
Using IBM with OmniSci
GPU-accelerated Analytics

Benchmark Testing for IBM Power System AC922 Cognitive
Infrastructure for Enterprise AI with NVLink

Whitepaper

Using IBM with OmniSci GPU-accelerated Analytics

2

Executive Summary & Benchmark Results 3

About IBM Power Systems AC922 Cognitive
Infrastructure for Enterprise AI 4

OmniSci with IBM Power System AC922 Cognitive Infrastructure for
Enterprise AI: A Powerful Coupling for Interactive Analytics 5

OmniSci Benchmark Testing of IBM Power System AC922 Cognitive
Infrastructure for Enterprise AI Demonstrates the Power of NVLink 6

Learn More 13

Table of Contents

Using IBM with OmniSci GPU-accelerated Analytics

3

Benchmark Results

We measured an average speedup of 72% across the 44 SQL queries representative of the OmniSci
software, with speedups up to 198% for Q40. Much of the speed is due to the use of NVIDIA NVLink on IBM
Power System AC922, versus the slower GPU-to-CPU data transfers on the traditional PCle bus used on x86
system.

Speedups on first load and first query are important for these common scenarios:

• Streaming large dataset bigger than GPU RAM capacity - requires copying over older datasets on the 	
 GPU. New datasets will be available sooner with faster first load times.
• Multiple large datasets from different sources & columns queried at the same time - e.g., many charts in a 	
 dashboard querying different columns, where speedups on first query can speed up the visual analytics.

Graphics processing units (GPUs) can make Big Data analytics 100x faster than with systems based on
Central Processing Units (CPUs). While the latest CPU can have up to 32 cores, today’s GPU has more than
3,500. OmniSci, Inc. harnesses the parallel processing power of GPUs to deliver the world’s fastest data
queries and visualization. However, most analytic workflows still move data between CPUs and GPUs,
and so much of the speedup provided by a GPU can be lost during transfers to a CPU. NVIDIA created
NVIDIA® NVLink™ to reduce that bottleneck, and it is only available for CPU-to-GPU transfers on IBM
POWER systems. This white paper provides OmniSci performance benchmark results on the IBM Power
System AC922 Cognitive Infrastructure for Enterprise AI and shows how NVlink speeds data science
workloads shared across NVIDIA® Tesla® V100 GPUs and IBM POWER9 CPUs. This paper is ideal for those
looking to add general-purpose computing with GPUs to their existing analytic architectures that include
CPUs.

Executive Summary

The following chart shows the speedup percentage (%) of benchmark results for
“first-run” queries on the IBM Power System AC922 versus an x86 Power9 Speedup.

Q
3

5

Q
3

9

Q
4

3

Q
3

7

Q
4

1

Queries

Po
w

er
9

Sp

ee
d

up
 % Average

0%

Q
1

Q
1

5

Q
2

9

Q
3

Q
1

7

Q
3

1

Q
3

3

Q
5

Q
1

9

Q
7

Q
2

1

Q
9

Q
2

3

Q
1

1

Q
2

5

Q
1

3

Q
2

7

50%

100%

Using IBM with OmniSci GPU-accelerated Analytics

4

Modern AI, HPC and analytics workloads are
driving an ever-growing set of data intensive
challenges that can only be met with accelerated
infrastructure. To help meet these demands,
IBM Power Systems has designed AC922 for
the AI Era, the best server for Enterprise AI.
The AC922 leverages IBM’s new POWER9™
processor with a myriad of modern connectivity
capabilities yielding up to 5.6x the data
movement over the antiquated PCIe Gen 3
buses found in x86. IBM Power Systems deliver
the only architecture enabling NVLink between
CPUs and GPUs, unlocking new potential for
accelerated computing. As the speed and size
of those analytics increased, the load exposed a
clear latency choke point: bandwidth for CPU-to-
GPU data transfers. NVIDIA’s NVLink breaks that
bottleneck.

Much of that analytic acceleration comes from a
new chip: the POWER9® processor with NVIDIA®
NVLink™. The IBM POWER9 is a state of the art
CPU in its own right, but because it comes with
NVLink, it works together seamlessly with the
NVIDIA® Tesla® V100 GPU. NVLink accelerates

CPU-to-GPU analytic pipelines up to 5.6 times
compared to systems without NVLink, and that
gives businesses far faster insight.

In fact, this is the only configuration on the market
that combines NVLink, Power9 processors and
Tesla GPU processors.The following image shows
the power of that relationship. NVIDIA’s NVLINK
technology transfers data between CPUs and
GPUs at 100-150 gigabytes per second.

About IBM Power Systems AC922: The Fastest GPUs
and CPUs with the NVLink Interconnect

IBM Power System AC922 for
Cognitive Infrastructure for
Enterprise AI is the first to provide
the NVLink Interconnect between
CPU and GPU, and it delivers up
to 5.6x the data movement of
PCIe Gen 3.

Source: IBM Power Advanced Compute (AC) AC922 Server Datasheet

Using IBM with OmniSci GPU-accelerated Analytics

5

IBM Power System AC922 Cognitive Infrastructure
for Enterprise AI delivers big data processing
power at truly interactive speeds, over a hybrid
GPU-CPU system. Because OmniSci makes big
data analytics far faster on both GPUs and CPUs,
OmniSci running on those systems delivers the
fastest analytic capabilities and it abstracts the
underlying hardware that makes that possible. As
far as the analyst or data scientist is concerned, it’s
just very fast and easy to use.

OmniSciDB is open source, designed from the
ground up to leverage the massive parallelism
of GPUs. By efficiently combining the parallel
power of multiple GPUs per server, OmniSciDB
can execute queries over billions of records in
milliseconds. That power and speed can scale
with distributed computing across multiple high
availability (HA) servers. Since OmniSciDB was
open sourced in May 2017, partners like IBM
and NVIDIA have rallied behind OmniSciDB as a
standard for GPU analytics.

OmniSci Immerse is the GPU-powered
visualization client, designed from the beginning
to take advantage of the lightning-fast SQL and
in situ rendering capabilities of OmniSciDB.

Every time a data scientist interacts with the
OmniSci Immerse dashboard, it generates a set
of SQL queries to OmniSciDB and the dashboard
refreshes in milliseconds—even with tables
containing billions of rows. Its speed comes from
the fact that a GPU node contains more than a
thousand times more processing cores than a
CPU node, and those cores can process data in
parallel.

In addition, OmniSci Immerse can leverage the
native rendering engine built into OmniSciDB.
For example, instead of having to send a billion
points from server-to-client to render a pointmap,
OmniSci Immerse can request a rendered
PNG from the server. Unlike typical business
intelligence systems, OmniSci Immerse lets the
analyst instantly generalize massive datasets at
whichever level of detail is useful, without down-
sampling or aggregating any individual datapoint.

That GPU horsepower makes OmniSci Immerse a
far superior window through which data scientists
or business analysts can work with their data.
They can explore data in its raw form. Any time
an analyst changes one data parameter, all other
charts, graphs and maps cross-filter to redraw the
entire visualization dashboard in that new context.
As the analyst becomes more familiar with the
data, she can easily update her dashboard and
add new visual objects. Compare that to speed
of iteration to the status quo on a CPU system. It
might take minutes or hours to script and run each
query on a billion-row dataset and then more time
to visualize and interpret the results.

OmniSci with IBM Power System AC922 Cognitive
Infrastructure for Enterprise AI: A Powerful Coupling
for Interactive Analytics

Using IBM with OmniSci GPU-accelerated Analytics

6

The OmniSci collaboration around IBM Power
System AC922 Cognitive Infrastructure for
Enterprise AI demonstrates the superior
performance and real-world impact of coupling
two of the highest-performing processors: the
Tesla V100 and POWER9.

In June 2019, OmniSci ran preliminary benchmark
testing to quantify the acceleration of SQL queries
on Power processors, which have the advantage
of NVLink between both CPU-GPU and GPU-GPU,
versus X86 CPUs, which have NVLink between the
GPU-GPU but not CPU-GPU.

Benchmark Queries & Results in Detail
The following tables show the query text and the
benchmark results for “first-run” queries on the
IBM Power System AC922 versus an x86 system.

Benchmark Queries
The benchmark test ran 44 queries that test
various aspects of common SQL queries, including
filtering, filtering by different data types, group
bys, different cardinalities in the data, different
calculations/aggregations (e.g., calculating the
average), extracting data (e.g., extracting the year
from a timestamp), grouping by that extracted
data, etc.

IBM Power System AC922 Cognitive Infrastructure
for Enterprise AI servers give enterprises the type
of speed at scale that data scientists and business
leaders need to stay ahead of new business
challenges. These analytics require both the scale
of big data and sub-second query speed, for use
cases like:

• Telecommunications Network Reliability Analysis
• Vehicle Telematics Analysis
• Investment Banking Alternative Data Insights
• Utility Smart Meter Analysis
• Oil & Gas Well Log Analysis
• Pharmaceutical Clinical Trial Analysis
• Cyber Incident Investigation
• Defense and Intelligence GEOINT

Test system and configurations with
NVLink (“AC922”):
•	 IBM Power System AC922 Cognitive

Infrastructure for Enterprise AI
•	 GPUs: 4 x NVIDIA Tesla V100 SXM2
•	 CPUs: IBM Power9, 2 x 16 cores
•	 Memory: 256GB

Test system and configurations without
NVLink (“X86”):
•	 Intel(R) Xeon(R) CPU @ 2.30GHz
•	 GPUs: 4 x NVIDIA Tesla V100 SXM2
•	 CPUs: Intel X86, 48 cores
•	 Memory: 312GB

Benchmark System and Query Specifications
The following table shows the specifications of the two systems tested.

OmniSci Benchmark Testing of IBM Power System
AC922 Cognitive Infrastructure for Enterprise AI
Demonstrates the Power of NVLink

Using IBM with OmniSci GPU-accelerated Analytics

7

Query Query Text

Q1 select count(*) from ##TAB##

Q2 select carrier_name, count(*) from ##TAB## group by carrier_name

Q3 select carrier_name, avg(arrdelay) from ##TAB## group by carrier_name

Q4 select origin_name, dest_name, avg(arrdelay) from ##TAB## group by origin_name, dest_name

Q5 select date_trunc(month,dep_timestamp) as ym, avg(arrdelay) as del from ##TAB## group by ym

Q6 select dest_name, extract(month from dep_timestamp) as m, extract(year from dep_timestamp) as
y, avg(arrdelay) as del from ##TAB## group by dest_name,y,m

Q7 select count(*) from ##TAB## where origin_name = 'Lambert-St Louis International'

Q8 select count(*) from ##TAB## where origin_name='Lambert-St Louis International' and dest_name
= 'Lincoln Municipal'

Q9 select uniquecarrier,flightnum,dep_timestamp,dest_lat from ##TAB## where origin_name = 'Lam-
bert-St Louis International' and flightnum=586

Q10 select origin_name, dest_name, avg(arrdelay), avg(depdelay), avg(arrdelay * depdelay) from
##TAB## group by origin_name, dest_name

Q11 select uniquecarrier,flightnum,dep_timestamp,dest_lat from ##TAB## where origin_name = 'Lam-
bert-St Louis International' and flightnum=586 limit 5000

Q12
SELECT ##TAB##.carrier_name as key0,AVG(##TAB##.depdelay) AS x,AVG(##TAB##.arrdelay)
AS y,COUNT(*) AS size FROM ##TAB## WHERE ((##TAB##.dep_timestamp >= TIMESTAMP(0)
'1996-07-26 16:30:06' AND ##TAB##.dep_timestamp < TIMESTAMP(0) '1997-05-16 16:30:06'))
GROUP BY key0 ORDER BY size DESC LIMIT 50

Q13
SELECT extract(month from ##TAB##.arr_timestamp) as key0, extract(isodow from ##TAB##.
arr_timestamp) as key1, COUNT(*) AS color FROM ##TAB## WHERE ((##TAB##.dep_timestamp
>= TIMESTAMP(0) ‘1996-07-28 00:00:00’ AND ##TAB##.dep_timestamp < TIMESTAMP(0) ‘1997-
05-18 00:00:00’)) GROUP BY key0, key1 ORDER BY key0, key1

Q14
SELECT ##TAB##.dest_state as key0, AVG(##TAB##.arrdelay) AS val FROM ##TAB## WHERE (
(##TAB##.dep_timestamp >= TIMESTAMP(0) ‘1996-07-28 00:00:00’ AND ##TAB##.dep_time-
stamp < TIMESTAMP(0) ‘1997-05-18 00:00:00’)) GROUP BY key0 ORDER BY key0

Q15
SELECT ##TAB##.dest_state as key0, AVG(##TAB##.arrdelay) AS val FROM ##TAB## WHERE (
(##TAB##.dep_timestamp >= TIMESTAMP(0) ‘1996-07-28 00:00:00’ AND ##TAB##.dep_time-
stamp < TIMESTAMP(0) ‘1997-05-18 00:00:00’)) GROUP BY key0 ORDER BY key0

Q16 select origin_name, dest_name, avg(arrdelay), avg(depdelay), avg(arrdelay + depdelay) from
##TAB## group by origin_name, dest_name

Using IBM with OmniSci GPU-accelerated Analytics

8

Query Query Text

Q17 select date_trunc(month, dep_timestamp_32_fixed) as ym, avg(arrdelay) as del from ##TAB##
group by ym

Q18 select date_trunc(month, dep_timestamp_3) as ym, avg(arrdelay) as del from ##TAB## group by
ym

Q19 select date_trunc(month, dep_timestamp_9) as ym, avg(arrdelay) as del from ##TAB## group by
ym

Q20 select dest_name, extract(month from dep_timestamp_32_fixed) as m, extract(year from dep_
timestamp_32_fixed) as y, avg(arrdelay) as del from ##TAB## group by dest_name, y, m

Q21 select dest_name, extract(month from dep_timestamp_6) as m, extract(year from dep_time-
stamp_6) as y, avg(arrdelay) as del from ##TAB## group by dest_name, y, m

Q22 select dest_name, extract(month from dep_timestamp_9) as m, extract(year from dep_time-
stamp_9) as y, avg(arrdelay) as del from ##TAB## group by dest_name, y, m

Q23
SELECT ##TAB##.carrier_name as key0, AVG(##TAB##.depdelay) AS x, AVG(##TAB##.arrde-
lay) AS y, COUNT(*) AS size FROM ##TAB## WHERE ((##TAB##.dep_timestamp_32_fixed >=
TIMESTAMP(0) ‘1996-07-26 16:30:06’ AND ##TAB##.dep_timestamp_32_fixed < TIMESTAMP(0)
‘1997-05-16 16:30:06’)) GROUP BY key0 ORDER BY size DESC LIMIT 50

Q24
SELECT ##TAB##.carrier_name as key0, AVG(##TAB##.depdelay) AS x, AVG(##TAB##.arrdelay)
AS y, COUNT(*) AS size FROM ##TAB## WHERE ((##TAB##.dep_timestamp_3 >= TIMESTAMP(3)
‘1996-07-26 16:30:06.000’ AND ##TAB##.dep_timestamp_3 < TIMESTAMP(3) ‘1997-05-16
16:30:06.000’)) GROUP BY key0 ORDER BY size DESC LIMIT 50

Q25
SELECT ##TAB##.carrier_name as key0, AVG(##TAB##.depdelay) AS x, AVG(##TAB##.arrdelay)
AS y, COUNT(*) AS size FROM ##TAB## WHERE ((##TAB##.dep_timestamp_6 >= TIMESTAMP(6)
‘1996-07-26 16:30:06.000000’ AND ##TAB##.dep_timestamp_6 < TIMESTAMP(6) ‘1997-05-16
16:30:06.000000’)) GROUP BY key0 ORDER BY size DESC LIMIT 50

Q26
SELECT ##TAB##.carrier_name as key0, AVG(##TAB##.depdelay) AS x, AVG(##TAB##.arrdelay)
AS y, COUNT(*) AS size FROM ##TAB## WHERE ((##TAB##.dep_timestamp_6 >= TIMESTAMP(6)
‘1996-07-26 16:30:06.000000’ AND ##TAB##.dep_timestamp_6 < TIMESTAMP(6) ‘1997-05-16
16:30:06.000000’)) GROUP BY key0 ORDER BY size DESC LIMIT 50

Q27

SELECT extract(month from ##TAB##.arr_timestamp_32_fixed) as key0, extract(isodow from
##TAB##.arr_timestamp_32_fixed) as key1, COUNT(*) AS color FROM ##TAB## WHERE ((
##TAB##.dep_timestamp_32_fixed >= TIMESTAMP(0) ‘1996-07-28 00:00:00’ AND ##TAB##.
dep_timestamp_32_fixed < TIMESTAMP(0) ‘1997-05-18 00:00:00’)) GROUP BY key0, key1 OR-
DER BY key0, key1

Q28
SELECT extract(month from ##TAB##.arr_timestamp_3) as key0, extract(isodow from ##TAB##.
arr_timestamp_3) as key1, COUNT(*) AS color FROM ##TAB## WHERE ((##TAB##.dep_time-
stamp_3 >= TIMESTAMP(3) ‘1996-07-28 00:00:00.000’ AND ##TAB##.dep_timestamp_3 < TIME-
STAMP(3) ‘1997-05-18 00:00:00.000’)) GROUP BY key0, key1 ORDER BY key0, key1

Q29
SELECT extract(month from ##TAB##.arr_timestamp_6) as key0, extract(isodow from ##TAB##.
arr_timestamp_6) as key1, COUNT(*) AS color FROM ##TAB## WHERE ((##TAB##.dep_time-
stamp_6 >= TIMESTAMP(6) ‘1996-07-28 00:00:00.000000’ AND ##TAB##.dep_timestamp_6 <
TIMESTAMP(6) ‘1997-05-18 00:00:00.000000’)) GROUP BY key0, key1 ORDER BY key0, key1

Using IBM with OmniSci GPU-accelerated Analytics

9

Query Query Text

Q30
SELECT extract(month from ##TAB##.arr_timestamp_6) as key0, extract(isodow from ##TAB##.
arr_timestamp_6) as key1, COUNT(*) AS color FROM ##TAB## WHERE ((##TAB##.dep_time-
stamp_6 >= TIMESTAMP(6) ‘1996-07-28 00:00:00.000000’ AND ##TAB##.dep_timestamp_6 <
TIMESTAMP(6) ‘1997-05-18 00:00:00.000000’)) GROUP BY key0, key1 ORDER BY key0, key1

Q31

select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum-
base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice *
(1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as
avg_price, avg(l_discount) as avg_disc, count(*) as count_order from lineitem where l_shipdate <=
date ‘1998-12-01’ - interval ‘90’ day (3) group by l_returnflag, l_linestatus order by l_returnflag,
l_linestatus

Q32 select l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, o_orderdate, o_shippriori

Q33

select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue from customer, orders, lineitem,
supplier, nation, region where c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey
= s_suppkey and c_nationkey = s_nationkey and s_nationkey = n_nationkey and n_regionkey =
r_regionkey and r_name = ‘ASIA’ and o_orderdate >= date ‘1994-01-01’ and o_orderdate < date
‘1994-01-01’ + interval ‘1’ year group by n_name order by revenue desc

Q34
select sum(l_extendedprice * l_discount) as revenue from lineitem where l_shipdate >=
date ‘1994-01-01’ and l_shipdate < date ‘1994-01-01’ + interval ‘1’ year and l_discount
between.06 - 0.01 and.06 + 0.01 and l_quantity < 24

Q35

select supp_nation, cust_nation, l_year, sum(volume) as revenue from (select n1.n_name as
supp_nation, n2.n_name as cust_nation, extract(year from l_shipdate) as l_year, l_extendedprice
* (1 - l_discount) as volume from supplier, lineitem, orders, customer, nation n1, nation n2 where s_
suppkey = l_suppkey and o_orderkey = l_orderkey and c_custkey = o_custkey and s_nationkey =
n1.n_nationkey and c_nationkey = n2.n_nationkey and ((n1.n_name = ‘FRANCE’ and n2.n_name
= ‘GERMANY’) or (n1.n_name = ‘GERMANY’ and n2.n_name = ‘FRANCE’)) and l_shipdate be-
tween date ‘1995-01-01’ and date ‘1996-12-31’) as shipping group by supp_nation, cust_nation,
l_year order by supp_nation, cust_nation, l_year

Q36

select o_year, sum(case when nation = ‘BRAZIL’ then volume else 0 end) / sum(volume) as mkt_
share from (select extract(year from o_orderdate) as o_year, l_extendedprice * (1 - l_discount) as
volume, n2.n_name as nation from part, supplier, lineitem, orders, customer, nation n1, nation n2,
region where p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey and
o_custkey = c_custkey and c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and
r_name = ‘AMERICA’ and s_nationkey = n2.n_nationkey and o_orderdate between date ‘1995-01-
01’ and date ‘1996-12-31’ and p_type = ‘ECONOMY ANODIZED STEEL’) as all_nations group by
o_year order by o_year

Q37

select c_custkey, c_name, sum(l_extendedprice * (1 - l_discount)) as revenue, c_acctbal, n_name,
c_address, c_phone, c_comment from customer, orders, lineitem, nation where c_custkey = o_cust-
key and l_orderkey = o_orderkey and o_orderdate >= date ‘1993-10-01’ and o_orderdate < date
‘1993-10-01’ + interval ‘3’ month and l_returnflag = ‘R’ and c_nationkey = n_nationkey group by
c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_comment order by revenue desc

Q38

select l_shipmode, sum(case when o_orderpriority = ‘1-URGENT’ or o_orderpriority = ‘2-HIGH’
then 1 else 0 end) as high_line_count, sum(case when o_orderpriority <> ‘1-URGENT’ and
o_orderpriority <> ‘2-HIGH’ then 1 else 0 end) as low_line_count from orders, lineitem where
o_orderkey = l_orderkey and l_shipmode in (‘MAIL’, ‘SHIP’) and l_commitdate < l_receiptdate
and l_shipdate < l_commitdate and l_receiptdate >= date ‘1994-01-01’ and l_receiptdate < date
‘1994-01-01’ + interval ‘1’ year group by l_shipmode order by l_shipmode

Using IBM with OmniSci GPU-accelerated Analytics

10

Query Query Text

Q39
select 100.00 * sum(case when p_type like ‘PROMO%’ then cast(l_extendedprice as FLOAT) * (1 -
l_discount) else 0 end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue from lineitem,
part where l_partkey = p_partkey and l_shipdate >= date ‘1995-09-01’ and l_shipdate < date
‘1995-09-01’ + interval ‘1’ month

Q40

select p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt from partsupp, part
where p_partkey = ps_partkey and p_brand <> ‘Brand#45’ and p_type not like ‘MEDIUM POL-
ISHED%’ and p_size in (49, 14, 23, 45, 19, 3, 36, 9) and ps_suppkey not in (select s_suppkey from
supplier where s_comment like ‘%Customer%Complaints%’) group by p_brand, p_type, p_size
order by supplier_cnt desc, p_brand, p_type, p_size

Q41

TPCHQ19.sql|select sum(l_extendedprice * (1 - l_discount)) as revenue from lineitem, part where
(p_partkey = l_partkey and p_brand = ‘Brand#12’ and p_container in (‘SM CASE’, ‘SM BOX’,
‘SM PACK’, ‘SM PKG’) and l_quantity >= 1 and l_quantity <= 1 + 10 and p_size between 1 and
5 and l_shipmode in (‘AIR’, ‘AIR REG’) and l_shipinstruct = ‘DELIVER IN PERSON’) or (p_partkey
= l_partkey and p_brand = ‘Brand#23’ and p_container in (‘MED BAG’, ‘MED BOX’, ‘MED PKG’,
‘MED PACK’) and l_quantity >= 10 and l_quantity <= 10 + 10 and p_size between 1 and 10 and
l_shipmode in (‘AIR’, ‘AIR REG’) and l_shipinstruct = ‘DELIVER IN PERSON’) or (p_partkey = l_part-
key and p_brand = ‘Brand#34’ and p_container in (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’) and
l_quantity >= 20 and l_quantity <= 20 + 10 and p_size between 1 and 15 and l_shipmode in (‘AIR’,
‘AIR REG’) and l_shipinstruct = ‘DELIVER IN PERSON’)

Q42 TWQ01.sql|SELECT UNNEST(hashtags) as key0, COUNT(*) AS val FROM ##TAB## GROUP BY
key0 ORDER BY val DESC LIMIT 227

Q43 TWQ02.sql|select sender_id, count(*) val from ##TAB## group by sender_id order by val desc limit
100

Q44 TWQ03.sql|select sender_id, origin, count(*) val from ##TAB## group by sender_id, origin order
by val desc limit 5

Using IBM with OmniSci GPU-accelerated Analytics

11

Benchmark Results

We measured an average speedup of 72% across the 44 SQL queries representative of the
OmniSci software, with speedups up to 198% for Q40.	

Query # AC922 First
 Run (ms) X86 First Run (ms) Speedup

Q1 334 360 8%

Q2 862 993 15%

Q3 1105 1139 3%

Q4 1618 2042 26%

Q5 1055 1493 42%

Q6 269 393 46%

Q7 478 567 19%

Q8 574 914 59%

Q9 268 364 36%

Q10 401 523 30%

Q11 361 434 20%

Q12 147 256 74%

Q13 336 493 47%

Q14 281 391 39%

Q15 295 463 57%

Q16 774 1,252 62%

Q17 397 577 45%

Q18 570 922 62%

Q19 584 928 59%

Using IBM with OmniSci GPU-accelerated Analytics

12

Query # AC922 First
 Run (ms) X86 First Run (ms) Speedup

Q20 719 1,037 44%

Q21 925 1,449 57%

Q22 1,303 1,359 4%

Q23 353 393 11%

Q24 240 503 110%

Q25 241 470 95%

Q26 239 405 69%

Q27 270 271 0%

Q28 422 486 15%

Q29 273 480 76%

Q30 271 462 70%

Q31 1,136 1,217 7%

Q32 2,688 2,949 10%

Q33 1,094 1,435 31%

Q34 421 500 19%

Q35 1,110 1,406 27%

Q36 1,306 1,717 31%

Q37 5,528 8,379 52%

Q38 908 1,130 24%

Q39 601 717 19%

Q40 8,951 26,644 198%

Using IBM with OmniSci GPU-accelerated Analytics

13

Query # AC922 First
 Run (ms) X86 First Run (ms) Speedup

Q41 665 783 18%

Q42 680 1,011 49%

Q43 2,310 4,275 85%

Q44 3,252 6,254 92%

AVERAGE 1,059 1,824 72%

Bring IBM Power System AC922 Cognitive Infrastructure for Enterprise AI, NVIDIA
NVLink and OmniSci to Your Team

Learn More:
Take advantage of GPU-accelerated analytics to answer questions that have been out of reach before the
rise of GPUs. Contact IBM and OmniSci (sales@omnisci.com) today to learn more about the unprecedented
power of OmniSci on IBM Power System AC922 Cognitive Infrastructure for Enterprise AI.

© 2019 OmniSci Inc.
All Rights Reserved.
For further information visit:
www.omnisci.com

In Partnership with:

