq transcripts whose average terminal exon
sequence coverage is more than 30-fold, DaPars identified 1,453 tran-
scripts possessing a significant, reproducible shift in 39UTR usage in
response to CFIm25 depletion (Fig. 2c and Extended Data Fig. 2c, d).
Notably, among this groupof transcripts, 1,450 are shifted topPASusage
inCFIm25 knockdown cells.We found a significant enrichment of the
CFIm25UGUAbindingmotif and previously reportedCFIm25 iCLIP
sequence tags14within39UTRs that shortened afterCFIm25knockdown
relative to transcripts exhibitingno length change (ExtendedDataFig. 3).
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Figure 1 | CFIm25 depletion leads to consistent
and robust 39UTR shortening of test genes.
a–c, Western blot analysis of HeLa cell lysates
treated with control siRNA (Con.) and siRNAs
individually targeting each of members of the CPA
machinery and Symplekin (Sym.). In all cases,
tubulin (Tub.) was used as a loading control.
d–f, Quantified results of three biologically
independent qRT–PCR experiments on RNA
isolated from cells represented in panels a–c with
the factors presented in the same order as
shown in western blots a–c. See Methods for
quantification details.
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Figure 2 | The DaPars algorithm identifies broad targets of CFIm25 in
standard RNA-seq data. a, RNA-seq read density for 39UTR, terminal exon
and upstream exon(s) after the control (Con.) siRNA treatment and CFIm25
knockdown (KD) in HeLa cells. Numbers on y-axis indicate RNA-seq read
coverage. b, Diagram depicts how the differential alternative 39UTR usage was
identified based on DaPars. The y-axis shows the fitting value of the DaPars
regression model and the locus with minimum fitting value (red point) is the
predicted alternative pPAS for the RNA-seq data (bottom). c, Scatterplot of
PDUIs in control and CFIm25 knockdown cells where mRNAs significantly
shortened (n5 1,450) or lengthened (n5 3) after CFIm25 knockdown (false
discovery rate (FDR)# 0.05, absolute DPDUI$ 0.2 and

at least twofold change of PDUIs between CFIm25 knockdown and control
cells) are coloured. The shifting towards pPAS is significant (P, 2.23 10216,
binomial test). d, Correlation between dPAS site usage and gene expression
levels of control and CFIm25 knockdown cells. The x-axis shows DPDUI; a
negative value indicates that pPAS is prone to be used in CFIm25 knockdown
cells. The y-axis shows the logarithm of the expression level of genes from the
CFIm25 knockdown relative to the control sample. e, Representative RNA-seq
density plots along with DPDUI values for genes whose 39UTR is shortened in
response to CFIm25 knockdown. Numbers on y-axis indicate RNA-seq read
coverage. f, Representative RNA-seq density plots along with DPDUI values of
genes whose 39UTR is unchanged by CFIm25 knockdown.
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Moreover, we determined that 70% of transcripts whose 39UTR is shor-
tened after CFIm25 knockdown use a pPAS within the first one-third
of their 39UTR. By contrast, only 29%ofmulti-PAS transcripts that did
not alter 39UTR length in response toCFIm25have anannotated pPAS
in the first third of their 39UTR. This demonstrates that CFIm25 APA
targets areenrichedwithpPASspositionedclose to the stopcodon tomax-
imize their degree of 39UTRshortening.Collectively, these results clearly
indicate that the functionofCFIm25 is tobroadly repressproximalpoly(A)
site choice, and consequently, the shortening of 39UTR length is consid-
erable for themajorityofCFIm25-regulated transcriptsupon itsdepletion.
One potential consequence of 39UTR shortening inCFIm25 knock-

down is the loss ofmiRNA-binding sites and/orAREs, resulting in trun-
cated mRNA transcripts that evade negative regulation. Although the
correlationbetween transcript expression change andDPDUIwasmod-
est (Pearson correlation520.25), it does reveal that transcripts with
shorter 39UTR inCFIm25knockdowncells haveoverall higher express-
ion levels (Fig. 2d).Weobserved that 64%of transcriptswith shortened
39UTRs exhibited significantly increased steady-state levels, 34%were
unchanged, andonly2%were significantly reduced (ExtendedDataFig. 4).
Wehave alsoorganized the list ofCFIm25-regulated geneswith respect
to theirDPDUI score, change in relative levels of transcript, andpredicted
numbers of ARE motifs and miRNA target sites lost after APA (Sup-
plementaryTable 1) and observed that gene expression positively corre-
lateswith thenumberof lostAREmotifs andmiRNAtarget sites (Extended
Data Fig. 5). Several examples of novel genes whose APA is regulated
by CFIm25 are shown in Fig. 2e and it is important to note that not all
long 39UTRs were observed to shorten in response to CFIm25 knock-
down, indicating that theCFImcomplex regulatesmany, but not all genes
capable ofAPA(Fig. 2f). Collectively, these data demonstrate the power
and ease of theDaPars algorithm to identifyAPAwithin standardRNA-
seq, and indicate that themajor form of CFIm25 regulation is to repress
pPAS choice at a global level.
To validate the DPDUI results, we created qRT–PCR amplicons to

monitor dPASusageof six geneswhose 39UTRswere found to be short-
ened after CFIm25 knockdown and two that were not altered. Using
these amplicons,we analysedRNA isolated fromcells effectively deple-
ted ofCFIm25using two independent short interferingRNAs (siRNAs)
(Fig. 3a, inset), andobservedhighcongruence betweenqRT–PCRresults
and those obtained using RNA-seq and DPDUI (Fig. 3a, graph). To
test formally for the presence of de-repressed protein expression from
mRNAs with shortened 39UTRs, we measured their levels in lysates
from knockdown cells (Fig. 3b). We observed considerable increases
in protein levels of CFIm25 target genes, including several that have a
well-documented role in tumour growth, such as cyclin D1, glutami-
nase andmethyl-CpG-binding protein 2 (MECP2)18–22. It is worth not-
ing that the 39UTR of each of these genes has been shown to be subject
to miRNA-mediated inhibition23–25. Consistent with this observation,
we alsonoted enhanced cellular proliferation in response to knockdown
ofCFIm25 relative to control knockdown inHeLacells (Fig. 3c). Finally,
to determinewhether the 39UTR is sufficient to elicit translational de-
repression of a heterologous protein in response to CFIm25 knock-
down, we used reporters with the SMOC1 39UTR cloned downstream
of luciferase or the GAPDH 39UTR, which was not found to alter its
poly(A) site usage. We observed that only the luciferase activity spe-
cifically resulting from the luciferase–SMOC1 reporter was increased
in response toknockdownofCFIm25 (Fig. 3d), supporting the idea that
the increased expressionof endogenousSMOC1proteinwhenCFIm25
is depleted is mediated through its 39UTR.
The collective observations that CFIm25 depletion leads to broad

39UTR shortening, enhanced expression of growth promoting genes
and increased cell proliferation support the hypothesis that CFIm25 is
a novel anti-proliferative gene whose levels may be reduced in human
cancers.We focusedour analysis onglioblastoma, as recent reports indi-
cate that brain tissuepossesses the longest 39UTRs26,27.We reasoned that
tumours derived from these cellsmight bemore sensitive to changes in
CFIm25 levels thanother cancers. To test this prediction,wedownloaded

archivedpatientRNA-seqdata fromTheCancerGenomeAtlas (TCGA),
stratified it according toCFIm25expression, andanalysed it usingDaPars.
Indeed, following the same cut-offs in ourHeLaRNA-seq 39UTRana-
lysis, we identified 60 geneswith altered 39UTRs,with 59 of those experi-
encing shortening in glioblastoma expressing lower levels of CFIm25
(Fig. 4a and Supplementary Table 2). Among those genes, a significant
number of events (24 genes; P5 2.23 10212 by hypergeometric test-
ing)were also shortened inCFIm25knockdownHeLacells and this per-
centage of overlap increased markedly to 86% as the DPDUI cut-off
increased from 0.2 to 0.4 (Extended Data Fig. 6). Two representative
examples of genes, FOS-related antigen2 (FRA2; also knownasFOSL2)
andMECP2, with shortened 39UTRs in low CFIm25-expressing glio-
blastoma tumours is shown inFig. 4b, demonstrating a compelling sim-
ilarity between the patient samples and HeLa cells before and after
CFIm25 knockdown. Overexpression of either of these genes has been
shown to enhance cell proliferation18,28.
To test formally whether altering CFIm25 expression can modulate

glioblastoma tumorigenic properties, we screened a panel of glioblas-
toma cell lines andobserved thatU251 cellsnaturally express lower levels
ofCFIm25 comparedwithLN229 cells (Fig. 4c). To raiseCFIm25 levels
in U251 cells, we created cell lines stably expressing eitherMyc-tagged
CFIm25 or green fluorescent protein (GFP) as a control. In parallel, we
used RNAi to reduce CFIm25 levels in LN229 cells (Fig. 4c). We ob-
served a significant reduction in anchorage-dependent growth and cel-
lular invasion inU251 cells overexpressingCFIm25 comparedwith the
GFP control, whereas reducing CFIm25 in LN229 cells caused an in-
crease in both of these properties (ExtendedData Fig. 7). To determine
if the altered in vitro properties of glioblastoma cells affected tumour
growth kinetics in vivo, we used a subcutaneous xenograft model. In-
creased expression ofCFIm25 inU251 cells resulted in amarked reduc-
tion in tumour growth anddecreased tumour cell proliferation (Fig. 4d
and ExtendedData Fig. 8). By contrast, depletion of CFIm25 in LN229
cells caused a profound increase in tumour size (Fig. 4e and Extended
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Figure 3 | Increased pPAS usage after CFIm25 depletion results in
increased protein translation and enhanced cell proliferation. a, qRT–PCR
results of select genes shown as fold change in dPAS usage after CFIm25
depletion. Experiments were performed in triplicate with data shown as mean
1 standard deviation from the mean (s.d.). The inset shows western blot
analysis demonstrating effective knockdown of CFIm25 using two distinct
siRNAs. Tub., tubulin. b, Results of western blot analysis of cell lysates after
knockdown of CFIm25 using siRNA. c, Growth of HeLa cells was measured
after RNAi of CFIm25 compared with cells transfected with control siRNA or
the siRNA to the CFIIm complex subunit PCF11 (Unr.). Results shown are
mean6 standard deviation (s.d.) (n5 3). d, Graph representing luciferase
activity from cells transfected with a luciferase reporter containing the 39UTR
of either GAPDH or of SMOC1 after being transfected with either control
or CFIm25 siRNA. Data are the average of three independent experiments
and error bars show s.d.
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Data Fig. 9). Collectively, these results uncover a tumour suppressive
property of CFIm25 in glioblastoma that is probablymediated through
its broad repression of APA-dependent mRNA 39UTR shortening.
We identified CFIm25 among 15 cleavage and polyadenylation fac-

tors as a key factor that broadly regulates APA. Importantly, the data
presentedhere also extendourunderstanding ofAPA in regulated gene
expression through the demonstration that extensive shortening of
39UTRs causally leads to enhanced cellular proliferation and tumor-
igenicity, probably through the upregulation of growth promoting
factors, such as cyclin D1. These results indicate the importance of 39
UTR usage in cell growth control and underscore the need for further
research into the mechanism and regulation of APA and its potential
links to other human diseases.

METHODS SUMMARY
Humancell lines usedwere cultured using standard techniques. RNAi andwestern
blot experiments were conducted as described previously29. For luciferase experi-
ments, oneday after the second siRNAhit, cellswere transfectedwith39UTRRenilla
luciferaseplasmids and activitywas assayed after 24 h.TotalRNAforpRT–PCRwas
reverse transcribed usingMMLV-RT (Invitrogen). qRT–PCR reactions were per-
formed using SYBRGREEN (Fermentas). Duplicate control and CFIm25 knock-
down sampleswere sequenced byHiSeq 2000.RNA-seq readswere aligned (hg19)
usingTopHat 2.0.1030. All theTCGAglioblastomaRNA-seqBAMfilesweredown-
loaded from the UCSC Cancer Genomics Hub (https://cghub.ucsc.edu/). DaPars
was used to identify differential 39UTR usage from RNA-seq (Z.X. et al., unpub-
lishedobservations; https://code.google.com/p/dapars). For tumour xenografts,U251
cells were stably transfected with GFP or CFIm25 plasmids. LN229 cells were trans-
fected with lentivirus expressing CFIm25 shRNA.After subcutaneous injection of
cell lines into nude mice, glioblastoma tumour size was monitored and tumours
were removed and histologically analysed.

Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
RNA-seq.We used whole transcriptome RNA-seq to investigate alternative PAS
usage in a genome-wide fashion. Two control and two CFIm25 knockdown sam-
ples were sequenced byHiSeq 2000 (LC Sciences). Paired-end RNA-seq readswith
101bp ineach endwere aligned to thehumangenome (hg19)usingTopHat 2.0.1030.
RefSeq gene expressionswere quantified byRSEM31. A statistical summary of read
alignments and average gene expressions can be found in Extended Data Fig. 2.
More than12,000 (,50%)humanRefSeq genes can be detected throughRNA-seq
with expression levels more than 1 fragments per kilobase of transcript sequence
permillionmapped paired-end reads (FPKM)32.More importantly, the average of
23%ofRNA-seq reads can beuniquelymapped to 39UTRsof expressed genes that
renders around 2003 coverage on UTRs. All the TCGA glioblastoma RNA-seq
BAM files were downloaded from the UCSC Cancer Genomics Hub (CGHub;
https://cghub.ucsc.edu/).
AnalysisofAPAfromRNA-seq.Weusedanovel bioinformatics algorithmDaPars
(Z.X. et al., unpublished observations; https://code.google.com/p/dapars) for the
denovo identificationofAPAfromRNA-seq.Theobserved sequence coveragewas
representedas a linear combinationofnovel andannotated 39UTRs. For eachRefSeq
transcriptwith annotated PAS, we used a regressionmodel to infer the endpoint of
alternative novel PAS within this 39UTR at single nucleotide resolution, by min-
imizing the deviation between the observed read coverage and the expected read
coveragebased ona two-PASmodel, in both control andCFIm25knockdownsam-
ples simultaneously.
To quantify the relative PAS usage, we defined the percentage of dPAS usage for

each sample as PDUI index. The greater the PDUI is, themore the dPAS of a tran-
script is used and vice versa.
DPDUI.We used the following three criteria to detect the most significant shifted
39UTR events: First, given the expression levels of short and long 39UTRs in two
samples in each condition, we compute the significance of the difference of mean
PDUIs using Fisher’s exact test, which is further adjusted by Benjamini–Hochberg
(BH) procedure to control the FDR at a level of 5%. Second, the absolute difference
ofmeanPDUIsmust beno less than 0.2. Third, the absolute log2 ratio (fold change)
of mean PDUIs must be no less than 1. To avoid false positive estimation on low
coverage transcripts, we required that there be more than 30-fold coverage on the
39UTR region of both samples. For genes with multiple annotated PASs, we only
kept the onewith the greatest absoluteDPDUI value. Last, we identified 1,453 tran-
scripts possessing a significant shift in 39UTRusage in response toCFIm25 knock-
down, the vast majority of which have shortened 39UTRs in CFIm25 knockdown.
Bioinformatic analyses of 39UTRshortening.AsmiRNAbinding sites andother
regulatory sequences such as AREs reside in 39UTRs33,34, APA has an important
role inmRNA stability, translation and translocation. Indeed, it has been reported
that shorter39UTRsproducehigher levelsof protein3.Toelucidate the consequences
of 39UTR shortening, we provided the numbers of lost ARE motifs and miRNA
binding sites due to the 39UTR shortening for the transcripts shifting to proximal
39UTR usage in CFIm25 knockdown cells (Supplementary Table 1). The ARE is
one of themostprominent cis-acting regulatory elements found in39UTRs to target
mRNAs for rapid degradation35. The eight different consensusAREmotifs, includ-
ing the plain AUUUA pentamer, were retrieved from the ARE site database35.
miRNA–mRNAbinding informationwas based onmiRNA target prediction data-
base TargetScanHuman version 6.236–38. To limit the miRNA to high-confidence
sites, we required the probability of the preferentially conserved targeting (PCT)
score to be more than 0 for all highly conserved miRNA families38.
Differentially expressed gene expression analysis. With two replicates in each
group, we used edgeR39 to call differentially expressed genes with FDR, 0.05. To
better quantify gene expression with shorter 39UTRs, we counted reads based on
the coding regions of each transcript.
Cell culture and cell counts.All the cell lines used (HeLa, U251 and LN229) were
cultured in DMEM supplemented with 10% FBS (11% penicillin and streptomy-
cin) in a 5% CO2 incubator at 37 uC. Cell counts were done using a standard
hemacytometer.
siRNAandwesternblot assays.Both siRNAtransfection andwesternblot analysis
were performed as previously described29. The siRNAwas purchased from Sigma
and all the siRNAs used are shown below. After transfection, cells were harvested
formRNAextraction,westernblottingorMatrigel assay.Todetect 39-end-processing
factors by western blotting, the following primary antibodies from Bethyl Labor-
atories were used: CPSF160, CPSF100, CPSF73, CPSF30, FIP1, CSTF77, CSTF64t,
CSTF50, CFIm68 andCFIm59.Other antibodies used includeCFIm25 (PTGlabs),
CSTF64 and CFIIm PCF11, and Symplekin (Sigma and CFIImCLP1 (Epitomics).
Additional antibodies includeVMA21,GLS,ACER3andGSK-3b (PTGlabs); cyclin
D1 (Cell Signaling); and SMOC1 and tubulin (Abcam).
siRNA sequences.We used the following siRNA sequences. CPSF160 si1: 59-GC
UUUAAGAAGGUCCCUCA; si2: 59-CUUACCACGUGGAGUCUAA;CPSF100
si1: 59-CUCAACUUCUUGAUCAGAU; si2: 59-GGAUAGAUGGUGUCUUAG

A; CPSF73 si1: 59-CCAUAUACUGGUCCCUUUA; si2: 59-GAUAUUGGAAGU
UCAGUCA; CPSF30 si1: 59-GUGCCUAUAUCUGUGAUUU; si2: 59-CCUAUA
UCUGUGAUUUGAA; FIP1 si1: 59-CGAAUGGGACUUGAAGUUA; si2: 59-GA
CAAGUACUGCCUCCAGA; CSTF77 si1: 59-GAAGACUUAUGAACGCCUU;
si2 59-CACAGAAUCAACCUAUAGA; CSTF64 si1: 59-GGCUUUAGUCCCGG
GCAGA; si2: 59-GGUUAUGGCUUCUGUGAAU; CSTF64t si1: 59-GUCUUAG
AGACACGUGUAA; si2: 59-CUAAUGUUCUGCUGAACCA; CSTF50 si1: 59-G
UCGUAAGUCCGUGCACCA; si2: 59-CUACUCUUCGCCUUUAUGA;Symplekin
si1: 59-CAGUUCAACUCGGGCCUGA; si2: 59-GAGACAUUGAGUUGCUGCU;
CFIm25 si1: 59-CCUCUUACCAAUUAUACUU; si2: 59-GCUAUAUACAGUG
UAGAAU; CFIm59 si1: 59-CUCAUCUGCUCGUGUGGAU; si2: 59-GCAAUU
UCCAGCAGUGCCA;CFIm68 si1: 59-CUGCAAUUUCUUUAAUUAA; si2: 59-
GGAUCAAGACGUGAACGAU; CFIIm CLP1 si1: 59-GCUUAUGUCUCCAA
GGACA; si2: 59-CAGUUCAGUUGGAGUUGUU; CFIIm PCF11 si1: 59-GUAC
CUUAUGGAUUCUAUU; si2: 59-GUAUCUCACUGCCUUUACU)and the con-
trol siRNA used was described elsewhere29.
qRT–PCR.After appropriate transfections, total RNAwas extracted using TRIzol
Reagent (Life Technologies) using the manufacturer’s protocol. For qRT–PCR the
mRNAwas reverse transcribed usingMMLV-RT (Invitrogen) using themanufac-
turer’s protocol to generate cDNA. The qRT–PCR reactions were performed using
StratageneMxPro3000P(AgilentTechnologies) andSYBRGREEN(Fermentas).Com-
monprimersweredesigned to target the open reading frameandnormalize for total
transcript. Thedistal primersweredesigned to target sequences just before thedPAS
and detect long transcripts that use the dPAS. All primers used are shown below.
Datawere calculatedusingamodifiedversionof the22DDCTmethod to showchanges
in dPASusage,whereCT is the threshold cycle. First, theCTvalues for the common
anddistal ampliconswere normalized to the levels of 7SK,whereDCT(commonor
distal)5CTcommon or distal2CT7SK. ThenDDCT5DCTdistal2DCTcommon (note
that we applied the correction factor for difference in amplification efficiency cal-
culated in Extended Data Fig. 1). To show fold changes normalized to the control
siRNA-transfected samples the following equationwas used: normalizedDDDCT
5DDCTaverage target siRNA2DDCTaverage of control siRNA. Then the decrease (2) or
increase (1) in dPAS usage was calculated as62normalized DDDCT.
Oligonucleotides used for qRT–PCR. Cyclin D1 common forward, 59-CTGC
CAGGAGCAGATCGAAG; reverse, 59-AATGCTCCGGAGAGGAGGGACT;
distal forward, 59-ATCGAGAGGCCAAAGGCT; reverse, 59-CGTCTTTTTGTC
TTCTGCTGGA;DICER1 common forward, 59-CTCATTATGACTTGCTATGT
CGCCTTG; reverse, 59-CACAATCTCACATGGCTGAGAAG; distal forward 59-
TGCTTTCCGCAGTCCTAACTATG; reverse, 59-AATGCCACAGACAAAAAT
GACC; TIMP2 common forward, 59-CAACCCTATCAAGAGGATCCAGTAT;
reverse, 59-GATGTCGAGAAACTCCTGCTTG; distal forward, 59-GACATCA
GCTGTAATCATTCCTGTG; reverse, 59-CGATGCCAAATGGAGAGC; FHL1
common forward, 59-CTGGCACAAAGACTGCTTCACCTGT; reverse 59-GAT
TGTCCTTCATAGGCCACCACACTGG; distal forward, 59-GCCAGGGCTGT
CATCAACATGGATA; reverse 59-TGCATTTCAGGTAAGCGGTAGGTGGA;
tubulin common forward, 59-GAAGGCCTCATCCTCCACTTTGGAAAG; reverse,
59-TGCTAGCAGTGTCTCATGCTCG; distal forward, 59-GCATCAGTAGCTG
AGTGCACTCCTGGT; reverse, 59-GTAGAGGGTATGAAGGGCAAGAACTCT;
VMA21common forward, 59-GATAAGGCGGCGCTGAACGCACTGC; reverse,
59-TGAGCCTTCATTCCAGGCCACATACACA; distal forward, 59-CATCTGC
ACAGCACCTTACAGTTTGC; reverse, 59-GAAATGCAGCACATCCAAATC
CTCCC; GSK-3b common forward, 59-CTGGTCCGAGGAGAACCCAATGTT
TCG; reverse, 59-CAGCCAACACACAGCCAGCAGACCATAC; distal forward,
59-GAGCTGAGCCCATGGTTGTGTGTAAC; reverse, 59-GGTTCACTTCAG
CAGGCAGGACAACTC; SMOC1 common forward, 59-CTCTGATGGCAGGT
CCTACGAGTCCA; reverse, 59-GTATGGCACTGCACCTGGGTAAAGGAG;
distal forward, 59-GAGTCCTGCAATTGTACTGCGGACTCCA; reverse 59-CA
TGGGATCTGGACTCCCTTCCTCTC; ACER3 common forward, 59-CACGCT
GGACTGGTGCGAGGAGAACT; reverse, 59-GTGGAAGCACCAGGATCCCA
TTCCTACC;distal forward, 59-CTGTTCAAGCTAATACAGCATTTCCT; reverse,
59-GTGAATAAGCAGACTGAGATTACCTG; TMEM48 common forward, 59-
CATTCATCCTCAGCAACTCATGCACTC; reverse 59-CTGTTAGTACCAGT
GCAGGGAACCAC; distal forward, 59-GTGCTGTGTACTAAATACAGGCCA
CATAGTG; reverse 59-CCTGGTTCCAACAGATGGTGTGTAGA;MSRB3 com-
mon forward, 59-CTCTGGGAAGTGCGCAGTCCGGGT; reverse, 59-GTCCCTT
TCTCCTGAGTGACATGG;distal forward, 59-GCAGGATATGGAGTGCAATG
AACTGAG; reverse, 59-ACAGTAAGAGCTGGAGTGCAGAGA; 7SK forward,
59-GACATCTGTCACCCCATTGATC; reverse, 59-TCTGCAGTCTTGGAAGC
TTGAC.
Luciferase assays. One day after a second hit with siRNA (as described earlier),
HeLa cells were transfected with 0.25mg of gene-specific 39UTR Renilla luciferase
plasmids (SMOC1 andGAPDH from Switchgear Genomics) using Lipofectamine
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2000 (Invitrogen). Renilla luciferase activity was assayed 24 h after plasmid trans-
fection using Stop and Glo reagent (Promega).
Generationof stable cell lines.LN229 cellswere transfectedwithCFIm25-specific
shRNA or control shRNA using polybrene in 6-well plates. Two days after lenti-
viral transfection cells were transfectedwith a secondhit of lentivirus. Selectionwas
done using 1mgml21 of puromycin over 2 weeks. U251 cells were transfected with
eitherGFPorCFIm25expressingpcDNA3plasmidsusingLipofectamine2000 (Invi-
trogen) according to themanufacturer’s protocol. Selectionwasperformedover 1–2
weeks using 2.5mgml21 of G418.
Soft agar assay. Soft agar assays were used to determine anchorage-dependent
growth. For the base layer, 1% ofUltraPure lowmelting point agarose (Invitrogen)
was mixed 1:1 with 23 DMEM media and plated in 6-well plates giving a 1.5ml
bottom layer of 0.5% agar. Then 33 104 cells of LN229 shRNA stably transfected
cells were titrated into 23DMEMandmixedwith an equal volume of 0.6% agar to
give a 0.3% layer and 1.5mlwas dispensed into eachwell. The agarwas coveredwith
1ml of 13DMEM and incubated in a humidified incubator at 37 uC (5% CO2).
Fresh media was added once a week. After 2 weeks, colonies formed were stained
with0.01%crystal violet, photographed and counted. ForU251plasmid transfected
cells the same protocol was followed except that a third (0.3%) layer of agar was
plated on top of the layer containing the cell suspension.
Matrigel invasion assay. The Matrigel invasion assay was performed following
themanufacturer’s protocol. Briefly, the 6-wellBioCoatMatrigel InvasionChamber
(BectonDickinson) was rehydratedwith FBS freeDMEM.TheMatrigel trans-well
inserts were then transferred to 6-well plates containing 10% FBS on the bottom.
U251 siRNA-transfected or LN229 shRNA-transfected cells were plated (53 105

cells perwell) in triplicatewells of theupper chamber in serum-freemedia.After 24h,
cells were stained with 0.01% crystal violet, and the number of invading cells was
counted at320 magnification in 10 fields for each well.
Statistical tests. Unless otherwise specified, experiments were done using three
biological replicates anddata are shownas average6 s.d., and statistical analysiswas
done using a two-tailed student t-test.
Subcutaneousxenograft tumourmodel.Hsd:AthymicNude-Foxn1nunudemice
at age 5–6weekswere used. For each cell line (LN229 orU251), 20male nudemice

were randomly assigned into two groups (n5 10). Stably transfected LN229 and
U251 cells were resuspended in pure culture medium with the concentration of
33 107 cellsml21. One-hundred-microlitre cell suspensions (33 106 cells) were
inoculated subcutaneously into the lower right flank of the mice using a 27-gauge
needle.Tumourdiameters aremeasuredwithdigital callipers, and the tumourvolume
inmm3 is calculatedby the formula: volume5 (width)23 length/2.The tumour size
datawere collected andprocessedblindly. The animal experimentswereperformed
under the Institutional Review Board approved animal protocol AWC-13-115.

31. Ward, A. & Dutton, J. R. Regulation of the Wilms’ tumour suppressor (WT1) gene
by an antisense RNA: a link with genomic imprinting? J. Pathol. 185, 342–344
(1998).

32. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoformswitchingduringcell differentiation.Nature
Biotechnol. 28, 511–515 (2010).

33. Kaplan, P. J., Mohan, S., Cohen, P., Foster, B. A. & Greenberg, N. M. The insulin-
like growth factor axis and prostate cancer: lessons from the transgenic
adenocarcinoma of mouse prostate (TRAMP) model. Cancer Res. 59,
2203–2209 (1999).

34. Fabian,M. R., Sonenberg,N. & Filipowicz,W. Regulation ofmRNA translation and
stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

35. Braulke, T., Dittmer, F., Gotz, W. & von Figura, K. Alteration in pancreatic
immunoreactivity of insulin-like growth factor (IGF)-binding protein
(IGFBP)-6 and in intracellular degradation of IGFBP-3 in fibroblasts of
IGF-II receptor/IGF-II-deficient mice. Horm. Metab. Res. 31, 235–241
(1999).

36. Hu, J. F. et al. Lack of reciprocal genomic imprinting of sense and antisense RNA
of mouse insulin-like growth factor II receptor in the central nervous system.
Biochem. Biophys. Res. Commun. 257, 604–608 (1999).

37. Ellis, M. J. et al. Insulin-like growth factors in human breast cancer. Breast Cancer
Res. Treat. 52, 175–184 (1998).

38. Friedman, R. C., Farh, K. K.-H., Burge, C. B. & Bartel, D. P. Most mammalian
mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105
(2009).
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ExtendedData Figure 1 | Design andoptimizationof the qRT–PCRassay to
monitor APA of three test genes. a, Schematic denotes the relative location of
the common and distal primer annealing sites in each test gene and the
approximate locations of the annotated proximal and distal poly(A) sites,
depicted as pPAS and dPAS, respectively. The numbers demarcate where the
39UTR starts and ends according to ENSEMBL. b, Ethidium-stained agarose
gel of RT–PCR products of equal cycle number from the different amplicons
using HeLa cell mRNA. c, Both the common and distal cyclin D1 amplicons
were cloned into the same pcDNA3 plasmid in tandem. Three dilutions of
each plasmid were made and amplified individually with each amplicon in

triplicate. The two lines on the graph depict the amplification curve for the
common and distal amplicons. The expectation is that identical cycle threshold
(CT) values should be attained for each, given that the PCR reactions were
conducted using identical amounts of starting material. The average of three
individual experiments is shown for each dilution and the average CTdeviation
of either amplicon at all of the dilutions was calculated as a correction factor.
d, The experiment shown in c was repeated for DICER1 and TIMP2 to
determine their respective correction factors, which was then applied to
experiments shown in Fig. 1.
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Extended Data Figure 2 | Summary of RNA-seq alignment and
reproducibility of PDUI and CFIm25-depletion-induced 39UTR
shortening. a, RNA-seq read statistics of the four biologically independent
experimentswhereHeLa cells were treatedwith either control siRNA (Control)
or CFIm25 siRNA (CFIm25kD). Pie chart on the right represents genomic
distributionof reads thatweremapped to humangenomehg19. The percentage
was calculated by averaging all samples. CDS, coding region. b, Histogram of
gene expression of RefSeq genes with fragments per kilobase of transcript
sequence per million mapped paired-end reads (FPKM) no less than 1.

c, Scatterplot of the two biological replicates for each condition with high
Pearson correlation (r$ 0.9) demonstrating a high level of reproducibility
between sample PDUI scores. Each dot represents the PDUI
of a transcript. d, Genome browser screen images from four independent
RNA-seq experiments. Each represents an independent biological sample
where HeLa cells were transfected with either the control siRNA (Con.) or
an siRNA that knocked downCFIm25. Both VMA21 and SPCS3 were found to
undergo 39UTR shortening after CFIm25 knockdown whereas FHL1 was
found not to change.
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ExtendedData Figure 3 | Shortened transcripts havemore UGUACFIm25-
bindingmotifs than unaltered transcripts. a, CFIm25 is known to bind to the
UGUA motif. The number of UGUA motifs within the 39UTRs of genes with
39UTR shortening after CFIm25 knockdown relative to genes with unaltered
39UTRs was calculated and compared. Here we selected the genes without

39UTR change according to them having a DPDUI value# 0.05. b, iCLIP tags
from ref. 14 (Gene Expression Omnibus accession number GSE37398) were
superimposed onto data derived from PDUI analysis of CFIm25 knockdown
cells. The box plot demonstrates the enrichment of CFIm25 binding within
39UTRs that are altered after CFIm25 knockdown (P5 6.13 102107, t-test).
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Extended Data Figure 4 | Gene expression changes of genes with shortened
39UTRs. Pie chart was calculated from the list of 1,450 genes exhibiting
shortened 39UTRs due to CFIm25 knockdown (dn, down). Differentially

expressed gene analysis was performed using edgeR with FDR# 0.05 (see
Methods).
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Extended Data Figure 5 | The Pearson correlation between gene expression
fold change and the number of lost negative regulatory elements. Left, the
number of lost AREs (AU-rich elements) due to 39UTR shortening was
calculated using the ARE database and plotted against change in gene

expression levels after CFIm25 knockdown (KD). Right, similar to the left
except the number of lost patented miRNA target sites (Targetscan 6.2) was
plotted.
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Extended Data Figure 6 | Overlap between shortening events in
glioblastoma with low CFIm25 and shortening events in HeLa cells after
CFIm25 knockdown. Left, y-axis (red) represents the percentage of shortening

events in low CFIm25 glioblastoma that are also shortened in HeLa cells after
CFIm25 knockdown. Right, y-axis (blue) shows the number of shortening
events in low CFIm25 glioblastoma (GBM) against different DPDUI cut-offs.
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Extended Data Figure 7 | Overexpression of CFIm25 reduces invasion and
colony formation whereas CFIm25 depletion increases invasion and colony
formation. a, U251 cells were transfectedwith either GFPorCFIm25. Top left,
Cells were replated in soft agar and the number of colonies/clusters formed
were determined. Bottom left, Matrigel invasion assay for cells overexpressing
CFIm25 or GFP. b, Top right, LN229 cells were transfected with either control
or two different lentiviral plasmids targeting CFIm25 (KD1 and KD2). Stably

transfected cells were plated on soft agar and the resulting colonies were
counted for KD1 and KD2, respectively. Bottom right, LN229 cells were
transfected with either control or two different siRNAs (KD1 and KD2)
directed against CFIm25 andwere replated for aMatrigel invasion assay.All the
experimentswere done in biological triplicates and shown is themean6 s.d. All
P values were from the two-tailed student t-test of the control versus sample.
*P, 0.1, **P, 0.01, ***P, 0.001.
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Extended Data Figure 8 | Overexpression of CFIm25 in U251 tumours
reduces their size and weight. a, b, U251 subcutaneous (s.c.) xenograft
tumours were isolated from nude mice on day 84 after implantation and

measured for volume (a) and weight (b) (n5 10). U251-GFP indicates control
U251 cells expressing GFP andU251-CFIm25 indicates cells transduced with a
lentivirus that overexpresses CFIm25.
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Extended Data Figure 9 | Reduction in CFIm25 expression levels enhances
LN229 tumour size and weight. a, b, LN229 subcutaneous (s.c.) xenograft
tumours were isolated from nude mice on day 40 after implantation and

measured for volume (a) and weight (b) (n5 10). LN229-shCon. indicates
control lentiviral transduced cells and LN229-shCFIm25 indicates cells
transduced with a lentivirus that expresses shRNA targeting CFIm25.
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Alternative polyadenylation (APA) is a pervasive mechanism in the regulation of most human

genes, and its implication in diseases including cancer is only beginning to be appreciated.

Since conventional APA profiling has not been widely adopted, global cancer APA studies

are very limited. Here we develop a novel bioinformatics algorithm (DaPars) for the de novo

identification of dynamic APAs from standard RNA-seq. When applied to 358 TCGA Pan-

Cancer tumour/normal pairs across seven tumour types, DaPars reveals 1,346 genes with

recurrent and tumour-specific APAs. Most APA genes (91%) have shorter 30-untranslated

regions (30 UTRs) in tumours that can avoid microRNA-mediated repression, including

glutaminase (GLS), a key metabolic enzyme for tumour proliferation. Interestingly, selected

APA events add strong prognostic power beyond common clinical and molecular variables,

suggesting their potential as novel prognostic biomarkers. Finally, our results implicate

CstF64, an essential polyadenylation factor, as a master regulator of 30-UTR shortening across

multiple tumour types.
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T
he dynamic usage of messenger RNA (mRNA)
30-untranslated region (30 UTR), mediated through alter-
native polyadenylation (APA), plays an important role in

post-transcriptional regulation under diverse physiological and
pathological conditions1,2. Approximately 70% of human
genes3 are characterized by multiple polyA sites that produce
distinct transcript isoforms with variable 30-UTR length and
content, thereby significantly contributing to transcriptome
diversity4. The majority of APA examples utilize alternative
polyA sites located within the terminal exon proximally
downstream of the stop codon (tandem APA). As a result,
while the protein-coding sequence is unaltered, the regulatory
elements in the distal 30 UTR that might reduce mRNA stability
or impair translation efficiency can be removed, including
AU-rich elements5 and microRNA (miRNA)-binding sites6.
A small percentage of APA sites can be located within internal
introns/exons (splicing APA) and are coupled with alternative
splicing to produce mRNA isoforms encoding distinct proteins.
A well-documented example occurs during B-cell differentiation,
where IgM switches from a membrane-bound form to a secreted
form using a proximal polyA site instead of a distal one7.
More recent studies8 have shed light on the importance of
APA in human diseases such as cancer, but its clinical
significance to tumorigenesis is only beginning to be
appreciated. Both proliferating cells2,9 and transformed cells10

have been shown to favour expression of shortened 30 UTRs
through APA, leading to activation of several proto-oncogenes,
such as cyclin D1 (ref. 8). Collectively, these observations imply
that truncation of the 30 UTRs may serve as prognostic
biomarkers10,11. While compelling, these studies were highly
limited to either a limited number of genes or a small sample size.
It remains to be determined to what extent APA occurs in cancer
patients, what level of clinical utility APA may have and the
molecular mechanisms and functional consequences of APA
during tumorigenesis across multiple tumour types.

RNA-seq has become a routine protocol for gene expression
analysis; however, methods to quantify relative APA usage are
still under development. Previous global APA studies use
microarrays2,12, which are limited by the dependence on
annotated polyA databases as well as inherent technical
biases such as cross-hybridization. Recent APA protocols use
polyA junction sites enrichment followed by high-throughput
sequencing (PolyA-seq)13,14. These PolyA-seq protocols,
although powerful in providing the precise locations of polyA
sites, are hampered by technical issues, such as internal priming
artefacts, and thus have not been widely adopted by the cancer
community. In contrast, RNA-seq has been widely employed in
almost every large-scale genomics project, including The Cancer
Genome Atlas (TCGA). However, very few RNA-seq reads
contain polyA tails, challenging our ability to identify APA
events. For example, an ultra-deep sequencing study15 only
identified B40 thousand putative polyA reads (B0.003%) from
1.2 billion total RNA-seq reads. Moreover, although the popular
RNA-seq tool MISO16 can detect annotated alternative tandem 30

UTRs, it cannot identify any novel APA events beyond polyA
databases. Finally, the short 30 UTRs are often embedded within
the long ones, and thus the isoforms with short 30 UTRs are
commonly overlooked by transcript assembly tools, such as
Cufflinks17. Despite these inherent limitations, we hypothesize
that any major changes in APA usage between different
conditions will result in localized changes in RNA-seq density
near the 30-end of mRNA. And this localized RNA-density
change can be readily detected through single-nucleotide
resolution RNA-seq analysis. We therefore developed a novel
bioinformatics algorithm, Dynamic analyses of Alternative
PolyAdenylation from RNA-Seq (DaPars), to directly infer

dynamic APA events through the comparison of standard
RNA-seq data between different conditions.

TCGA has characterized a comprehensive list of genomic,
epigenomic and transcriptomic features in thousands of tumour
samples; however, it lacks a PolyA-seq platform for APA analysis.
To fill this knowledge gap, we used DaPars to retrospectively
analyse the existing RNA-seq data of tumours and matched
normal tissues derived from 358 patients across 7 tumour types.
We discover 1,346 genes with highly recurrent tumour-specific
dynamic APA events, demonstrate the additional prognostic
power of APA beyond common clinical and molecular variables
and expand our knowledge of the mechanisms and consequences
of APA regulation during tumorigenesis.

Results
DaPars identifies dynamic APA events. DaPars performs
de novo identification and quantification of dynamic APA events
between tumour and matched normal tissues, regardless of any
prior APA annotation. For a given transcript, DaPars first iden-
tifies the de novo distal polyA site based on a continuous RNA-
seq signal independent of the gene model (Fig. 1a; Supplementary
Fig. 1a,b). Assuming there is an alternative de novo proximal
polyA site, DaPars models the normalized single-nucleotide
resolution RNA-seq-read densities of both tumour and normal as
a linear combination of both proximal and distal polyA sites.
DaPars then uses a linear regression model to identify the loca-
tion of the de novo proximal polyA site as an optimal fitting point
(vertical arrow in Fig. 1a) that can best explain the localized read-
density change. Furthermore, this regression model is extended
towards internal exons, so that splicing-coupled APA events can
also be detected. Finally, the degree of difference in APA usage
between tumour and normal can be quantified as a change in
Percentage of Distal polyA site Usage Index (DPDUI), which is
capable of identifying lengthening (positive index) or shortening
(negative index) of 30 UTRs. The dynamic APA events with
statistically significant DPDUI between tumour and normal will
be reported. The DaPars algorithm is described in further detail
in the Methods. One example of an identified dynamic APA event
is given for the TMEM237 gene (Fig. 1b), where the shorter 30

UTR predominates in both breast (breast invasive carcinoma
(BRCA)) and lung (lung squamous cell carcinoma (LUSC))
tumours compared with matched normal tissues. Another
example is LRRFIP1 (Fig. 1c), where the distal 30 UTR is nearly
absent in both breast and lung tumours.

DaPars evaluation using simulated and experimental APA
data. To assess the performance of DaPars, we conducted a series
of proof-of-principle experiments. First, we used simulated RNA-
seq data with predefined APA events to evaluate DaPars as a
function of sequencing coverage. We simulated 1,000 genes in
tumour and normal at different levels of sequencing coverage
(reads per base gene model). For each gene, we simulated two
isoforms with long and short 30 UTRs (3,000 and 1,500 bp),
respectively. The relative proportion of these two isoforms is
randomly generated, so that the DPDUI between tumour and
normal for each gene is a random number ranging from � 1 to 1.
According to these gene models and expression levels, we used
Flux Simulator18 to generate 50-bp paired-end RNA-seq reads
with a 150-bp fragment length, taking into account typical
technical biases observed in RNA-seq. The simulated RNA-seq
reads were used as the input for DaPars analysis, while the short/
long isoforms and the DPDUI values were hidden variables to be
determined by DaPars. As a criterion for accuracy, the DaPars
dynamic APA prediction is considered to be correct if the
predicted de novo APA is within 50-bp distance of the bona fide
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polyA site, and the predicted DPDUI is within 0.05 from the pre-
determined DPDUI. The final prediction accuracy (percentage of
recovered APAs) is plotted as a function of the different coverage
levels (Fig. 1d). Using genes with a single isoform as negative
controls, we also reported receiver-operating characteristic curves
at different coverage levels with areas under receiver-operating
characteristic curves (AUCs) ranging from 0.762 to 0.985
(Supplementary Fig. 2). Our results indicate that dynamic APA
events can be readily identified across a very broad range of
coverage levels. Importantly, we determined that a sequencing
coverage of 30-fold can achieve 470% accuracy and close to 0.9
AUC in dynamic APA detection. Therefore, we filtered out genes
with o30-fold coverage for all further analysis.

As an additional proof-of-principle, we directly compared APA
events detected by DaPars with that of PolyA-seq. To achieve this,
we used the RNA-seq data19 and PolyA-seq data3 based on the
same Human Brain Reference and the Universal Human
Reference (UHR) MAQC samples20. For PolyA-seq, the
differentially altered 30-UTR usage was identified as described
in Methods. From the comparison between brain and UHR, we
found that B60% (P valueo2.2e� 16; Fisher’s exact test) of 372
DaPars predicted APA events could be strongly supported by
PolyA-seq (Fig. 1e,f). Both PolyA-seq and DaPars reported longer
30 UTRs in brain than in UHR in 494% dynamic APA events,
which is consistent with recent reports that brain tissues normally
have the longest 30 UTRs21,22. Close inspection of the raw data
indicates that the non-overlapping dynamic APA events can be
partially explained by the individual assay limitations. For
example, PolyA-seq is designed to amplify polyA tags;
therefore, some dynamic APA events reported by PolyA-seq
may have a small magnitude of changes that are not readily
detectable by RNA-seq (Supplementary Fig. 1c). Meanwhile,
probably due to additional steps such as fractionation, PolyA-seq
may also fail to detect dynamic APAs that are clearly observed by
RNA-seq (Supplementary Fig. 1d). Together, we conclude that
DaPars can reliably detect dynamic APA events between different
conditions using standard RNA-seq.

Broad and recurrent shortening of 30 UTRs across tumour
types. Since TCGA lacks a PolyA-seq platform for APA analysis,
we sought to fill this knowledge gap through DaPars retrospective
analysis of existing TCGA RNA-seq data, which were originally
sequenced for gene expression. We focused our analysis on seven
tumour types that have 410 tumour/normal pairs, including
bladder urothelial carcinoma (BLCA), head and neck squamous
cell carcinoma, LUSC, lung adenocarcinoma (LUAD), BRCA,
kidney renal clear cell carcinoma (KIRC) and uterine corpus
endometrioid carcinoma (UCEC) (Supplementary Table 1).
TCGA RNA-seq data are of high quality with a mean coverage of
around 50-fold, which corresponds to 80% accuracy for DaPars
APA analysis based on our simulation study (Fig. 1d). For each
tumour type, we identified 224–744 genes with statistically
significant and recurrent (occurrence rate 420%) dynamic APA
events during tumorigenesis, leading to a total of 1,346 non-
redundant events across 7 tumour types (Fig. 2a; Supplementary
Fig. 3a; Supplementary Data 1). As a negative control, we did not
observe any recurrent APA events between different batches of
normal tissues of the same tumour type, indicating that the 1,346
DaPars reported tumour-specific APA events are not likely due to
technical artefacts, such as sequencing bias or batch effect.
Overall, lung (LUSC and LUAD), uterine (UCEC), breast (BRCA)
and bladder (BLCA) cancers possess the highest amount dynamic
APA events than the other tumour types (Fig. 2a; Supplementary
Fig. 3a,b). Furthermore, 55% of the 1,346 dynamic APA events
occur in at least 2 tumour types (Supplementary Fig. 3c),

indicating potential concerted mechanisms in APA regulation
across tumour types. Strikingly, the majority (61–98%) of APA
events have shorter 30 UTRs in tumours (Fig. 2a; Supplementary
Fig. 3a), which is consistent with previous reports that trans-
formed cells preferentially express mRNAs with shortened 30

UTRs8.
Multiple lines of evidence indicate that DaPars reported

de novo APA events are indeed regulated through APA. First,
51% of DaPars predictions are within 50 bp of the annotated
APAs compiled from Refseq, ENSEMBL, UCSC gene models
and polyA database23. There is an approximately sixfold
enrichment of annotated APAs in our DaPars predictions
compared with random controls (Fig. 2b). Second, in the
upstream (� 50 nt) of our de nov APA sites, canonical polyA
signal AATAAA can be successfully identified by MEME motif
enrichment analysis24 (Fig. 2c). In addition, AATAAA and
ATTAAA are the most prevalent motifs among variants25 of
polyA signals (Supplementary Fig. 4)4. By comparing ±50 bp
flanking sequences of the distal and proximal polyA sites
of the 30-UTR shortening events, DREME26 discriminative
motif discovery algorithm reported that AATAAA motif is
significantly stronger in distal polyA sites (Supplementary Fig. 5),
suggesting the molecular basis for differential polyA site
selection27. Furthermore, the canonical polyA signal can also be
identified (Supplementary Figs 6 and 7) on those de novo APA
sites that do not coincide with previous annotation. As expected,
the de novo DaPars analysis enables us to detect novel APAs that
are not annotated in any database. For example, we found a
potential novel proximal APA site in AGPS that is significantly
upregulated in LUSC tumour (Fig. 2d). Together, we conclude
that DaPars reliably identified a comprehensive list of novel and
existing APA target genes across seven TCGA tumour types,
and the preferential shortening of 30 UTR is a major layer of
transcriptomic dynamics during tumorigenesis.

APA events remain far from complete. To explore to what
extent the discovered 1,346 APA events have reached saturation,
we performed ‘down-sampling’ saturation analysis. We repeated
DaPars analysis (occurrence rate 420%) on random subsets of
samples of various smaller sizes. Saturation is expected to occur
when increasing sample size fails to discover additional APA
events. The results indicate that the number of APA events
increases steadily with increasing sample size in total (Fig. 2e),
sample size per tumour type (Supplementary Fig. 3d) and the
number of tumour types studied (Fig. 2f). This suggests that APA
events derived from 358 samples across 7 tumour types remain
far from complete. DaPars analysis on a larger sample size or
more tumour types is likely to reveal many more novel APA
events. This prediction is consistent with a recent report
demonstrating that cancer genome sequencing normally requires
thousands of samples per tumour type to approach saturation28.
This observation also highlights the need for de novo discovery of
APA, since any prior annotation-based detection methods are
likely to miss a significant portion of novel APA events from
tumour samples.

Genes with shorter 30 UTRs are prone to be upregulated. The
current model predicts that 30-UTR shortening through APA
during tumorigenesis may upregulate its parental gene by
escaping miRNA repression. To test this hypothesis, we calculated
the numbers of miRNA-binding sites lost due to 30-UTR short-
ening in tumours (Fig. 3a). Using this approach, we determined
that B67% genes with shorter 30 UTRs in tumours have lost at
least 1 predicted miRNA-binding site (Fig. 3a). Furthermore,
when compared with all the genes of sufficient sequencing
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coverage, those genes with shorter 30 UTRs in tumours have
overall greater miRNA-binding site density in their gene models
(P value¼ 1.8e� 11, t-test; Fig. 3b). These data imply that APA
regulation tends to maximize the miRNA-binding loss through
preferentially shortening those 30 UTRs already heavily regulated
by miRNA. To examine the consequences of 30 UTR and miRNA-
binding loss, we compared the gene expression between tumours
and matched normal tissues. As expected, those genes with
shorter 30 UTRs in tumours tend to be more upregulated in
tumours (Fig. 3c). In conclusion, our data strongly support the
hypothesis that many genes are upregulated during tumorigenesis

by shortening their 30 UTRs to escape post-transcriptional
miRNA repression.

APA events add prognostic power beyond common covariates.
Very little is known of the clinical implications of the dynamic 30

UTRs in cancer patients. To address this issue, we used a standard
Cox proportional hazards model29 for the correlation between
patient overall survival and multiple clinical and molecular
covariates. Here we only used BRCA, LUSC and KIRC due to
high mortality rate and large sample size. We first used common
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clinical covariates including only tumour stage, age, gender
(excluding breast cancer) and smoking status (lung cancer only)
to generate low- and high-risk groups, which are visualized by
Kaplan–Meier plots and compared by the log-rank test (Fig. 4a).
We next used the same Cox regression model integrated with
LASSO to select the APA (DPDUI) events besides clinical
covariates that can best separate risk groups. With clinical
covariates always included, we used leave-one-out cross-
validation (CV) to select the optimal 1–3 APA events
(Supplementary Table 2) to constitute new APA-clinical Cox
regression models (Fig. 4d), which have much more significant P
values in the risk group comparison. To quantify the added
prognostic power of APA events, we used a likelihood-ratio test
(LRT) to compare the new APA-clinical models with the clinical
only models. The LRT results (Fig. 4e) clearly demonstrate a
strong additional prognostic power of APA events beyond clinical
covariates. Among these six APA covariates, significant worse
survival is associated with 30-UTR shortening of three genes
(SYNCRIP in BRCA; TMCO7 and PLXDC2 in KIRC) and 30-UTR
lengthening of two genes (ATP5S in BRCA; RAB23 in LUSC)
(Supplementary Table 2). This result strongly suggests that,
depending on the tumour types or genes studied, either
lengthening or shortening of 30 UTRs may be associated with
poor clinical outcome. Since our CV procedure only selects the
optimal APA events, it is highly likely that even more APA events

can be associated with patient survival. Furthermore, we
combined clinical covariates with tumour mRNA expression
(mRNA-clinical) and tumour-vs-normal gene expression fold-
change (mRNA-FC-clinical model) of the same APA genes
(Supplementary Table 2) as two additional Cox regression
models and repeated the same analyses. Compared with the
APA-clinical model, both mRNA-clinical and mRNA-FC-clinical
models provide much less additional prognostic power (Fig. 4e),
less-significant log-rank P values in risk group comparison
(Fig. 4b–d). Finally, we show that the separated high- and low-
risk groups by APA-clinical models have no correlation with the
TCGA Pancan12 significantly mutated gene (doi:10.7303/
syn1750331) (Fig. 4f). Together, APA events provide additional
power in survival prediction beyond clinical covariates, and
independent of commonly used molecular data such as gene
expression and somatic mutations.

Cancer metabolism gene GLS is regulated through APA.
Ingenuity IPA and literature searches were used to characterize
the pathways enriched in 1,346 dynamic APA events (Fig. 5a;
Supplementary Data 2). The vast majority of enriched pathways
are cancer related, such as ERK/MAP signalling and glutamine
metabolism. The metabolism gene glutaminase (GLS) is of par-
ticular interest. It is well known that tumours are considerably
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more dependent on the glycolytic pathway, regardless of oxygen
availability, to supply a great deal of their energetic and biosyn-
thetic demand for cell division. This phenomenon, termed the

Warburg effect, is a hallmark of cancer30. GLS is a key enzyme in
glutaminolysis and its high expression is essential to support the
cancer metabolic phenotype31. There are two major GLS isoforms
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termed distal Kidney-type (KGA) and proximal Glutaminase C
(GAC), which have distinct 30 UTRs and slightly different C
termini32–34 (Fig. 5b). KGA has a number of miRNA-binding
sites within its 30 UTR, whereas GAC surprisingly is not predicted
to have any (Fig. 5b). Furthermore, it has been shown that miR-23
represses KGA in most cells. However, in myc-transformed cells,
MYC overexpression de-represses GLS through down-
regulation of miR-23, resulting in glutamine-dependent growth
characteristics35. Interestingly, we found a strong alternative-
splicing-coupled 30-UTR shift from KGA in normal to GAC in
tumour, leading to a significantly increased percentage of GAC in
LUAD, LUSC and KIRC (Fig. 5b,c). This is consistent with
previous report that GAC is key to the mitochondrial glutaminase
metabolism of cancer cells31. The implication of the 30 UTR
switch to GAC is that the expression of GLS is no longer regulated
by miR-23 or MYC. Consistently, we did not observe any
significant expression changes of miR-23 between tumours and
normal tissues, although MYC is upregulated in LUSC and
KIRC tumours (Supplementary Fig. 8a), suggesting that GLS
potentially utilizes 30-UTR switch, rather than MYC to escape
miR-23-mediated repression.

To investigate the potential clinical utility of the APA-mediated
GLS isoform switch, we examined the correlation between GAC
percentage and clinical survival information for KIRC tumours,
using the Cox proportional hazards model with age and gender as
covariates. We found that higher GAC percentage is highly
correlated with worse survival (P¼ 3.2e� 13, hazard ratio¼ 50,
95% confidence interval: 17–141; Fig. 5d), which is consistent
with previous studies indicating that GAC is essential for cancer
cell growth36. Overall, patients with high GAC ratios in KIRC
have a median survival of B55 months, compared with 492
months for those with low GAC ratios. We did not find a
statistically significant correlation between GAC percentage
and survival outcome in LUSC and LUAD possibly because the
GAC percentages ((0.5, 0.97) and (0.59,0.98), respectively)
(Supplementary Fig. 8b) have very limited dynamic range in
these two tumour types, and thus may not have enough power to
stratify patients. In contrast, GAC percentage ranges from 0.05 to
0.96 in KIRC (Supplementary Fig. 8b), allowing patient
stratification based on a full range of GAC levels. Together,
the GLS APA regulation suggests a novel and potentially
MYC-independent and miRNA-independent mechanism of
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glutaminase regulation in tumours, and GLS APA can be used to
predict patient survival in KIRC.

Potential mechanisms for APA regulation during tumorigen-
esis. We sought to investigate the potential mechanisms gov-
erning APA dynamics in tumorigenesis. Although many details
remain poorly understood, APA is thought to be regulated in cis
through genetic aberrations37,38 of the underlying nascent mRNA
(derived from DNA), and in trans by regulatory proteins in
responding to dynamic environmental changes39. These cis-
elements include canonical polyA signal AAUAAA and other
auxiliary sequences such as U/GU-rich downstream elements40.
The core polyadenylation trans-factors involve four multi-subunit
protein complexes, CPSF (cleavage and polyadenylation
specificity factor), CstF (cleavage stimulation factor), CFI and
CFII (cleavage factors I and II). The chemical cleavage of pre-
mRNA process mainly employs CPSF to recognize the canonical
polyA signal upstream of the cleavage site, and utilizes CstF to

bind downstream U/GU-rich elements40 mainly through the
CstF64 subunit39.

To examine the role of genetic aberrations in the regulation of
APA, we compared our 1,346 recurrent APA events with 64
Pancan12 Significantly Mutated Genes (doi:10.7303/syn1750331).
Surprisingly, there are only five genes in common (Fig. 6a; P value
0.48 by Fisher’s exact test). This result indicates that most of the
dynamic APA events are probably not due to aberrations of
underlying cis-elements but may be the result of aberrant
expression of polyA trans-factors. To address this possibility,
we investigated the gene expression of 22 important polyA trans-
factors41 based on the TCGA RNA-seq data. The significantly up-
and downregulated factors between tumours and matched
normal tissues are indicated by yellow and blue, respectively
(Fig. 6b). In general, we observed global upregulation of most
polyA factors in five tumour types (LUSC, LUAD, UCEC, BLCA
and BRCA), which also have more 30-UTR-shortening events.
Therefore, we conclude that most core polyadenylation factors are
expressed at higher levels in tumour types where proximal APAs
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are favoured. Our results are consistent with previous studies
showing that 30-UTR shortening in proliferating cells is also
accompanied by an increased expression of polyadenylation
factors9,12,27.

We further investigated the correlation between gene expres-
sion and 30-UTR shortening for four polyadenylation factors
(CPSF1, CPSF3, CstF64 and PABPC1), which are differentially
expressed between tumour and normal in at least three cancer
types (Fig. 6b). Among them, CstF64 has the greatest correlation
between gene expression fold-change and the number of short-
ening events per patient in tumours (Spearman’s correlation 0.54
with P value 2.8e� 28, Fig. 6c), followed by CPSF3. In contrast,
CPSF1 and PABPC1 have weak correlations (Supplementary
Fig. 9). This result is consistent with a recent iClip-seq study,
suggesting that CstF64 is one of the top three most important
factors for polyA site selection42. Also, a recent study indicated
that CPSF plays an important role in recruiting CstF64 to
RNAs43. Furthermore, a recent global study in HeLa cells suggests
that CstF64 induces the usage of proximal APAs43. They reported
171 genes with lengthening in 30 UTRs upon knockdown of
CstF64, among which 46 genes from our analysis have shortened
30 UTRs in tumours where CstF64 is upregulated (Fig. 6d;
P value¼ 3.9e� 19 using Fisher’s exact test; Supplementary
Fig. 10). This significant overlap indicates that a subset of
30-UTR-shortening events we observed in tumours can indeed be
explained by the expression level of CstF64. Finally, using CstF64
iCLIP-seq in HeLa cells43, we showed that those 1,346 genes have
more CstF64 bindings in their 30 UTRs than other genes (Fig. 6e).
Together, our study provides strong evidence that key polyA
trans-factors, such as CstF64, are upregulated in tumorigenesis,
leading to preferential 30-UTR shortening in tumours.

Discussion
We have developed a novel bioinformatics algorithm, termed
DaPars, dedicated to the de novo identification and quantification
of dynamic APA events using standard RNA-seq. The accuracy of
DaPars is evidenced by the fact that our de novo predicted APAs
are enriched for the canonical polyA signal AATAAA and have a
high degree of overlap with annotated polyA sites (Fig. 2b,c). Our
extensive DaPars analysis of TCGA data sets convincingly
demonstrate that any investigator(s) conducting standard RNA-
Seq is now capable of identifying the majority of functionally
important APA events in most biological systems. DaPars is not
just yet another APA assay; instead, its key methodology
innovation is the inference of de novo APA events from existing
RNA-seq data without relying on any additional wet-bench
experiments. For example, our current APA analysis was based
on RNA-seq of 358 tumour/normal pairs across 7 cancer types.
An analysis of this scale would be prohibitively cumbersome
using any previous method, such as microarrays, EST and PolyA-
seq, but was made possible now with our DaPars method.

While our paper was under review, Wang et al.44 reported a
change-point model to detect 30-UTR switching using RNA-seq.
The model by Wang et al. relies on the annotated distal polyA
sites to infer the proximal ones, only supports genes with two
polyA sites and only supports pair-wise comparison. In contrast,
our DaPars method is fully de novo, can handle multiple (42)
polyA sites and multiple (42) samples and thus is much more
powerful and flexible than the model by Wang et al.. Most of our
analyses based on hundreds of TCGA patient samples would not
be possible using the model by Wang et al.

It has been reported that shorter 30 UTRs are preferentially
used by several oncogenes in cancer cell lines8, but what was not
clear from this work is how pervasive and recurrent APA is in
clinical samples. Lin et al.45 reported 126 30-UTR-shortening

genes in 5 tumour/normal pairs but unfortunately did not provide
a supplementary table for those genes. To directly compare our
results with Lin et al.45, we repeated the same analysis as described
in their paper and detected a total of 120 genes with 30-UTR
shortening and upregulation of the short isoform. Among them,
53% were also found in our 1,201 shortening APA genes
(Supplementary Fig. 11; P value 2e� 43 by Fisher’s exact test),
including POLR2K, the main APA gene reported by Lin et al. Two
examples of consistence and inconsistence between TCGA RNA-
seq and PolyA-seq from Lin et al.45 are shown in Supplementary
Figs 12 and 13, respectively. In this study, we have substantially
increased the number of dynamic APA events based on 358
tumour/normal pairs. To our knowledge, this is the largest global
APA analysis to date, leading to a 71-fold increase in sample size
compared with Lin et al.45

Several novel and significant biological and clinical insights are
noticeable from our large-scale APA analysis. First, dynamic APA
events are highly tumour type and patient specific. We observe
that lung, uterus, breast and bladder cancers have significantly
more APAs than head/neck and kidney cancers. Moreover,
similar to other caner genomic data, there is considerable APA
heterogeneity among patients within the same tumour type.
Second, our saturation analysis indicates that APA events derived
from 358 samples across 7 tumour types remain far from
complete, highlighting the need for de novo discovery of APA,
and the need for expanding DaPars analysis to more tumour
types and samples when they become available. Third, selected
APA events provide a surprisingly strong additional prognostic
power beyond common clinical covariates and conventional
molecular data, such as somatic mutation and gene expression.
A recent study46 also indicated that conventional molecular data
had poor prognostic power beyond clinical data. Although the
exact cause is unknown, we speculate that it may reflect a role for
APA as a driver of tumour progression. Fourth, our study reveals
a novel link between altered 30-UTR usage and cancer
metabolism. We observed that the GAC isoform of the
glutaminase gene (GLS), which lacks any predicted miRNA
binding, is predominantly expressed in LUSC, LUAD and KIRC
tumours. Therefore, this APA event would abrogate the need to
attenuate miR-23 expression through MYC upregulation and
result in increased Glutaminase expression and altered glutamine
metabolism. Fifth, our observation of correlating CstF64 levels
with increased 30-UTR shortening suggests that this factor is a
potential master activator of proximal APA usage in tumor-
igenesis. This hypothesis predicts that tumour cells increase
CstF64 levels to promote the 30-end processing at the proximal
and weaker polyA sites thereby preventing the usage of the distal
polyA sites39,43. Finally, APA is likely to be regulated by many
factors in a tissue-specific manner. For example, we recently
reported CFIm25 (ref. 47) as a global repressor of proximal APA
in brain tumour. CFIm25 has opposite function of CstF64, since
its decreased expression correlates with increased 30-UTR
shortening. However, CFIm25 is not a master APA regulator in
the cancer types we studied here, because it is not differentially
expressed between tumour and normal (NUDT21 in Fig. 6b).

Our DaPars analysis of RNA-seq reveals a comprehensive list
of previously unobserved, highly recurrent and functionally
important 30-UTR somatic ‘RNA aberrations’. These RNA
aberrations represent an illustrative case of genomic ‘dark matter’
beyond coding regions, and thus may also provide new directions
for tumour gene discovery48. Although there is a lack in observed
genetic aberrations within 30 UTRs of most genes undergoing
APA, caution should be taken as current TCGA mutation
analyses utilize primarily exome sequencing, which excludes 30

UTR. We will revisit this issue in the future when more whole-
genome sequencing data are available. Finally, although focused
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on cancer genomics in this study, our novel DaPars framework
will open the door for APA analysis in numerous biological and
pathologic systems. It also underscores the power of innovative
bioinformatics analyses that can derive novel biological insights
from existing sequence data.

Methods
Data sets. All the RNA-seq BAM files were downloaded from the UCSC Cancer
Genomics Hub (CGHub, https://cghub.ucsc.edu/). Here we only processed BRCA,
BLCA, LUSC, LUAD, head and neck squamous cell carcinoma, UCEC and KIRC
cancers that have 410 tumour–normal pairs (Supplementary Table 1). Gene
expression and miRNA expression were downloaded from The Cancer Genome
Atlas data portal (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm).
MAQC brain and UHR RNA-seq reads were obtained from Sequence Read
Archive with accessions ERP000016 and ERP000400, respectively. For MAQC
PolyA-seq, the filtered polyA sites with normalized read counts were downloaded
from the UCSC browser3.

DaPars algorithm. DaPars performs de novo identification and quantification of
dynamic APA events between two conditions, regardless of any prior APA
annotation. DaPars identifies a distal polyA site based on RNA-seq data, uses a
regression model to infer the exact location of the proximal APA site after cor-
recting the potential RNA-seq non-uniformity bias along gene body, detects sta-
tistically significant dynamic APAs and has the potential to detect 42 dynamic
APA events.

Distal polyA site identification from RNA-seq. Given two or more RNA-seq
samples, distal polyA site refers to the end point of the longest 30 UTR among all
the samples, which will be used in the next step to identify the proximal polyA
within this longest 30-UTR region. To identify possible distal polyA site that may
locate outside of gene annotation, we extend the annotated gene 30 end by up
to10 kb before reaching a neighbouring gene. RNA-seq data from all input samples
will be merged to have a combined coverage along the extended gene model. To
address possible uneven and discontinuous issues, we applied a 50-bp window to
smooth this combined coverage. We then scan the extended 30 UTR from 50 to 30 to
find the distal polyA site whose coverage is significantly lower (that is,opredefined
cutoff at 5%) than the coverage at the start of the preceding exon. A similar strategy
has been successfully used to detect lengthening of 30 UTRs in the mammalian
brain21. The de novo distal APA estimated directly from RNA-seq, which may not
be included in gene model, will benefit the downstream proximal APA
identification (Supplementary Fig. 1a).

Since most current RNA-seq data sets are not strand-specific, potential
overlapping of 30 UTRs from two neighbouring ‘tail-to-tail’ genes from different
strands may give false-positive distal polyA. So after previous distal APA analysis, if
30 UTRs of two neighbouring genes overlap, we will gradually increase the cutoffs
until the two 30 UTRs are separated. In this way, we can recover the proper distal
polyA, which may be overlooked by other methods such as Cufflinks
(Supplementary Fig. 1b). The distal polyA site identification method implemented
in DaPars has very good performance. For all the predicted distal polyA sites from
TCGA RNA-seq, on average 81% are within 50 bp of the annotated polyA sites.

Regression model in DaPars. For each RefSeq transcript with a distal APA
estimated from previous step, we use a regression model to infer the exact location
of a de novo proximal polyA site at single-nucleotide resolution, by minimizing the
deviation between the observed read density and the expected read density based
on the two-polyA-site model, in both tumour and matched normal samples
simultaneously. This regression model solves the following optimization problem:

ðw1�
L ;w2�

L ;w1�
S ;w2�

S ; P�Þ ¼ argmin
w1
L ;w

2
L ;w

1
S ;w

2
S�0;1oPoL

X2
i¼1

jj Ci �ðwi
LIL þwi

SIPÞ jj 22 ð1Þ

where wi
L and wi

S are the abundances of transcripts with distal and proximal polyA
sites for sample i, respectively, Ci¼ [Ci1, � � � ,Cij, � � � ,CiL]T is the read coverage of
sample i at single-nucleotide resolution normalized by total sequencing depth, L is
the length of the longest 30 UTR from previous step, P is the length of alternative
proximal 30 UTR to be estimated, IL and IP are indicator functions such that
IL ¼ ½1; � � � ; 1|fflfflfflffl{zfflfflfflffl}

L
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For each given 1oPoL, the expression levels of two transcripts with distal and
proximal polyA sites in both tumour and normal tissues can be estimated by
optimizing this linear regression model using quadratic programming49. The
optimal de novo proximal polyA site P* is the one with the minimal objective
function value, as demonstrated by the vertical arrow in Fig. 1a. To quantify the
relative polyA site usage, we define the PDUI for sample i as the following:

PDUI ¼ wi�
L

wi�
L þwi�

S
ð2Þ

where wi�
L and wi�

S are the estimated expression levels of transcripts with distal and
proximal polyA sites for sample i. The greater the PDUI is, the more distal polyA
site of a transcript is used and vice versa. Finally, the regression model is extended

towards the internal exons, so that splicing-coupled APA events can also be
detected.

Non-uniformity correction. It has been reported that RNA-seq reads are not
uniformly distributed along the gene body. DaPars provides an option to address
the issue of non-uniformity by statistical modelling50. Since it is technically difficult
to distinguish non-uniform distribution from dynamic APA, we decide to train our
statistical model based on a subset of genes with no APA change, that is, with only
one 30 UTR. We first run DaPars to select those genes with no APA change and
divide their RNA-seq gene body coverage into 100 bins, yielding an observed gene
body-sequencing profile (Supplementary Fig. 1e). In the conventional DaPars, the
elements of IL and IP in equation (1) are unweighted and all 1s on 30-UTR regions.
We will infer the weighted IL and IP based on the observed gene body-sequencing
profile, then re-run DaPars with the weighted IL and IP to correct the non-
uniformity in RNA-seq (Supplementary Fig. 1e).

Differential percentage of distal APA usage index. We used the following three
criteria to detect the most significant APA events:

first, given long 30-UTR expression level wi
L and short 30-UTR expression level

wi
S estimated from (equation (1)), we used Fisher’s exact test to determine the P

value of PDUI difference between tumour and matched normal tissue of the same
patient, which is further adjusted by the Benjamini–Hochberg procedure to control
the false-discovery rate (FDR) at 5%. Second, the absolute mean difference of
PDUIs of all the patients in the same tumour type must be no less than 0.2. Third,
the mean fold-change of PDUIs of all the patients in the same tumour type must be
no less than 1.5.

FDR � 0:05
DPDUIj j ¼ PDUItumor � PDUInormalj j � 0:2

log2
PDUItumor
PDUInormal

� ����
��� � 0:59

8><
>: : ð3Þ

To avoid false-positive estimation on lowly expressed genes, we only included
genes with 430-fold mean coverage (reads per base gene model).

More than 2 dynamic APAs. Our DaPars framework can be easily extended to
address 42 dynamic APAs. We formulated the multiple APA analysis in the
following matrix format,
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where m is the length of the longest 30 UTR of a transcript. wij is the expression
level of one possible 30 UTR j on sample i. The number of non-zero wij determines
how many polyA sites will be derived from RNA-seq. In most cases, there are only
a few wij will be non-zero. So we can solve this equation using a positive Lasso
optimization method as reformulated in the following form:

argmin
W

1
2

C�MWk k22 þ l Wk k1 ð5Þ

where C, M and W are corresponding to the left, middle and right matrix in
equation (4), respectively. In practice, we only consider no more than 4 APAs
in a real data set to reduce the complexity of model selection and avoid over-fitting
issues. In Supplementary Fig. 1f, we showed that our DaPars can also identify
42 APAs from RNA-seq and the predictions are highly consistent with the
annotation. Although many genes have 42 annotated APAs, the majority
of dynamic APAs only involve 2 polyA sites1. Therefore in the current large-
scale TCGA RNA-seq analysis, we only focus on 2 APAs in the dynamic APA
detection.

PolyA-seq processing. We downloaded the processed polyA sites with normal-
ized read counts of MAQC brain and UHR PolyA-seq data sets (two replicates for
each tissue) from the UCSC Genome Browser3. We calculated the signal intensity
of a given polyA site based on all the same-strand PolyA-seq reads within 50 bases
of the polyA site. We then used Fisher’s exact test to detect the statistically
significant differential APAs between brain and UHR with a Benjamini–Hochberg-
adjusted FDR cutoff of 0.1 and read count difference of 410%. For a fair
comparison, we also used FDR of 0.1 and 10% DPDUI for DaPars analysis of
MAQC RNA-seq data derived from the same brain and UHR samples.

Survival analysis using Cox proportional hazards model. A standard Cox
proportional hazards model29 implemented in the R package ‘survival’ was used for
patient survival and Kaplan–Meier plotting. Hazard ratios exceeding 1 indicate
poor prognosis for patients possessing shorter 30 UTR, whereas those below 1 are
associated with better outcome. The high-risk group and low-risk group were
generated based on the prognostic index (PI). The PI is the linear component of the
Cox model, PI ¼

Pm
i¼1 bixi where xi is the value of covariate i and its risk

coefficient, bi was estimated from the Cox fitting. The high-risk and low-risk
groups were generated for survival plot by splitting the ordered PI (higher values
for higher risk) with equal number of samples in each group.
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Survival analysis using Cox model and LASSO feature selection. We combined
tumour-vs-normal shortening/lengthening events of APA genes (DPDUI values)
with clinical covariates, such as age, gender, stage and smoking status (lung cancer),
in survival analysis. We used a Cox regression model with LASSO feature selection
to determine the contributions of APAs in survival prediction using the R package
‘glmnet’51. We chose the optimal APA genes based on the leave-one-out CV. Here
the clinical covariates are not penalized and always selected. Finally, we used a LRT
to estimate the additional prediction power of the new APA-clinical models over
the clinical-only models.

Software availability. The open source DaPars program is freely available at
https://code.google.com/p/dapars/. We will update this website periodically with
new versions.
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