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Abstract. A number of techniques have been proposed to explain a machine
learning model’s prediction by attributing it to the corresponding input features.
Popular among these are techniques that apply the Shapley value method from co-
operative game theory. While existing papers focus on the axiomatic motivation
of Shapley values, and efficient techniques for computing them, they offer little
justification for the game formulations used, and do not address the uncertainty
implicit in their methods’ outputs. For instance, the popular SHAP algorithm’s
formulation may give substantial attributions to features that play no role in the
model. In this work, we illustrate how subtle differences in the underlying game
formulations of existing methods can cause large differences in the attributions
for a prediction. We then present a general game formulation that unifies existing
methods, and enables straightforward confidence intervals on their attributions.
Furthermore, it allows us to interpret the attributions as contrastive explanations
of an input relative to a distribution of reference inputs. We tie this idea to classic
research in cognitive psychology on contrastive explanations, and propose a con-
ceptual framework for generating and interpreting explanations for ML models,
called formulate, approximate, explain (FAE). We apply this framework to ex-
plain black-box models trained on two UCI datasets and a Lending Club dataset.

1 INTRODUCTION

Complex machine learning models are rapidly spreading to high stakes tasks such as
credit scoring, underwriting, medical diagnosis, and crime prediction. Consequently,
it is becoming increasingly important to interpret and explain individual model pre-
dictions to decision-makers, end-users, and regulators. A common form of model ex-
planations are based on feature attributions, wherein a score (attribution) is ascribed
to each feature in proportion to the feature’s contribution to the prediction. Over the
last few years there has been a surge in feature attribution methods, with methods
based on Shapley values from cooperative game theory being prominent among them
[27,6,19,1,18,3,4].

Shapley values [24] provide a mathematically fair and unique method to attribute
the payoff of a cooperative game to the players of the game. Recently, there have been a
number of Shapley-value-based methods for attributing an ML model’s prediction to in-
put features. Prominent among them are SHAP and KernelSHAP [19], TreeSHAP [18],
QII [6], and IME [26]. In applying the Shapley values method to ML models, the key
step is to setup a cooperative game whose players are the input features and whose pay-
off is the model prediction. Due to its strong axiomatic guarantees, the Shapley values
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method is emerging as the de facto approach to feature attribution, and some researchers
even speculate that it may be the only method compliant with legal regulation such as
the General Data Protection Regulation’s “right to an explanation” [1].

In this work, we study several Shapley-value-based explanation techniques. Para-
doxically, while all techniques lay claim to the axiomatic uniqueness of Shapley values,
we discover that they yield significantly different attributions for the same input even
when evaluated exactly (without approximation). In some cases, we find the attributions
to be completely counter-intuitive. For instance, in Section 2, we show a simple model
for which the popular SHAP method gives substantial attribution to a feature that is
irrelevant to the model function. We trace this shortcoming and the differences across
existing methods to the varying cooperative games formulated by the methods.1 We re-
fer to such games as explanation games. Unfortunately, while existing methods focus
on the axiomatic motivations of Shapley values, they offer little justification for the de-
sign choices made in their explanation game formulations. The goal of this work is to
shed light on these design choices, and their implications on the resulting attributions.

Our main technical result shows that various existing techniques can be unified
under a common game formulation parameteric on a reference distribution. The Shapley
values of this unified game formulation can be decomposed into the Shapley values of
single-reference games that model a feature’s absence by replacing its value with the
corresponding value from a specific reference input.

This decomposition is beneficial in two ways. First, it allows us to efficiently com-
pute confidence intervals and other supplementary information about attributions, a no-
table advancement over existing methods (which lack confidence intervals even though
they approximate metrics of random variables using finite samples). Second, it offers
conceptual clarity. It unlocks the interpretation that attributions explain the prediction
at an input in contrast to other reference inputs. The attributions vary across existing
methods as each method chooses a different reference distribution to contrast with. We
tie the idea to classic research in cognitive psychology, and propose a conceptual formu-
late, approximate, explain (FAE) framework to create Shapley-value-based contrastive
feature attributions. The goal of the framework is to produce attributions that are not
only axiomatically justified, but also relevant to the underlying explanation question.

We illustrate our ideas via case studies on models trained on two UCI datasets (Bike
Sharing and Adult Income) and a Lending Club dataset. We find that in these real-world
situations, explanations generated using our FAE framework uncover important patterns
that previous attribution methods cannot identify. In summary, we make the following
key contributions:

– We highlight several shortcomings of existing Shapley-value-based feature attribu-
tion methods (Sections 2), and analyze the root cause of these issues (Section 4.1).

– We present a novel game formulation that unifies existing methods (Section 4.2),
and helps characterize their uncertainty with confidence intervals (Section 4.3).

– We offer a novel framework for creating and interpreting attributions (Section 4.4),
and demonstrate its use through case studies (Section 5).

1 We note that this shortcoming, and the multiplicity of game formulations has also been noted
in parallel work [28,14]
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xmale xlift Pr [XXX = xxx] fmale(xxx) fboth(xxx)

0 0 0.1 0.0 0.0
0 1 0.0 0.0 0.0
1 0 0.4 1.0 0.0
1 1 0.5 1.0 1.0

Table 1: Input distribution and model outputs for the mover hiring system example.

fmale fboth
Payoff formulation φ1 (male) φ2 (lifting) φ1 (male) φ2 (lifting)

SHAP 0.05 0.05 0.028 0.472
KernelSHAP 0.10 0.00 0.050 0.450
QII 0.10 0.00 0.075 0.475
IME 0.50 0.00 0.375 0.375

Table 2: Attributions for the input xmale = 1, xlift = 1.

2 A motivating example

To probe existing Shapley-value-based model explanation methods, we evaluate them
on two toy models for which it is easy to intuit correct attributions. We leverage a mod-
ified version of the example provided in [6]: a system that recommends whether a mov-
ing company should hire a mover applicant. The input vector to both models comprises
two binary features “is male” and “is good lifter” (denoted by xxx = (xmale, xlift)), and
output a recommendation score between 0 (“no hire”) and 1 (“hire”). We define two
models — fmale(xxx) ::= xmale (only hire males), and fboth(xxx) ::= xmale ∧ xlift (only
hire males who are good lifters). Table 1 specifies a probability distribution over the
input space, along with the predictions from the two models.

Consider the input xxx = (1, 1) (i.e. a male who is a good lifter), for which both
models output a recommendation score of 1. Table 2 lists the attributions from sev-
eral existing methods. Focusing on the relative attribution between xmale and xlift,
we make the following surprising observations. First, even though xlift is irrelevant
to fmale, the SHAP algorithm2 results in equal attribution to both features. This con-
tradicts our intuition around the “Dummy” axiom of Shapley values, which states that
attribution to a player (feature) that never contributes to the payoff (prediction) must be
zero.

Additionally, the SHAP attributions present a misleading picture from a fairness
perspective: fmale relies solely on xmale, yet the attributions do not reflect this bias
and instead claim that the model uses both features equally. Second, although fboth
treats its features symmetrically, and xxx has identical values in both its features, many
of the methods considered do not provide symmetrical attributions. This again is intu-
itively at odds with the “Symmetry” axiom of Shapley values, which states that players
(features) that always contribute equally to the payoff (prediction) must receive equal

2 As defined by Equation 9 in [19].
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attribution. These unintuitive behaviors surfaced by the above observations demand an
in-depth study of the internal design choices of these methods. We carry out this study
in Section 4.

3 PRELIMINARIES

3.1 Additive feature attributions

Additive feature attributions [19] are attributions that sum to the difference between the
explained model output f(xxx) and a reference output value φ0. In practice, φ0 is typically
an average model output or model output for a domain-specific “baseline” input (e.g.
an empty string for text sentiment classification).

Definition 1 (Additive feature attributions). Suppose f : X → R is a model mapping
an M -dimensional feature space X to real-valued predictions. Additive feature attri-
butions for f(xxx) at input xxx = (x1, . . . , xM ) ∈ X comprise of a reference (or baseline)
attribution φ0 and feature attributions φφφ = (φ1, φ2, . . . , φM ) corresponding to the M
features such that f(xxx) = φ0 +

∑M
i=1 φi.

There currently exist a number of competing methodologies for computing these
attributions (see [2]). Given the difficulty of empirically evaluating attributions, several
methods offer an axiomatic justification, often through the Shapley values method.

3.2 Shapley values

The Shapley values method is a classic technique from game theory that fairly attributes
the total payoff from a cooperative game to the game’s players [24]. Recently, this
method has found numerous applications in explaining ML models (e.g. [5,19,9]).

Formally, a cooperative game is played by a set of playersM = {1, . . . ,M} termed
the grand coalition. The game is characterized by a set function v : 2M → R such that
v(S) is the payoff for any coalition of players S ⊆ M, and v(∅) = 0. Shapley values
are built by examining the marginal contribution of a player to an existing coalition S,
i.e., v(S ∪ {i}) − v(S). The Shapley value of a player i, denoted φi(v), is a certain
weighted aggregation of its marginal contribution to all possible coalitions of players.

φi(v) =
1

M

∑
S⊆M\{i}

(
M − 1

|S|

)−1

(v(S ∪ {i})− v(S)) (1)

The Shapley value method is the unique method satisfying four desirable axioms: Dummy,
Symmetry, Efficiency, and Linearity. We informally describe the axioms in Appendix A,
and refer the reader to [30] for formal definitions and proofs.

Approximating Shapley values Computing Shapley values involves evaluating the
game payoff for every possible coalition of players. This makes the computation expo-
nential in the number of players. For games with few players, it is possible to exactly
compute the Shapley values, but for games with many players, the Shapley values can
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only be approximated. Recently there has been much progress towards the efficient
approximation of Shapley values. In this work we focus on a simple sampling approxi-
mation, presenting two more popular techniques in the Appendix B. We refer the reader
to [20,4,1,13,3] for a fuller picture of recent advances in Shapley value approximation.

A simple sampling approximation (used by [9], among other works) relies on the
fact that the Shapley value can be expressed as the expected marginal contribution a
player has when players are added to a coalition in a random order. Let π(M) be the
ordered set of permutations ofM , andOOO be an ordering randomly sampled from π(M).
Let prei(OOO) be the set of players that precede player i inOOO. The Shapley value of player
i is the expected marginal contribution of the player under all possible orderings of
players.

φi(v) = E
OOO∼π(M)

[v(prei(OOO) ∪ {i})− v(prei(OOO))] (2)

By sampling a number of permutations and averaging the marginal contributions of
each player, we can estimate this expected value for each player and approximate each
player’s Shapley value.

4 EXPLANATION GAMES

In order to explain a model prediction with the Shapley values method, it is neces-
sary to formulate a cooperative game with players that correspond to the features and
a payoff that corresponds to the prediction. In this section, we analyze the methods ex-
amined in Section 2, and show that their surprising attributions are an artifact of their
game formulations. We then discuss a unified game formulation and its decomposition
to single-reference games, enabling conceptual clarity about the meanings of existing
methods’ attributions.

Notation LetDinp be the input distribution, which characterizes the process that gener-
ates model inputs. We denote the input of an explained prediction as xxx = (x1, . . . , xM )
and use rrr to denote another “reference” input. We use boldface to indicate when a
variable or function is vector-valued, and capital letters for random variable inputs (al-
though S continues to represent the set of contributing players/features). Thus, xi is
a scalar input, xxx is an input vector, and XXX is a random input vector. We use xxxS =
{xi : i ∈ S} to represent a sub-vector of features indexed by S. This notation is also ex-
tended to random input vectorsXXX . Lastly, we introduce the composite input zzz(xxx,rrr, S),
which agrees with the input xxx on all features in S and with rrr on all features not in S.
Note that zzz(xxx,rrr, ∅) = rrr, and zzz(xxx,rrr,M) = xxx.

zzz(xxx,rrr, S) = (z1, z2, ..., zM ), where zi =

{
xi i ∈ S
ri i /∈ S

(3)

4.1 Existing game formulations

The explanation game payoff function vxxx must be defined for every feature subset S
such that vxxx(S) captures the contribution of xxxS to the model’s prediction. This allows
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us to compute each feature’s possible marginal contributions to the prediction and derive
its Shapley value (see Section 3.2).

By the definition of additive feature attributions (Definition 1) and the Shapley
values’ Efficiency axiom, we must define vxxx(M) ::= f(xxx) − φ0 (i.e. the payoff of
the full coalition must be the difference between the explained model prediction and
a baseline prediction). Although this definition is fixed, it leaves us the challenge of
coming up with the payoff when some features do not contribute (that is, when they are
absent).

We find that all existing approaches handle this feature-absent payoff by randomly
sampling absent features according to a particular reference distribution and then com-
puting the expected value of the prediction. The resulting game formulations differ from
one another only in the reference distribution they use. Additionally, we note that in
practice small samples are used to approximate the expected value present in these pay-
off functions. This introduces a significant source of attribution uncertainty not clearly
quantified by existing work.

Conditional distribution The game formulation of SHAP [19], TreeSHAP [18], and
[1] simulates feature absence by sampling absent features from the conditional distri-
bution based on the values of the present (or contributing) features:

vcondxxx (S) = E
RRR∼Dinp

[f(zzz(xxx,RRR, S)) |RRRS = xxxS ]− E
RRR∼Dinp

[f(RRR)] (4)

Unfortunately, this is not a proper simulation of feature absence as it does not break
correlations between features [14]. This could lead to unintuitive attributions. For in-
stance, in the fmale example from Section 2, it causes the the irrelevant feature xlift to
receive a nonzero attribution. Specifically, since the event xmale = 1 is correlated3 with
xlift = 1, once xlift = 1 is given, the expected prediction becomes 1. This causes the
xlift feature to have a non-zero marginal contribution (relative to when both features are
absent), and therefore a nonzero Shapley value. More generally, whenever a feature is
correlated with a model’s prediction on inputs drawn from Dinp, this game formulation
results in non-zero attribution to the feature regardless of whether the feature directly
impacts the prediction.

Input distribution Another option for simulating feature absence, which is used by
KernelSHAP, is to sample absent features from the corresponding marginal distribution
in Dinp:

vinpxxx (S) = E
RRR∼Dinp

[f(zzz(xxx,RRR,S))]− E
RRR∼Dinp

[f(RRR)] (5)

Since this formulation breaks correlation with the contributing features, it ensures ir-
relevant features receive no attribution (e.g. no attribution to xlift when explaining
fmale(1, 1) = 1). We formally describe this property via the Insentivity axiom in Sec-
tion 4.2.

3 In this context, correlation refers to general statistical dependence, not just a nonzero Pearson
correlation coefficient.
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We note that this formulation is still subject to artifacts of the input distribution, as
evident from the asymmetrical attributions when explaining the prediction fboth(1, 1) =
1 (see Table 2). The features receive different attributions because they have different
marginal distributions in Dinp, not because they impact the model differently.

Joint-marginal distribution QII [6] simulates feature absence by sampling absent
features one at a time from their own univariate marginal distributions. In addition to
breaking correlation with the contributing features, this breaks correlation between ab-
sent features as well. Formally, the QII formulation uses a distribution we term the
“joint-marginal” distribution (DJ.M.), where:

Pr
X ∼ DJ.M.

[X = (x1, . . . , xM )] =

M∏
i=1

Pr
X∼Dinp

[Xi = xi]

The joint-marginal formulation vJ.M.
xxx is similar to vinpxxx , except that the reference distri-

bution is DJ.M. instead of Dinp:

vJ.M.
xxx (S) = E

RRR∼DJ.M.
[f(zzz(xxx,RRR,S))]− E

RRR∼DJ.M.
[f(RRR)] (6)

Unfortunately, like vinpxxx , this game formulation is also tied to the input distribution and
under-attributes features that take on common values in the background data. This is
evident from the attributions for the fboth model shown in Table 2.

Uniform distribution The last formulation we study from the prior art simulates fea-
ture absence by drawing values from a uniform distribution U over the entire input
space, as in IME [26].4 Completely ignoring the input distribution, this payoff vunifxxx

considers all possible feature values (edge-cases and common cases) with equal weight-
ing.

vunifxxx (S) = E
RRR∼U

[f(zzz(xxx,RRR,S))]− E
RRR∼U

[f(RRR)] (7)

In Table 2, we see that this formulation yields intuitively correct attributions for fmale

and fboth. However, the uniform distribution can sample so heavily from irrelevant
outlier regions of X that relevant patterns of model behavior become masked (we study
the importance of relevant references both theoretically in Section 4.4 and empirically
in Section 5).

4.2 A unified formulation

We observe that the existing game formulations vinpxxx , vJ.M.
xxx , and vunifxxx can be unified

as a single game formulation vxxx,Dref that is parameterized by a reference distribution
Dref .

vxxx,Dref (S) = E
RRR∼Dref

[f(zzz(xxx,RRR,S))]− E
RRR∼Dref

[f(RRR)] (8)

4 It is somewhat unclear whether IME proposes U or Dinp, as [26] assumes Dinp = U , while
[27] calls for values to be sampled from X “at random.”
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For instance, the formulation for KernelSHAP is recovered when Dref = Dinp, and
QII is recovered when Dref = DJ.M.. In the rest of this section, we discuss several
properties of this general formulation that help us better understand its attributions.
Notably, the formulation vcondxxx cannot be expressed in this framework; we discuss the
reason for this later in this section.

A decomposition in terms of single-reference games We now introduce single-reference
games, a conceptual building block that helps us interpret the Shapley values of the
vxxx,Dref game. A single-reference game vxxx,rrr simulates feature absence by replacing the
feature value with the value from a specific reference input rrr:

vxxx,rrr(S) = f(zzz(xxx,rrr, S))− f(rrr) (9)

The attributions from a single-reference game explain the difference between the pre-
diction for the input and the prediction for the reference (i.e.

∑
i φi(vxxx,rrr) = vxxx,rrr(M) =

f(xxx)−f(rrr), and φ0 = f(rrr)). Computing attributions relative to a single reference point
(also referred to as a “baseline”) is common to several others methods [29,25,7,3]. How-
ever, while those works seek a neutral “informationless” reference (e.g. an all-black
image for image models), we find it beneficial to consider arbitrary references and in-
terpret the resulting attributions relative to the reference. We develop this idea further
in our FAE framework (see Section 4.4).

We now state Proposition 1, which shows how the Shapley values of vxxx,Dref can
be expressed as the expected Shapley values of a (randomized) single-reference game
vxxx,RRR, where RRR ∼ D. The proof (provided in Appendix C) follows from the Shapley
values’ Linearity axiom and the linearity of expectation.

Proposition 1. φφφ(vxxx,Dref ) = ERRR∼Dref [φφφ(vxxx,RRR)]

Proposition 1 brings conceptual clarity and practical improvements (confidence in-
tervals and supplementary metrics) to existing methods. It shows that the attributions
from existing games (vinpxxx , vJ.M.

xxx , and vunifxxx ) are in fact differently weighted aggrega-
tions of attributions from a space of single-reference games. For instance, vunifxxx weighs
attributions relative to all reference points equally, while vinpxxx weighs them using the
input distribution Dinp.

Insensitivity axiom We show that attributions from the game vxxx,Dref satisfy the In-
sensitivity axiom from [29], which states that a feature that is mathematically irrelevant
to the model must receive zero attribution. Formally, a feature i is irrelevant to a model
f if for any input, changing the feature does not change the model output. That is,
∀xxx,rrr ∈ X : xxxM\{i} = rrrM\{i} =⇒ f(xxx) = f(rrr).

Proposition 2. If a feature i is irrelevant to a model f then φi(vxxx,Dref ) = 0 for all
distributions Dref .

Notably, the vcondxxx formulation does not obey the Insensitivity axiom (a counter-example
being the fmale attributions from Section 2). Accordingly, our general formulation
(Equation 7) cannot express this formulation. In the rest of the paper, we focus on game
formulations that satisfy the Insensitivity axiom. We refer to [28] for a comprehensive
analysis of the axiomatic guarantees of various game formulations.
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4.3 Confidence intervals on attributions

Existing game formulations involve computing an expected value (over a reference dis-
tribution) in every invocation of the payoff function. In practice, this expectation is
approximated via sampling, which introduces uncertainty. The original formulations of
these games do not lend themselves well to quantify such uncertainty. We show that by
leveraging our unified game formulation, one can efficiently quantify the uncertainty
using confidence intervals (CIs).

Our decomposition in Proposition 1 shows that the attributions themselves can be
expressed as an expectation over (deterministic) Shapley value attributions from a distri-
bution of single-reference games. Consequently, we can quantify attribution uncertainty
by estimating the standard error of the mean (SEM) across a sample of Shapley values
from single-reference games. In terms of the sample standard deviation (SSD), 95% CIs
on the mean attribution (φ̄φφ) from a sample of size N are given by

φ̄φφ±
1.96× SSD({φφφ(vxxx,rrri)}

N
i=1)

√
N

(10)

We note that while one could use bootstrap [8] to obtain CIs, the SEM approach is more
efficient as it requires no additional Shapley value computations.

A unified CI As discussed in Section 3.2, often the large number of features (players)
in an explanation game necessitates the approximation of Shapley values. The approx-
imation may involve random sampling, which incurs its own uncertainty. In what fol-
lows, we derive a general SEM-based CI that quantifies the combined uncertainty from
sampling-based approximations of Shapley values and the sampling of references.

Let us consider a generic estimator φ̂(GGG)
i (vxxx,rrr) parameterized by some random sam-

pleGGG. An example of such an approach is the feature ordering based approximation of
Equation 2, for which GGG = (OOOj)

k
j=1 represents a random sample of feature orderings,

and:

φ̂
(GGG)
i (vxxx,rrr) =

1

k

k∑
j=1

v(prei(OOOj) ∪ {i})− v(prei(OOOj))

As long as the generic φ̂(GGG)
i is an unbiased estimator (like the feature ordering estimator

of Equation 2), andGGG andRRR ∼ Dref are sampled independently from one another, we
can derive a unified CI using the SEM. By the estimator’s unbiasedness and Proposi-
tion 1, the Shapley value attributions can be expressed as:

φi(vxxx,Dref ) = E
RRR
E
GGG

[
φ̂
(GGG)
i (vxxx,RRR)

]
(11)

Since GGG is independent of RRR, this expectation can be Monte Carlo estimated using the

sample mean of the sequence
(
φ̂
(gggj)
i (vxxx,rrrj )

)N
j=1

(where (gggj , rrrj)
N
j=1 is a joint sample of

(GGG,RRR)). As the attribution recovered by this estimation is simply the mean of a sample
from a random variable, its uncertainty can be quantified by estimating the SEM. In
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terms of the sample standard deviation, 95% CIs on the mean attribution (φ̄φφ) from a
sample of size N are given by:

φ̄φφ±
1.96× SSD

((
φ̂
(gggj)

i (vxxx,rrrj )
)N
j=1

)
√
N

(12)

4.4 Formulate, Approximate, Explain

So far we studied the explanation game formulations used by existing methods, and
noted how the formulations impact the resulting Shapley value attributions. We show
that the attributions explain a prediction in contrast to a distribution of references; see
Proposition 1. Existing methods differ in the attribution they produce because each of
them picks a different reference distribution to contrast with. We also proposed a mech-
anism to quantify the approximation uncertainty incurred in computing attributions.

We now put these ideas together in a single conceptual framework formulate, ap-
proximate, explain (FAE). Our key insight is that rather than viewing the reference
distribution as an implementation detail of the explanation method, it must by made
a first-class argument to the framework. That is, the references must be consciously
chosen by the explainee to obtain a specific contrastive explanation.

Our emphasis on treating attributions as contrastive explanations stems from cog-
nitive psychology. Several works in cognitive psychology argue that humans frame ex-
planations of surprising outcomes by contrasting them with to one or more normal
outcomes [15,21,22,10,11,17,12]. In our setting, the normal outcomes are the reference
predictions that the input prediction is contrasted with. The attributions essentially ex-
plain what drives the prediction at hand away from the reference predictions. The choice
of references may depend on the context of the question, and may vary across explain-
ers and explainees [15]. Moreover, it is important for the references to be relevant to
the input at hand [11]. For instance, if we are explaining why an auto-grading software
assigns a B+ to a student’s submission, it would be proper to contrast with the submis-
sions that were graded as A- (next higher grade after B+), instead of contrasting with
the entire pool of submissions.

Formulate The mandate of the Formulate step is to generate a contrastive question that
specifies one or more relevant references. The question pins down the distributionDref

of the chosen references. For instance, in the grading example above, the references
would be all submissions obtaining an A- grade.

Approximate Once a meaningful contrastive question and its corresponding reference
distribution Dref has been formulated, we consider the distribution of single-reference
games whose references are drawn from Dref , and approximate the Shapley values of
these games. Formally, we approximate the distribution of the random-valued attribu-
tion vector ΦΦΦxxx,RRR = φφφ(vxxx,RRR), whereRRR ∼ Dref . This involves two steps: (1) sampling
a sequence of references (rrri)

N
i=1 from RRR ∼ Dref , and (2) approximating the Shapley

value of the single-reference games relative each to reference in (rrri)
N
i=1. This yields a
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sequence of approximated Shapley values. It is important to account for the uncertainty
resulting from sampling in steps (1) and (2), and quantify it in the Explain step.

Explain In the final step, we must summarize the sampled Shapley value vectors
(drawn from ΦΦΦxxx,RRR) obtained from the Approximate step. One simple summarization
would be the presentation of a few representative samples, in the style of the SP-LIME
algorithm [23]. Another simple summarization is the sample mean, which approxi-
mates E [ΦΦΦxxx,RRR], and is equivalent to the attributions from the unified explanation game
vxxx,Dref . This is the summarization used by existing Shapley-value-based explanation
methods. When using the sample mean, the framework of Section 4.3 can be used to
quantify the uncertainty from sampling. In addition, one must be careful that the mean
does not hide important information. For instance, a feature’s attributions may have op-
posite signs relative to different references. Averaging these attributions will cause them
to cancel each other out, yielding a small mean that incorrectly suggests that the feature
is unimportant. We discuss a concrete example of this in Section 5.1. At the very least,
we recommend confirming through visualization and summary statistics like variance
and interquartile range that the mean is a good summarization, before relying upon it.
We discuss a clustering based summarization method in Section 5 while leaving further
research on faithful summarization methods to future work.

5 CASE STUDIES

In this section we apply the FAE framework to LightGBM [16] Gradient Boosted De-
cision Trees (GBDT) models trained on real data: the UCI Bike Sharing and Adult
Income datasets, and a Lending Club dataset.5 For parsimony, we analyze models that
use only five features; complete model details are provided in Appendix D. For the
Bike Sharing model, we explain a randomly selected prediction of 210 rentals for a cer-
tain hour. For the Adult Income model, we explain a counter-intuitively low prediction
for an individual with high education-num. For the Lending Club model, we explain a
counter-intuitive rejection (assuming a threshold that accepts 15% of loan applications)
for a high-income borrower. In the rest of this section, we present a selection of the
results across all three models, while the full set of results are provided in Appendix E.

5.1 Shortcomings of existing methods

Recall from Section 4.2 that the attributions from existing methods amount to comput-
ing the mean attribution for a distribution of single-reference games vxxx,RRR, where the
reference RRR is sampled from a certain distribution. The choice of distribution varies
across the methods, which in turns leads to very different attribution. This is illustrated
in Table 3 for the Bike sharing model.

5 In Bike Sharing we model hourly bike rentals from temporal and weather features, in Adult
Income we model whether an adult earns more than $50,000 annually, and in Lending Club
we model whether a borrower will default on a loan.
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Game Avg. Prediction (φ0) hr temp work. hum season

vinpxxx 151 3 47 1 7 2
vJ.M.xxx 141 6 50 1 9 3
vunifxxx 128 3 60 3 12 3

Table 3: Bike Sharing comparison of mean attributions. 95% CIs ranged from ±0.4
(hum in Dinp and DJ.M.) to ±2.5 (hr in Dinp and DJ.M.).

Fig. 1: Distribution of single-reference game attributions relative to the data distribution
(Dinp) for the Bike Sharing example.

Misleading means In Section 4.4, we discussed that the mean attribution can poten-
tially be a misleading summarization. Here, we illustrate this using the attributions from
the KernelSHAP game vinpxxx for the Bike Sharing example; see Table 3. The mean at-
tribution to the feature hr is tiny, suggesting that the feature has little impact. However,
the distribution of single-reference game attributions (Figure 1) reveals a large spread
centered close to zero. In fact, we find that by absolute value hr receives the largest
attribution in over 60% of the single-reference games. Consequently, only examining
the mean of the distribution may be misleading.

Unquantified uncertainty Lack of uncertainty quantification in existing techniques
can result in misleading attributions. For instance, taking the mean attribution of 100
randomly-sampled Bike Sharing single-reference games6 gives hr an attribution of -
10 and workingday an attribution of 8. Without any sense of uncertainty, we do not
know how accurate these (estimated) attributions are. The 95% confidence intervals

6 The official implementation of KernelSHAP [19] raises a warning if over 100 references are
used.
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Game Size Avg. Prediction (φ0) rel. cap. edu. mar. age

vinpxxx - 0.24 -0.04 -0.03 -0.01 -0.10 -0.00
vJ.M.xxx - 0.19 -0.02 -0.03 -0.01 -0.08 0.01
vunifxxx - 0.82 0.01 -0.79 0.02 -0.03 0.04

Cluster 1 10.2% 0.67 -0.15 -0.01 -0.15 -0.28 -0.02
Cluster 2 55.3% 0.04 0.01 0.00 0.00 -0.01 0.02
Cluster 3 4.4% 0.99 -0.04 -0.70 -0.06 -0.12 -0.01
Cluster 4 28.0% 0.31 -0.09 0.00 0.08 -0.21 -0.03
Cluster 5 2.1% 0.67 -0.04 0.01 -0.47 -0.14 0.03

Table 4: Adult Income comparison of mean attributions from existing game formula-
tions (top) and from clusters obtained from k-means clustering of the single-reference
game attributions relative to the input distribution (bottom). 95% CIs ranged from
±0.0004 (Cluster 2, relationship) to ±0.0115 (Cluster 5, marital-status and age).

Game Avg. Prediction (φ0) fico. addr. inc. acc. dti

vinpxxx 0.14 0.00 0.03 0.00 0.10 0.00
vxxx,Daccept 0.05 0.02 0.04 0.02 0.11 0.03

Table 5: Lending Club comparison of mean attributions from the game vxxx (relative to
the data distributionDinp) and the game vxxx,Dref (relative to the distribution of accepted
applications Daccept ). 95% CIs ranged from ±0.0004 to ±0.0007 for both games.

(estimated using the method described in Section 5.2) show that they are uncertain
indeed: the CIs span both positive and negative values.

Irrelevant references In Section 4.4, we noted the importance of relevant references
(or norms), and how the IME game vunifxxx based on the uniform distribution U can
focus on irrelevant references. We illustrate this on the Adult Income example; see the
third row of Table 4. We find that almost all attribution from the vunifxxx game falls on
the capitalgain feature. This is surprising as capitalgain is zero for the example being
explained, and for over 90% of examples in the Adult Income dataset. The attributions
are an artifact of uniformly sampling reference feature values, which causes nearly all
references to have non-zero capital gain (as the probability of sampling an exactly zero
capital gain is infinitesimal).

5.2 Applying the FAE framework

We now consider how the FAE framework enables more faithful explanations for the
three models we study.

Formulating contrastive questions A key benefit of FAE is that it enables explain-
ing predictions relative to a selected group of references. For instance, in the Lending
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Club model, rather than asking “Why did our rejected example receive a score of 0.28?”
we ask the contrastive question “Why did our rejected example receive a score of 0.28
relative to the examples that were accepted?” This is a more apt question, as it ex-
plicitly discards irrelevant comparisons to other rejected applications. In terms of game
formulation, the contrastive approach amounts to considering single-reference games
where the reference is drawn from the distribution of accepted applications (denoted
by Daccept ) rather than all applications. The attributions for each of these questions
(shown in Table 5) turn out to be quite different. For instance, although number of
recently-opened accounts (acc) is still the highest-attributed feature, we find that credit
score (fico), income (inc), and debt-to-income ratio (dti) receive significantly higher at-
tribution in the contrastive formulation. Without formulating the contrastive question,
we would be misled into believing that these features are unimportant for the rejection.

Quantifying uncertainty When summarizing the attribution distribution with the mean,
confidence intervals can be computed using the standard error of the mean (see Sec-
tion 4.3). Returning to our Bike Sharing example, with 100 samples, the 95% confi-
dence intervals for hr and workingday are -36 to 15, and -1 to 12, respectively. The
large CIs caution us that 100 samples are perhaps too few. When using the full test set,
the 95% CIs drop to 0.0 to 5.1 for hr, and 0.6 to 2.0 for workingday.

Summarizing attribution distributions To obtain a more faithful summarization of
the single-reference game attributions, we explore a clustering based approach. We
compute attributions for single reference games relative to points sampled from the the
input distribution (Dinp), and then apply k-means clustering to these attributions. The
resulting clusters effectively group references that yield similar (contrastive) attribu-
tions for the prediction at the explained point. Consequently,the attribution distribution
within each cluster has a small spread, and can be summarized via the mean.

We applied this approach to all three models and obtained promising results, wherein,
clustering helps mine distinct attribution patterns. Table 4 (bottom) shows the results for
the Adult Income model; results for other models are provided in Appendix E. Notice
that clustering identifies a large group of irrelevant references (cluster 2) which are
similar to the explained point, demonstrating low attributions and predictions. Cluster
3 discovers the same pattern that the vunifxxx formulation did: high capitalgain causes
extremely high scores. Since over 90% of points in the dataset have zero capitalgain,
this pattern is “washed out in the average” relative to the entire data distribution Dinp

(as in KernelSHAP); see the first row of Table 4. On the other hand, the IME formula-
tion identifies nothing but this pattern. Our clustering also helps identify other patterns.
Clusters 1 and 5 show that when compared to references that obtain a high-but-not-
extreme score, marital-status, relationship, and education-num are the primary factors
accounting for the lower prediction score for the example at hand.

6 CONCLUSION

We perform an in-depth study of various Shapley-value-based model explanation meth-
ods. We find cases where existing methods yield counter-intuitive attributions, and we



The Explanation Game: Explaining Machine Learning Models Using Shapley Values 15

trace these misleading attributions to the cooperative games formulated by these meth-
ods. We propose a generalizing formulation that unifies attribution methods, offers clar-
ity for interpreting each method’s attributions, and admits straightforward confidence
intervals for attributions.

We propose a conceptual framework for model explanations, called formulate, ap-
proximate, explain (FAE), which is built on principles from cognitive psychology. We
advise practitioners to formulate contrastive explanation questions that specify the ref-
erences relative to which a prediction should be explained, for example “Why did this
rejected loan application receive a score of 0.28 in contrast to the applications that were
accepted?” By approximating the Shapley values of games formulated relative to the
chosen references, and explaining the distribution of approximated Shapley values, we
provide a more relevant answer to the explanation question at hand.

Finally, we conclude that axiomatic guarantees do not inherently guarantee relevant
explanations, and that game formulations must be constructed carefully. In summarizing
attribution distributions, we caution practitioners to avoid coarse-grained summaries,
and to quantify any uncertainty resulting from any approximations used.
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Appendix

A Shapley Value Axioms

We briefly summarize the four Shapley value axioms.

– The Dummy axiom requires that if player i has no possible contribution (i.e. v(S ∪
{i}) = v(S) for all S ⊆M), then that player receives zero attribution.

– The Symmetry axiom requires that two players that always have the same contribu-
tion receive equal attribution, Formally, if v(S ∪ {i}) = v(S ∪ {j}) for all S not
containing i or j then φi(v) = φj(v).

– The Efficiency axiom requires that the attributions to all players sum to the total
payoff of all players. Formally,

∑
i φi(v) = v(M)).

– The Linearity axiom states that for any payoff function v that is a linear combi-
nation of two other payoff functions u and w (i.e. v(S) = αu(S) + βw(S)), the
Shapley values of v equal the corresponding linear combination of the Shapley val-
ues of u and w (i.e. φi(v) = αφi(u) + βφi(w)).

B Additional Shapley value approximations

Marginal contribution sampling We can express the Shapley value of a player as the
expected value of the weighted marginal contribution to a random coalition S sampled
uniformly from all possible coalitions excluding that player, rather than an exhaustive
weighted sum. A sampling estimator of this expectation is by nature unbiased, so this
can be used as an alternative to the permutation estimator in approximating attributions
with confidence intervals.

φi(v) = E
S

[
2M−1

M

(
M − 1

|S|

)−1

(v(S ∪ {i})− v(S))

]
(13)

Equation 13 can be approximated with a Monte Carlo estimate, i.e. by sampling from
the random S and averaging the quantity within the expectation.

Weighted least squares The Shapley values are the solution to a certain weighted
least squares optimization problem which was popularized through its use in the Ker-
nelSHAP algorithm. For a full explanation, see https://arxiv.org/abs/1903.
10464.

φφφ = arg min
φφφ

∑
S⊆M

M − 1(
M
|S|

)
|S|(M − |S|)

(
v(S)−

M∑
i=1

φi

)2

(14)

The fraction in the left of Equation 14 is often referred to as the Shapley kernel . In
practice, an approximate objective function is minimized. The approximate objective is
defined as a summation over squared error on a sample of coalitions rather than over
squared error on all possible coalitions. Additionally, the “KernelSHAP trick” may be
employed, wherein sampling is performed according to the Shapley kernel (rather than

https://arxiv.org/abs/1903.10464
https://arxiv.org/abs/1903.10464
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uniformly), and the least-squares optimization is solved with uniform weights (rather
than Shapley kernel weights) to account for the adjusted sampling.

To the best of our knowledge, there exists no proof that the solution to a subsam-
pled objective function of the form in Equation 14 is an estimator (unbiased or other-
wise) of the Shapley values. In practice, it does appear that subsampling down to even
a small fraction of the total number of possible coalitions (weighted by the Shapley
kernel or uniformly) does a good job of estimating the Shapley values for explanation
games. Furthermore, approximation errors in such experiments do not yield signs of
bias. However, we do note that using the weighted least squares approximation with
our confidence interval equation does inherently imply an unproved assumption that it
is an unbiased estimator.

C Proofs

In what follows, we prove the lemmas from the main paper. The proofs refer to equa-
tions and definition from the main paper.

C.1 Proof of Proposition 1

From the definitions of vxxx,Dref (Equation 8) and vxxx,rrr (Equation 9), it follows that
vxxx,Dref (S) = ERRR∼Dref [vxxx,RRR(S)]. Thus, the game vxxx,Dref is a linear combination
of games {vxxx,rrr | rrr ∈ X} with weights defined by the distribution Dref . From the
Linearity axiom of Shapley values, it follows that the Shapley values of the game
vxxx,Dref must be a corresponding linear combination of the Shapley values of the games
{vxxx,rrr | rrr ∈ X} (with weights defined by the distribution Dref ). Thus, φφφ(vxxx,Dref ) =

ERRR∼Dref [φφφ(vxxx,RRR)]. ut

C.2 Proof of Proposition 2

From Proposition 1, we have φi(vxxx,Dref ) = ERRR∼Dref [φi(vxxx,RRR)]. Thus, to prove this
lemma, it suffices to show that for any irrelevant feature i, the Shapley value from the
game vxxx,rrr is zero for all references r ∈ X . That is,

∀rrr ∈ X φi(vxxx,rrr) = 0 (15)

From the definition of Shapley values (Equation 1), we have:

φi(vxxx,rrr) =
1

M

∑
S⊆M\{i}

(
M − 1

|S|

)−1
(vxxx,rrr(S ∪ {i})− vxxx,rrr(S)) (16)

Thus, to prove Equation 15 it suffices to show the marginal contribution (vxxx,rrr(S∪{i})−
vxxx,rrr(S)) of an irrelevant feature i to any subset of features S ⊆M\{i} is always zero.
From the definition of the game vxxx,rrr, we have:

vxxx,rrr(S ∪ {i})− vxxx,rrr(S) = f(zzz(xxx,rrr, S ∪ {i}))− f(zzz(xxx,rrr, S)) (17)
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From the definition of composite inputs zzz (Equation 3), it follows that the inputs zzz(xxx,rrr, S∪
{i}) and zzz(xxx,rrr, S) agree on all features except i. Thus, if feature i is irrelevant, f(zzz(xxx,rrr, S∪
{i})) = f(zzz(xxx,rrr, S)), and consequently by Equation 16, vxxx,rrr(S ∪ {i})− vxxx,rrr(S) = 0
for all subsets S ⊆ M \ {i}. Combining this with the definition of Shapley values
(Equation 1) proves Equation 15. ut

D Reproducibility

For brevity, we omitted from the main paper many of the mundane choices in the design
of our toy examples and case studies. To further transparency and reproducibility, we
include them here.

D.1 Fitting models

For both case studies, we used the LightGBM package configured with default param-
eters to fit a Gradient Boosted Decision Trees (GBDT) model. For the Bike Sharing
dataset, we fit on all examples from 2011 while holding out the 2012 examples for test-
ing. We omitted the atemp feature, as it is highly correlated to temp (r = 0.98), and the
instant feature because the tree-based GBDT model cannot capture its time-series trend.
For parsimony, we refitted the model to the top five most important features by cumu-
lative gain (hr, temp, workingday, hum, and season). This lowered test-set r2 from 0.64
to 0.63. For the Adult Income dataset, we used the pre-defined train/test split. Again,
we refitted the model to the top five features by cumulative gain feature importance (re-
lationship, capitalgain, education-num, marital-status, and age). This increased test-set
misclassification error from 14.73% to 10.97%.

D.2 Selection of points to explain

For the Bike Share case study, we sampled ten points at random from the test set. We
selected one whose prediction was close to the middle of the range observed over the en-
tire test set (predictions ranged approximately from 0 to 600). Specifically, we selected
instant 11729 (2012-05-08, 9pm). We examined other points from the same sample of
ten to suggest a random but meaningful comparative question. We found another point
with comparable workingday, hum, and season: instant 11362. This point caught our
eye because it differed only in hr (2pm rather than 9pm), and temp (0.36 rather than
0.64) but had a much lower prediction.

For the Adult Income case study, we wanted to explain why a point was scored
as likely to have low income, a task roughly analogous to that of explaining why an
application for credit is rejected by a creditworthiness model in a lending setting. We
sampled points at random with scores between 0.01 and 0.1, and chose the 9880th point
in the test set due to its strikingly high education-num (most of the low-scoring points
sampled had lower education-num).

For the Lending Club data, we chose an open-source subset of the dataset that has
been pre-cleaned to a predictive task on 3-year loans. For the five-feature model, we
selected the top five features by cumulative gain feature importance from a model fit to
the full set of features.
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D.3 K-means clustering

We choose k = 5 arbitrarily, having observed a general tradeoff of conciseness for
precision as k increases. In the extremes, k = 1 maintains the overall attribution distri-
bution, while k = N examines each single-reference game separately.

E Case Study Supplemental Material

Game Formulation Size Avg. Prediction (φ0) hr temp work. hum season

vinpxxx 100% 151 3 47 1 7 2
vJ.M.xxx 100% 141 6 50 1 9 3
vunifxxx 100% 128 3 60 3 12 3

Cluster 1 12.9% 309 -86 14 -28 3 -1
Cluster 2 27.6% 28 140 32 0 9 0
Cluster 3 10.5% 375 -247 58 16 9 -1
Cluster 4 32.5% 131 31 38 3 4 2
Cluster 5 16.5% 128 -57 107 13 9 9

Table 6: Bike Sharing comparison of mean attributions. 95% CIs ranged from ±0.4
(hum in Dinp and DJ.M.) to ±2.5 (hr in Dinp and DJ.M.).

Game Size Avg. Prediction (φ0) rel. cap. edu. mar. age

vinpxxx 100% 0.24 -0.04 -0.03 -0.01 -0.10 -0.00
vJ.M.xxx 100% 0.19 -0.02 -0.03 -0.01 -0.08 0.01
vunifxxx 100% 0.82 0.01 -0.79 0.02 -0.03 0.04

Cluster 1 10.2% 0.67 -0.15 -0.01 -0.15 -0.28 -0.02
Cluster 2 55.3% 0.04 0.01 0.00 0.00 -0.01 0.02
Cluster 3 4.4% 0.99 -0.04 -0.70 -0.06 -0.12 -0.01
Cluster 4 28.0% 0.31 -0.09 0.00 0.08 -0.21 -0.03
Cluster 5 2.1% 0.67 -0.04 0.01 -0.47 -0.14 0.03

Table 7: Adult Income comparison of mean attributions. 95% CIs ranged from±0.0004
(Cluster 2, relationship) to ±0.0115 (Cluster 5, marital-status and age).

Game Size Avg. Prediction (φ0) fico. addr. inc. acc. dti

vxxx,Dref 20% 0.05 0.02 0.04 0.02 0.11 0.03
vinpxxx 100% 0.14 0.00 0.03 0.00 0.10 0.00
vJ.M.xxx 100% 0.14 0.01 0.03 0.01 0.10 0.00
vunifxxx 100% 0.11 0.05 0.07 -0.01 0.03 0.02

Cluster 1 28.5% 0.11 0.01 0.06 0.00 0.08 0.01
Cluster 2 24.4% 0.10 0.01 0.00 0.01 0.11 0.04
Cluster 3 15.4% 0.18 0.00 0.01 0.00 0.14 -0.05
Cluster 4 17.6% 0.16 -0.01 0.01 0.03 0.09 -0.01
Cluster 5 14.0% 0.22 -0.01 0.05 -0.02 0.08 -0.06

Table 8: Lending Club comparison of mean attributions. 95% CIs ranged from±0.0004
to ±0.0007 for all games.
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