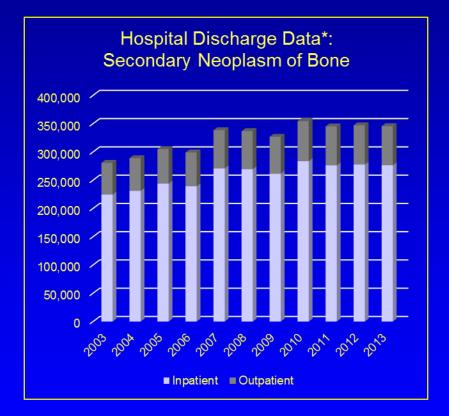
Bone-Rad III III Therapeutics, Inc.

a revolutionary treatment paradigm for cancer tumors in bone

Harry Skinner, MD, PhD: President/CEO, <u>hskinner@hskinner.net</u>, (949) 939-5132 Joyce Keyak, PhD: Principal Investigator, <u>jhkeyak@uci.edu</u>, (714) 423-5871

Overview


- Bone-Rad Background
- Market
- Technology
- Product and Manufacturing
- R&D / Testing
- Intellectual property
- Regulatory
- Commercialization
- Budget & Financials
- Long-Term Goals

Bone-Rad Therapeutics Co-Founders

- Joyce Keyak, PhD Inventor, Principal Investigator
 - Biomedical/mechanical engineer
- Harry Skinner, MD, PhD Inventor
 - Orthopaedic surgeon, materials scientist
- Varun Sehgal, PhD Co-Principal Investigator
 - Licensed medical physicist at UCI, brachytherapy expert
- Tadashi Kaneko, PhD Dosimetry, Business Plan Competition
 - Biomedical engineer, now at Varian

Vertebral Metastases

- > 400,000 patients / yr. with skeletal metastases
- 230,000 patients / yr. develop symptomatic vertebral tumors
- 75% are candidates for Bone-Rad's treatment
- Multiple vertebrae are often involved, further increasing the potential opportunity by approximately 30%

Incidence of Metastatic Bone Disease Increasing at 2.1% Per Year

*Agency for Healthcare Research and Quality, HCUP Database

Brachytherapy Bone Cement

Spine-Rad[™] Cement – Bone-Rad's first product

- <u>New first line treatment</u> for tumors in the vertebral body
- Does not contribute to lifetime radiation dose limits of the spinal cord (P-32 beta emitter)

Leaves all options open for future treatment

Immediate pain relief in 85% of patients

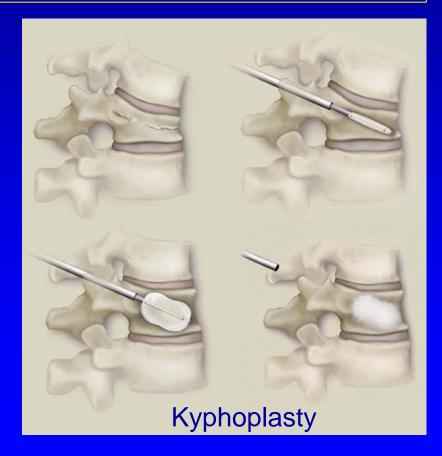
Spine-RadTM Brachytherapy Bone Cement

Conventional Treatment versus Spine-Rad[™] Treatment

Current Management of Vertebral Tumors

- External beam radiation therapy (EBRT)
 - EBRT is delayed to avoid radiation to spinal cord
 - Cannot repeat EBRT if tumor recurs
 - Pain medication, bracing, reduced QOL
- Tumor grows
 - Increased risk of neurologic complications

- EBRT 10-20 sessions over 2-4 weeks
 - Nausea, vomiting, diarrhea, skin burns
- Bone resorption, risk of vertebral collapse


Current Management of Vertebral Tumors

- External beam radiation therapy (EBRT)
 - EBRT is delayed to avoid radiation to spinal cord
 - Cannot repeat EBRT if tumor recurs
 - Pain medication, reduced QOL
- Tumor grows
 - Increased risk of neurologic complications
- Vertebral augmentation prior to EBRT Typically used to stabilize osteoporortic vertebral body fractures
- EBRT 10-20 sessions over 2-4 weeks
 - Nausea, vomiting, diarrhea, skin burns

Conventional Treatment of Vertebral Tumors

Step 1- Vertebral (Osteoporotic) Fracture Treatment

- Kyphoplasty
 - Minimally invasive procedure
 - Creation of void inside vertebral body
 - Injection of bone cement into void to stabilize fracture
 - Immediate pain relief in 85% of patients

Conventional Treatment of Vertebral Tumors

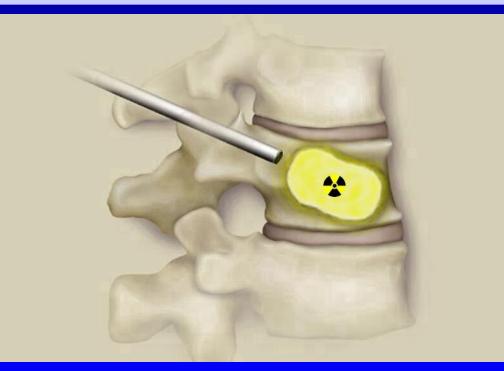
Step 2- Tumor Radiation Therapy

Conventional

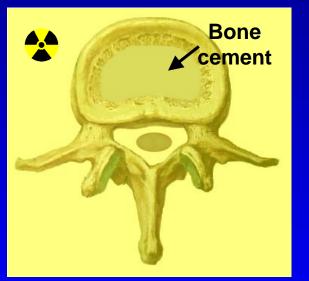
External Beam Radiation Therapy (EBRT)

10-20 Treatment Sessions; Significant Side Effects

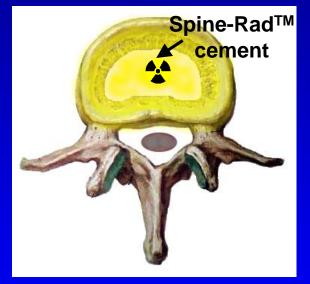
<u>Alternative</u>


Stereotactic Body Radiation Therapy (SBRT)

Up to 5 Treatment Sessions; Moderate Side Effects


Treatment with Spine-RadTM Cement

Spine-Rad[™] Cement is Delivered Via a Standard Kyphoplasty Procedure. Commonly Performed by Thousands of Physicians Nationwide.



Spine-Rad[™] incorporates a radionuclide into standard bone cement, allowing Spine-Rad[™] Cement to irradiate the tumor internally while simultaneously preventing or repairing the fracture.

Precise Radiation Delivery Minimizes Collateral Damage

Bone cement

EBRT: 10-20 sessions, exposure of spinal cord, nerve roots, bowel, skin, nausea, vomiting, diarrhea, skin rash

SBRT: Up to 5 sessions, better targeting, moderate side effects, higher cost, limited availability Spine-Rad[™]: Single procedure, precise targeting, no radiation side effects, lower cost, better QOL

Spine-RadTM Treatment Advantages

- Allows <u>early</u> treatment for painful vertebral metastases because it does not irradiate the spinal cord
- Spine-Rad[™] Cement combines pain relief, fracture prevention/treatment and radiation therapy into a single procedure
- None of the side effects of external radiotherapy
- One hospital visit rather than multiple visits for external radiation therapy
- Dramatic improvement in patient care and quality of life
- Subsequent external radiotherapy is still an option

Spine-RadTM Brachytherapy Bone Cement

Product & Manufacturing

Spine-RadTM Cement Components

All FDA-approved components

- Bone cement (acrylic powder and liquid packaged separately, then mixed)
- Hydroxyapatite (HA) medical grade
 - Placed in nuclear reactor
 - Phosphorus becomes radioactive
 - P-32-HA

Radioisotope Supplier

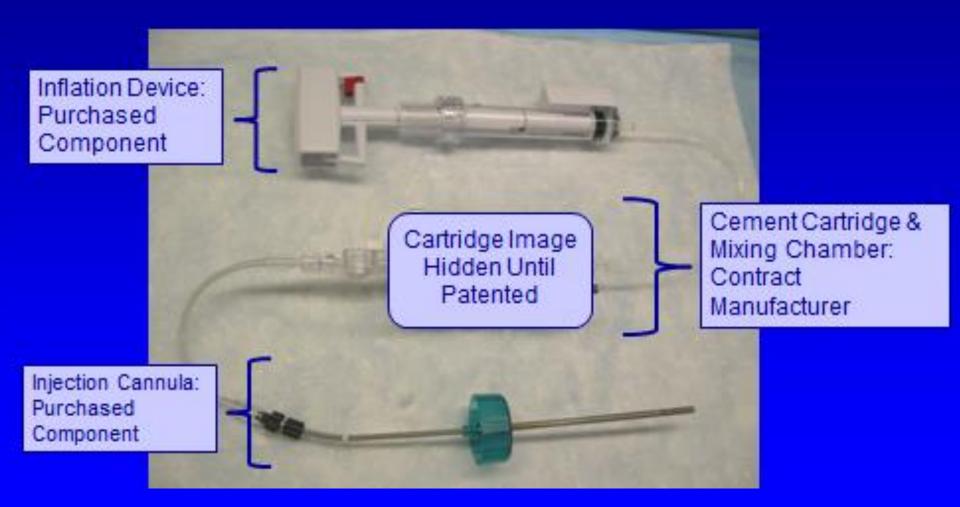
- Missouri University Research Reactor
- Three FDA approved agents:
 - Ceretec: Brain Imaging
 - TheraSphere: Liver Cancer
 - Quadramet: Bone Metastases

Continuous operation since 1977

www.murr.missouri.edu

Possible Spine-RadTM Configurations

Option A


- Provide P-32-HA pre-mixed with cement powder
- Add cement liquid
- Mix
- Inject into vertebral body

Option B

 Provide P-32-HA separately

- Add cement powder and liquid
- Mix
- Inject into vertebral body

Spine-RadTM Mixing & Delivery System Option A

Option B

- Available now for use in animal studies
- Use commercially available cement and cement mixer
- Special safety precautions and tools

Completed Feasibility Studies

- Developed and validated radiation transport model to predict dose distribution from Spine-Rad[™] Cement
 - Extensive sensitivity studies
 - Unique dosimetry/properties \rightarrow IP
 - Dose is independent of activity or volume of cement
- Leaching of P-32 from Spine-Rad[™] Cement ex vivo is trivial
- Compressive strength of the bone cement is not affected by P-32
- Verified cement uniformity (uniform dose) from Spine-Rad[™] Mixing & Delivery System

Near Future: First In Vivo Tests

- Sheep Address key questions
- Bone histology
 - Experienced veterinary orthopaedics researcher, undecalcified histology
- Determine if P-32 leaches into the bloodstream.
- Determine if sheep waste (bedding) is radioactive.
- Measure dose to personnel

UC Irvine Support and Facilities

UCI Radiological Sciences

- DOD funded feasibility study
- Department support for pilot sheep study
- Animal facility at UCI
- Radiation use authorization
- Clean room facility
 - minimal cost for dedicated clean room with QA monitoring

Bone-Rad Intellectual Property

Bone-Rad – Exclusive license from the University of California

Bone Cement Patents (broad; related to dose): Patent No. 9,198,989 (2015) – on method of production/formulation Patent No. 9,597,427 (2017) – on method of treatment Patent No. 10,272,173 (2019) – on the material Patent Pending – on the material

Bone Cutting Device Patent:

Patent No. 9,028,499 (2015)

- Bone-Rad submitted a pre-IDE document and met with FDA panel.
- The FDA has determined
- Spine-Rad is a device (not a combination product).
- Brachytherapy bone cement is a new type of device.
- Spine-Rad[™] Cement should follow the PMA process.
- Spine-Rad[™] is therefore a Class III device.
- CDRH Division of Orthopedic Devices will have premarket review and regulatory oversight.

Disclaimer – this predates regulatory changes in EU:

- Spine-Rad Cement is Class II B.
- Bone Cements and Brachytherapy Devices are both Class II B.
- Due to unique nature of Spine-Rad[™] a small 20 patient safety trial is required as part of CE Mark submission.
- U.S. pilot study data will be acceptable.

Spine-RadTM Brachytherapy Bone Cement

Commercialization, Project Timeline, Budget & Financials

Please Keep in Mind:

Data and projections from 2018

- Previous CEO's goal:
 - Bone-Rad to bring Spine-Rad[™] Cement to market
- Based on Bone-Rad outsourcing
- Assumes start in EU with CE Mark

Current goal:

Partner with someone to bring this to market

Spine-RadTM Procedure Coding: Current Brachytherapy and Kyphoplasty Codes Apply

CPT Code	Descriptor	Hospital Outpatient Rate**	Physician Rate (PC)**					
Planning and Simulation								
77263	Therapeutic radiology treatment planning; complex	-	\$158.89*					
77295	Therapeutic radiology simulation-aided field setting; 3- dimensional (Simulation not required for Spine-Rad)	\$984.49	\$226.25					
72131	Computed tomography, lumbar spine; without contrast material	\$173.58	\$47.97					
77236	Brachytherapy isodose plan; simple	\$109.73	\$45.93					
77336	Continuing medical physics consultation	\$109.73	\$43.89*					
Treatment Management								
77761	Intracavitary radiation source application; simple	\$410.83	\$189.85					
77790	Supervision, handling, loading of radiation source	-	\$51.37					
Q3001 C2699	Radioelements for brachytherapy any type, each. Brachytherapy source, non stranded, per source	\$8000*	-					
Procedure								
22524	Kyphoplasty; 1 vertebral body; lumbar	\$5,862.48	\$537.90					
77799	Unlisted procedure, clinical brachytherapy	\$410.83	Carrier priced					

*Carrier price based on Charge to Cost Ratio. **Medicare National Average Payment

External Beam Radiation Therapy Hospital Outpatient Treatment Reimbursement

				Private Payer Reimbursement	
Treatment	Estimated Facility Charges	Medicare Facility Payment	Medicare Physician Payment**	150% Medicare (Facility & Phys.)	70% of Billed Charges (Facility)
EBRT	\$18,546	\$4,428	\$1,846	\$9,411	\$12,982
IMRT	\$39,424	\$9,557	\$3,708	\$19,898	\$27,597
SBRT*	\$54,807	\$15,659	\$3,708	\$29,051	\$38,365

Facility charges estimated at 4x costs.

With the exception of SBRT, actual payment rates derived from Medicare Addendum B, 2013.

- * Estimated payment used for SBRT, as it is carrier priced.
- ** Professional Component and Technical Component (PC & TC)

Estimated Hospital Outpatient Cost of Care: Vertebral Fracture Due to Cancer

	Kypho w/	Kyphoplasty Followed By:			
	Spine-Rad	EBRT	IMRT	SBRT	
Kypho Procedure / Facility	\$3,200*	\$3,200*	\$3,200*	\$3,200*	
Kypho Devices	\$1300*	\$4,500*	\$4,500*	\$4,500*	
Cement	Included	\$400*	\$400*	\$400*	
Spine-Rad Device	\$10,200 ⁺⁺	N/A	N/A	N/A	
Radiation Therapy ^{10,11,13}	Included	\$9,865**	\$16,913††	\$24,629††	
Radiation Treatment Plan	\$1223 [†]	Included in Radiation Therapy Costs			
Total	\$15,923	\$17,965	\$25,013	\$32,792	

* Based on \$8100 total hospital costs for Kyphoplasty, Mehio AK et al., AJNR May, 2011

** Based on costs of Radiation Episode of Care references 10 & 11

Private Payer estimates based on 150% of Medicare Payments

[†] Planning & simulation reimbursement (prev. slide) adjusted to account for 55% Private Payers

^{††} Facility and physician reimbursement (prev. slide) adjusted to account for 55% Private Payers

Estimated Costs to Market (as of 2018)

- \$2MM to complete preclinical activities and submit IDE.
- An additional \$3MM to get to CE Mark and EU market entry
- Total of \$24MM to fund through FDA approval

Planned Clinical Study

- Evaluation of Safety & Performance
 - Delivery of therapeutic dose to tumor site
 - Minimize radiation exposure to spinal cord and nerve roots
 - Mixing and delivery system performs as indicated
- Secondary Measures
 - Pain, health and function measures
 - Tumor response
- Final protocol from pre-IDE communications with FDA
- Clinical Trial Costs
 - \$10MM, Based on quote from independent CRO

Spine-Rad Project Timeline & Expenses (as of 2018)

	Year 1	Year 2	Year 3	Year 4	Year 5	Expense
Preclinical						\$2,000,000
IDE & IRB's						\$200,000
Pilot Study						\$725,000
CE Mark & E.U. Launch						\$540,000
Pivotal Study						\$9,478,000
PMA Prep and Submission						\$750,000
FDA Approval						\$250,000
G&A/S&M/R&D/Manu						\$4,575,588
Salaries & Benefits						\$4,793,619
IP/Royalty						\$792,930
Total	\$2,000,000	\$2,995,000	\$6,452,880	\$7,052,463	\$5,604,794	\$24,105,136

- Total expense may be reduced by \$2MM if a smaller pivotal study is required
- OUS revenues begin in year 3 and total approximately \$10MM in years 3-5
- Margin of OUS revenues is 79% and offset expenses prior to U.S. launch

Global Spine-Rad Sales Projections (as of 2018)

(000's)	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Procedures	0.1	0.54	1.1	3.3	6.6	11.2	17.6
Sales	\$492	\$3,246	\$6,693	\$23,165	\$47,604	\$81,825	\$131,151
Gross Margin	\$357	\$2,429	\$5,260	\$19,503	\$41,604	\$72,944	\$117,301
GM%	73%	75%	79%	84%	87%	89%	89%
Op. Expenses	\$6,453	\$7,052	\$5,605	\$9,611	\$17,081	\$26,421	\$39,838
Pre-tax Income	(\$6,096)	(\$4,623)	(\$345)	\$9,892	\$24,523	\$46,523	\$77,463

- Year 1 of sales is the 3rd year after funding
- Years 1-3 are OUS only
- U.S. metrics by year 7 of sales:
 - \$100MM in revenues
 - 7% market share
 - 90% gross margin
- Overall positive cash flows in the 2nd month of year 4 of sales

Bone-Rad Market Comparables

Spinal Dynamics, Inc. (disc replacement device)

- 1997-2001: Four rounds of funding
- May 2002: IDE and clinical study
- October 2002: Purchased by Medtronic for \$270M

St. Francis Medical (spinal fusion device)

- November 2005: FDA approved
- January 2007: Purchased by Kyphon for \$525M (8.5x revenues)

Kyphon, Inc. (Spinal devices/ Kyphoplasty)

- 1994: Company founded
- May 2000: Balloon kyphoplasty approved
- July 2007: Acquired by Medtronic for \$3.9B (8x revenues)

SenoRx, Inc. (Breast cancer diagnostics and brachytherapy)

- August 2008: brachytherapy device approved
- May 2010: Acquired by CR Bard for \$200M (4x revenues)

Bone-Rad Market Comparables

Blackstone Medical, Inc.

- Stem cell biologic products for bone growth & spinal fixation hardware devices.
- 2003, sales exceeded \$40M, and in 2006 exceeded \$90M.
- Acquired in 2006 by Orthofix International N.V. for \$333M, a 3.7x revenue multiple.

Endius, Inc.

- Minimally-invasive spine surgery products and implants to treat serious spine disease
- FDA 510(k) clearance in October 2000.
- Acquired in 2007 by Zimmer Holdings, Inc. for an unspecified amount.

Spinal Concepts, Inc.

- Medical devices used during spinal fusion surgical procedures.
- FDA 510(k) clearance in 1998 for its BacFix[®] pedicle screw
- Sales for 2001 exceeded \$15M and tripled to \$45M by 2003
- Acquired by Abbott Laboratories for \$170M in cash.

Bone-Rad Summary

- Spine-Rad[™] Cement allows <u>early</u> treatment for painful vertebral metastases because it does not irradiate the spinal cord
- Brachytherapy, with no external beam radiation side effects
- Improved patient care and QOL at lower cost
- Standard kyphoplasty minimizes training and facilitates adoption
- No capital equipment allows Spine-Rad[™] to be widely available
- Simple dosimetry
- Intellectual property established and growing (novel technology)
- Existing brachytherapy and kyphoplasty reimbursement codes apply
- Large, growing market

Long-Term Goals

- Partner with someone to bring this to market
- Dr. Keyak is available to facilitate
 - Product development
 - Establishment of new IP (e.g. breast cancer treatment)
- Bone-Rad has access to other experts

Bibliography

- 1. American Cancer Society; Cancer Facts and Figures 2013.
- 2. Coleman RE., et. al. Advancing Treatment for Metastatic Bone Cancer: Consensus Recommendations from the Second Cambridge Conference..., Clin. Cancer. Res. 2008
- 3. Mundy GR. Metastasis to Bone: Causes, Consequences and Therapuetic Opportunities; Nature Reviews, 2002.
- 4. Wong et al., Spinal Metastases: The Obvious, the Occult and the Imposters., Spine v.15 no.1, 1990
- 5. Gokaslan et al., Transthoracic Vertebrectomy for Metastatic Spinal Tumors, J. Neurosurgery 89; 599-609, 1998
- 6. Rose & Buchowski; Metastatic Disease in the Thoracic and Lumbar Spine; Evaluation and Management, J. Am. Acad. Ortho. Surg., 19; 37-48, 2011
- 7. Healthcare Cost and Utilization Project and National Hospital Discharge Survey
- 8. Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown ML. Projections of the Cost of Cancer Care in the U.S.: 2010-2020. *J Natl Cancer Inst.* 2011 Jan.
- 9. Schluman KL. & Kohles J., Economic Burden of Metastatic Bone Disease in the U.S., American Cancer Society 2007.
- 10. Hagiwara M. et al., Healthcare Utilization and Costs Associated with Skeletal-Related Events in Prostate Cancer Patients with Bone Metastases.
- 11. Hess G. et al., Costs of Palliative Radiation to the Bone for Patients with Bone Metastases Secondary to Breast or Prostate Cancer., Radiation Oncology 2012, 7:168.
- 12. Mehio AK et al., Comparative Hospital Economics and Patient Presentation: Vertebroplasty and Kyphoplasty for the Treatment of Vertebral Compression Fracture, AJNR May, 2011
- 13. Medical Technology Partners, TrueData Report, Incidence and Costs Associated with EBRT, IMRT and Cyberknife to Treat Spine Tumors, 2009

Bone-Rad III III Therapeutics, Inc.

a revolutionary treatment paradigm for cancer tumors in bone

www.bone-rad.com

jhkeyak@uci.edu

hskinner@hskinner.net