(C\hainSys

(’imart Data Platform™

Technical Architecture

Objectives

ChainSys’ Smart Data Platform enables the business to achieve these critical needs.

1. Empower the organization to be data-driven
2. All your data management problems solved
3. World class innovation at an accessible price

Subash Chandar Elango

Chief Product Officer
ChainSys Corporation

Subash's expertise in the data management sphere

is unparalleled. As the creative & technical brain behind
ChainSys' products, no problem is too big for Subash,
and he has been part of hundreds of data projects
worldwide.

Introduction

This document describes the Technical Architecture of the
Chainsys Platform

@ Purpose

The purpose of this Technical Architecture is to define the technologies,
products, and techniques necessary to develop and support the system
and to ensure that the system components are compatible and comply
with the enterprise-wide standards and direction defined by the Agency.

@ Scope

The document's scope is to identify and explain the advantages and
risks inherent in this Technical Architecture.

This document is not intended to address the installation and configuration
details of the actual implementation. Installation and configuration details
are provided in technology guides produced during the project.

22% Audience

The intended audience for this document is Project Stakeholders,
technical architects, and deployment architects

(Smart Data Platform™

]

Architecture Goals z

Platform Component Definition

o The system's overall architecture goals are to provide a highly
available, scalable, & flexible data management platform

A key Architectural goal is to leverage industry best practices
to design and develop a scalable, enterprise-wide J2EE
application and follow the industry-standard development
guidelines.

e All aspects of Security must be developed and built within the
application and be based on Best Practices.

Smart data platform Smart Business Platform

Security
Authentication /
Authorization /
Crypto

User Management
User / Groups
Roles /
Responsibility
Access Manager

Base Component
Workflow
Versioning
Notification
Logging
Scheduler

Object Manager

Gateway Component
API Gateway

@taZap‘” @taZen“

® Data Quality
Management

Data Migration

Setup Migration
e Master Data
Test data Prep Governance
® Analytical MDM
(Customer 360,
Supplier360,
Product 360)

Big Data Ingestion
Data Archival
Data Reconciliation

Data Integration

w Q salesforce =. WO rkd ay.
dunQbradstreet

@ataZense‘"

® Data Masking

® Data Compliance
(PIl, GDPR, CCPA,
0l100)

® Data Cataloging

Data Analytics

Data Visualizat

cloudera

Yo\
e CONNECT

Hortonworks

@mart BOTS™

® Used for Autonomous
Regression Testing

® Used for Load and
Performance Testing

P
@
Q A

mongoDB

@mart App Builder™

Rapid Application
Develiopment (RAD)
Framework

Visual Development
Approach

Drag & Drop
Design Tools

Functional Components
into Visual Workflow

g

€ # &
anszon Java

dataZap™

)

The Platform Foundation forms the base
on which the entire Platform is built.
The major components that create the

S e Platform Foundation
Platform are described in brief.

Security Management

Federated Authentication

SAML JWT

User Management

Credential Authentication | Users Role Hierarchy
Platform Authentication I 1 |
User Groups I—) Responsibilities

Object Access Manager

OAuth2.0 LDAP AD

Authentication Service

Credential Authenticator

REST API Publisher

SOAP Service Publisher

SSO Authenticator
Crypto Engine Base Components
o) Hashing Algorithm
Authorization Engine MD5 Platform Object Manager
Org/License Authorization SHA1
App / Node Authorization Asymmetric Encryption Workflow Object Sharing
AES 128
Access Authorization AES 256 Constructs Sharing Manager ~ Dependent Sharing
Approvals
Activities Scheduler
Gateway Component SLA Job Schedular Job Feedback
AL U Logging Collaborate Versioning
Login API Job Feedback
Application Logs EMAIL SVN
Execution Logs Web Notification GIT
API Gateway Engine .
Audit Logs Chats Database

Smart Data Platform™

]

User Management

Responsibilities

The Platform comes with
the preconfigured
Responsibilities for dataZap,
dataZen, and dataZense.
Organizations can customize
Responsibilities and are
assigned to the platform
objects with additional
privileges.

Cc_lataZap“”

The Platform comes with
the predefined Roles for
dataZap, dataZen, and
dataZense. Organizations
can create their Roles.

The Role-based hierarchy is
also configured for the user
level hierarchy. The roles are
assigned with the default
responsibilities.

The component manages all the Roles,
Responsibilities, Hierarchy, Users, &
User Groups.

The users will be assigned
these applications that are
necessary for them. The
User will be given a Role.
The hierarchy formed using
the role hierarchy setup
where a manager from the
next role is assigned.

The responsibility against
these roles is set by default
for the users. The User can
be given more responsibilities
or revoked an existing
responsibility against a role.
Users gain access to the
objects based on the
privileges assigned for the
responsibility.

The security management component
takes care of the following

Security

Management

SSL

The Platform is SSL / HTTPS enabled on the transport layer with TLS 1.2 support. The SSL is applied to
the nodes exposed to the users like the DMZ nodes and Web nodes and the nodes exposed to the
third-party applications like the API Gateway nodes.

Authentication Engine

The Platform offers a Credential based authentication handled by the Platform and also Single Sign-On
based federated authentication. Both SSO and Credential authentication can co-exist for an organization.

Credential Authentication

User authentication on the Platform happens with the supplied credentials. All the successful

sessions are logged, and failed attempts are tracked at the user level for locking the user account.
A user can have only one web session at any given point in time. Password policy, including expiry,
is configured at the Organization level, applicable for all users. Enforced password complexity like.

* Minlength
e Max length
e Usage of Numbers, Cases, and Special Characters can be set.

* No of unsuccessful attempts are also configurable

Single Sign-On

SSO can be set up with federated services like SAML, OAuth 2.0,
or JWT (Java Web Tokens). Setup for an IDP would be configured
against the organization profile, and authentication would happen
in the IDP. This can either be IDP initiated or SP

(Chainsys Smart Data Platform) initiated.

The organization users with SSO would get a different context

to login.

Authorization Engine

e The first level of authorization would be the Organization License. The Licensing engine would be
used to setup the organization for the authentications too

* The next level of authentication would be the Applications assigned to the Organization and the
respective User. The individual application nodes would be given to the organization as per the
service agreement to handle load balancing and high availability

* Authorization of pages happens with the responsibilities assigned to the users
e Authorization of a record happens concerning sharing the records to a group or individual users
* Responsibility and sharing will have the respective privileges to the pages and records

* On conflict, the Principle of least privilege is used to determine the access

Authorization Engine
* The Crypto Engine handles both asymmetric encryption and hashing algorithms

e AES 128 is the default encryption algorithm but also supports 256 bits

* The keys are managed within the Platform at the organization level. The usage of keys maintained
at the application level determines how they are used for encryption and decryption.tv

e All the internal passwords are being stored by default with MD5 hashing

* Encryption of the stored data can be done at the Database layer as needed

Authorization Engine

The workflow engine is created to manage the orchestration of the flow of activities.
The workflow engine is part of the platform foundation extended by the applications to add
application-specific activities.

Version Management

This component helps in handling the version of objects and records eligible for versioning.
The foundation has the API to version the objects and its records and can be extended by the
applications to add specific functionalities. Currently, the Platform supports SVN as default and
also supports database-level version management. Support for GIT is on the roadmap.

Notification Engine

The notification engine is the component that will do all the notifications to the User in the system.
The feature helps notify the users on the page when online in the application. The other notifications
like Mail notification and Chat Notification are also part of this component.

Logging Engine

All activity logs, both foundation, and application are handled to understand and help in the debugging.

Scheduler Creation

It enables you to schedule a job once or regularly. In terms of recurring jobs are planned minutely,
hourly, weekly, and monthly.

Scheduler Execution

The scheduler execution engine uses the configuration and fires the job in the respective application.
The next job would be scheduled at the end of each job as per the configuration.

Job Monitoring

The scheduled jobs are monitored and keep track of the progress and status at any stage. If there is
any delay in the expected job or unexpected errors, the responsible users are notified accordingly
for actions.

The API Gateway forms the foundation for publishing
and consuming services with the Platform. AP
All the eligible jobs or actions can be published for
external applications to access. The following are the
components that would form the publishing node.

Gateway Engine

Login Service

The login service is the one that authenticates if the requested consumer has the proper authentication
or credentials to invoke the job or action. The publisher engine has two methods of authentication.

* Inline authentication - where all the requests will have the Credential for authentication
and access control

* Session Authentication - This service is explicitly invoked to get the token and gather the other
published services using this token to authorize the request.

SOAP Service

The eligible jobs or actions can be published using the Simple Object Access Protocol (SOAP). SOAP is a
messaging protocol that allows programs that run on disparate operating systems to communicate
using Hypertext Transfer Protocol (HTTP) and its Extensible Markup Language (XML).

REST Service

The eligible jobs or actions can be published using the Representational State Transfer Protocol (REST).
REST communicates using the HTTP like SOAP and can have messages in multiple formats. In dataZap,
we will publish in the XML format or the JSON (JavaScript Object Notation) format.

dataZense -

dataZense offers full trust to your
Data Catalog enterprise data. Find below the components

Component of dataZense.

. Endpoints :]]
End Points Execution Engine Execution Controller

Profiling Engine Catalog Handler

(Java
€ Database RDBMS :émsc Structured Profiler Unstructured Profiler Data Registration
Metadata Engine Metadata Engine Data Governance
S e Sampling Engine Form Based Engine
‘ . - Relationship Engine OCR Engine
{R;st) Data Protection Handler
@& Cloud Applications - Data Protection Engine Analytical Engine Data Identification Rules
Rectification Engine Data Lineage Engine Data Rectification Handler
iS: Big Data Lake Virtualization Engine Pll Tag Engine
Query Execution Business Tag Engine Virtualization Handler
o Query Generator
No SQL Databases > Catalog Engine
@ Search Engine Registration Query Sequence

% Enterprise Storage T

System l
Extract Adapter
Data Object Engine SO Lr

Data Streaming Engine

>

(

dataZense™

am

This component handles the profiling of
the systems. It can address the profiling
of both structured and unstructured
data sources.

Profiling Engine

Structured Profiling

In the structure data sources, it can handle all the endpoints supported by the Platform. We can not
only profile relational databases and Big data sources it can also handle but also the cloud data sources
using the data connectors we produce.

Technical Metadata Engine

This Engine catalogs all the metadata information of the source. These are automated to have
most of the metadata information. The metadata attributes are configurable to add more
business terms as needed by the organization. The relationship between the entities is also
suggested. The data citizens would be able to approve and comment on all the suggestions
put forward by the Engine.

Unstructured Profiling

In the unstructured data profiling, we would be able to read and process all the text-based data
files from the different connectors that have been provided. The unstructured profile would
identify Tet Content, Table Formats, form-based data, and images. We will be able to create a
rule-based reading algorithm to categorize and identify data.

This component creates a catalog of all the

Cataloging Engine profiled Data and helps create a whole
meaning and purpose.

Advanced Search Engine

The search engine provided searches for the Metadata from the catalog and searched all the data
indexed across all sources to give a unified search engine. The search results would also pick the
data from the respective sources to look at the data.

Data Lineage

Data lineage traces your Data's origins, movements, and joins to provide insight into its quality.
The data lineage also considers the Data that are indexed to give more viable suggestions for

the lineage. The data lineage also offers options to indicate the forward and backward propagation
of the lineage pipeline's data.

Data Security

This Engine helps make sure that row level and column-level Security ensure only relevant data are
discovered in the catalog. It provides granular access management controls and supports secure
and role-based access levels for individuals like the data engineer, data steward, data analyst,

and scientist. Access notifications are provided to managers with the complete picture and approval
of the request to view the data.

Data Citizenship

There is a high level of flexibility for the data citizens to view the Metadata and comment and approve
on all of the results of the above Engine. This Engine also helps to build a data visualization for all the
cataloged data.

(dataZense™

am

dataZense protects your personal data
breach by identifying and remediating Data Protect Engine
the PIl data. It supports both structured
and unstructured data.

Personal Identifier Linked Engine

This Engine uses the profiling engine results to determine any piece of personal information that can
be used to identify sensitive data like Full name, Home address, Phone Number, Email address,
National Identification Number, GovernmentID's, Credit Card Number, etc.

Personal Identifier Linkable Engine

This Engine uses the profiling results to determine the information that may not identify a person
on its own. When combined with another piece of information, it could locate, trace, or locate
a person—some examples like Gender, Ethnicity, Job Position, etc.

Identification Rule Engine

This Engine helps create rules to identify the Pl data not given in the standard list of rules from
the application. You would also be able to modify the default rules to the needs as per the
organizational requirements.

Data Lake or Virtualization

This is the data movement layer of the Platform. Here data from multiple different sources with
different structures are brought into a data lake or virtualization environment. This can be used to
catalog the data for creating lineages and provision the Data for users.

Data Provisioning

This is where the Data is being provisioned to the users to view the data in a unified manner across
all the data sources. The application building layer in the Platform is used to have this enabled for
the users.

_ The Execution Engine will be available on the
dataze.nse client-side and at the cloud to handle the
Aﬂa|\/tICS & pure cloud environment and manipulate data
\Visualization in the cloud for less Load at the client end.
The Execution controller will be available in
Component the cloud to direct the execution handler in

every step.

. Endpoints . . ;
End Points Execution Engine Execution Controller

Foundation Engine

Database ((Java
@ RDBMS =osc Dataset Engine Cube Engine Visualization Engine
SAP4] Access Engine Dimension Engine View Engine
Big Data .
ﬁ lele (Rest} Data Stream Engine Query Engine Dashboard Engine
% Snapshot Engine
No SQL {Soap} . . Formatting Engine
Databases €— ® Learning Engine «—
=] Enterprise Supervised Learning Reinforcement Learning Processing Engine
== Storage Engine Engine
= System Data Model Engine
OData
) Unsupervised Learning ~ Natural Language Report Schedule Engine
ENterprice @ Engine Processing Engine
Applications
Cloud
o | . .
= Applications T
Extract Adapter
Data Object Engine Data Streaming Engine

(dataZense™

am

This is the foundation component of all : :
the activities and engines in the dataZense Foundation Engine
execution Engine.

Dataset Engine

This Engine executes the data model defined that would be required for the analyticsof the data.
This is the data holder for the reports to convert into the individual cubes and dimensions. Data can
be directly fetched from the endpoints using the endpoint connector, or for complicated API's

data would be fetched through the extract adapter in the dataZen application.

Access / Filter Engine

This Engine creates filters based on users or views. This can be used to filter records needed for a
particular Chart and can be used to filter data to be processed based on the User’s access or
privileges set in the dataset model.

Data Streaming Engine

This Engine streams the manipulated data to the controller to produce the visual effect on the data.

Analytics Engine

This is the Engine that does all the analytics on the dataset to produce the results. The main
components of this Engine are the

Cube Engine

This Engine generates the cubes from the data in the dataset to run the analytics on the data based
on the dimensions and KPI's configured in the dataset.

Query Engine

Generates query on the cube to fetch the needed report from the cube. The Data is streamed to the
controller to form the visual effects on the data.

. - : This is the foundation component of all
\Visualization Engine the activities and engines in the
dataZenseexecution Engine.

View Engine

Multiple chart types can be created in the visualization component. The User can change the
compatible charts based on the dimensions and KPI's in the runtime. The data used for
the views can be downloaded in CSV or Excel format.

Dashboard Engine

These multiple views are assigned and arranged for a dashboard. We can bring in various views
from various datasets into a dashboard. There are options to drill down based on the filters created
from one filter to impact or not to impact the other dataset views. The dashboard can be made fluid
to change the views at runtime as per the User's choice.

Snapshot Engine

The snapshot engine generates the snapshot of a dashboard, not just which is in the browser’s
view but the entire dashboard even if not visible.

Formatting Engine

This component helps to create and handle the formatting of the fonts and colors of the charts.
This also addresses the conditional formatting based on the data.

Processing Engine
Report Scheduling Engine

This Engine processes the data and generates the reports/dashboards at a scheduled time.
These dashboards and reports can also be sent as attachments to emails.

Single Data Management Platform, solves all

your data management needs.

r—]Dllstrlbuted compgtlng helps in scaling both System Technolog\/
orizontal and vertical.

- Battle tested with several Fortune Landscape

500 Organizations.

Many Fortune 500 Organizations are well

poised to select ChainSys for their data projects.

¢ sprin \cpars
£11 @B Cow

(Iioundation Tech™
)
DMZ Nodes DMZ Nodes DMZ Nodes DMZ Nodes

Web Application € DataMart
/ APACHE HTTPD Server (=2 @undatmnTech -

£11 @dweg @struts

PostgreSQL

Web Load Balancing

Reverse Proxy = @undation Tech™ ORACLE'
Forward Proxy - Collaborate 2 LS 4 @j‘ah"" @undatlon Tech”) DATABASE
server ég}i\"&'ﬂVE MQ -

S Indexin r
&b -B» @undation Tech” = de 8 Store
single sign (Ffundation Tech™ et @undation Tech™ & HAPROXY | € @‘aze“se'“ 3 dimple.s ->
On = Gateway = ple.) S [\’%
R RAnalytics olr

App Data Store

F d . N d Q @undation Tech™ -
oundation Nodes Comartnpp Buitder | = -]
n.‘de ® 1218 l‘: CouchDB

(@) 1onic v4
<
redis Caching Node @mm e @undation Tech

Selenium Pl
WebDriver %Ll

®)

Schedular @Undation Tech”
Node Default Data Stores

=§ € Metadata Store € Versioning Store
Flle p Log @undatlon Tech” —

Server

ORACLE e 0 it
PostgreSQL DATABASE —— g

These nodes are generally the only nodes
exposed to the external world outside the
DMZ Nodes enterprise network. The two nodes in this
layer are the Apache HTTPD server and the
"Single Sign 0" Node.

Apache HTTPD

The Apache HTTPD server is used to route the calls to the Web nodes. The server also handles the load
balancing for both the Web Server Nodes and the API gateway Nodes. The following features are used in

the Apache HTTPD
e Highly scalable

e Forward / Reverse proxy with caching

e Multiple load balancing mechanisms

* Fault tolerance and Failover with automatic recovery

o WebSocket support with caching

o Fine-grained authentication and authorization access control
o Loadable Dynamic Modules like ModSecurity for WAF etc.

e TLS/SSL with SNI and OCSP stapling support

Web Nodes Single Sign-0n

This layer consists of the nodes exposed to the This Node is built on the Spring Boot application
users for invoking the actions throughfrontend with Tomcat as the Servlet container.

or a third-party application asAPI's. The nodes Organizations opting to have a single sign-on would
available in this layer would be theWeb Server have a separate SSO node with a particular context.
to render the web pages, API Gateway for other The default context will take them to the
applications to interact with the application, and platform-based authentication.

the collaborate node for notifications.

\Web Server

The web application server hosts all the web pages of the chainsys platform.
o Apache Tomcat 9.x is used as the servlet container.

* JDK 11 is the JRE used for the application. The Platform works on
Open)DK / Azul Zulu / AWS Corretto and Oracle JDK.

e Struts 1.3 platforms are used as the controllers

» Integration between the webserver to the application nodes is handled with
Microservices based on the SpringBoot

* The presentation layer uses HTML 5 / CSS 3 components and uses many
scripting frameworks like JQuery, d3js, etc.

* The web server can be clustered to n- nodes as per the number of concurrent
users and requests.

Gateway Node

This Node uses all the default application services.

« This Node uses the service of Jetty to publish the APl as SOAP or REST API.

* The API Gateway can be clustered based on the number of concurrent API calls
from the external systems.

o The Denial of Service (DoS) is accomplished in both JAX-WS and JAX-RS to prevent illegal attacks.

Collaborate

This Node is used to handle all different kinds of notifications to the users like front end notifications,
emails, push notifications (in the roadmap). This Node also has the chat services enabled that can be
used by the applications as needed

« The notification engine uses netty APIs for sending notification from the Platform.

* Apache Active MQ is used for messaging the notification from application nodes.

web servers.

* The application nodes are spring boot applications for
communicating between theother application nodes and

Appllcatlon NOdeS » JDK 11 is the JRE used for the application. The Platform

(dataZap™ (dataZen™

] am

Node Node

The application uses only
the default services that
are mentioned above.

The application uses only the
default services that are
mentioned above.

(Smart Data Platform™

]

works on Open]DK / AzulZulu / AWS Corretto and Oracle JDK.

» Load Balancing is handled by the HAProxy based on the
number of nodes instantiated for each application.

(dataZense™
= Node

(Analytical Services /
Catalog Services)

The application uses all the
default services that are
mentioned above.

In addition to this, it also uses

R analytics for Machine
Learning algorithms.

It also uses D3 and Dimple JS
for the visual layer.

(Smart BOTS™

The application uses all the default services

that are mentioned above. In addition to this,
it also uses the Selenium API for web-based
automation and Sikuli.

@mart App Builder™

/ The application uses all the default services that are
¥ mentioned above. These services are used to configure
the custom applications and to generate dynamic web
applications as configured.

The mobile applications' service would need
NodeJS 12.16, which would use the lonicFramework V4
to build the web and mobile apps for the configured
custom applications.

This Node uses only the default application node services.

* This Node can be clustered only as failover nodes.

* When the primary Node is down, the HAProxy makes the
Scheduler NOde secondary Node the primary Node

e The secondary Node handles notifications, automatic
rescheduling of the jobs. It calls each of the application
objects that are schedulable to take all the possible
exception scenarios to be addressed.

* Once the Node is up and running, this will become the
secondary Node.

Data Storage Nodes

Database
Chainsys Platform supports both PostgreSQL 9.6 or higher and Oracle 11g or higher databases for both

* Metadata of the setups and configurations of the applications

e Data marting for the temporary storage of the data.

The Platform uses PostgreSQL for the Metadata in the cloud. PostgreSQL is a highly scalable database.

Designed to scale vertically by running on more significant and faster servers
when you need more performance

Can be configured to do horizontal scaling, Postgres has useful streaming
replication features so you can create multiple replicas that can be used for
reading Data

It can be easily configured for High Availability based on the above.

o Password Storage Encryption

PostgreSQL offers encryption

e Encryption For Specific Columns at several levels and provides
flexibility in protecting data

e Data Partition Encryption from disclosure due to database
server theft, unscrupulous

* Encrypting Passwords Across A Network administrators, and insecure
networks. Encryption might

o Encrypting Data Across A Network also be required to secure s

o ensitive data.
e SSL Host Authentication

e Client-Side Encryption

Multi-tenant database architecture has been designed based on the following

* Separate Databases approach for each tenant
* Trusted Database connections for each tenant
® Secure Database tables for each tenant

® Easily extensible Custom columns

e Scalability is handled on Single Tenant scaleout

Cache Server

Redis cache is used for caching the platform configuration objects and execution progress information.

This helps to avoid network latency across the database and thus increases the performance of
the application.

When the durability of Data is not needed, the in-memory nature of Redis allows it to perform well
compared to database systems that write every change to disk before considering a transaction
committed.

The component is set up as a distributed cache service to enable better performance during data access.

Redis cache can be made HA enabled clusters. Redis supports master-replica replication

(Smart Data Platform™

am

File Log Server

This component is used for centralized logging, which handles the application logs, execution logs, and
error logs in the platform applications' common server. Log4) is used for distributed logging.

These logs can be downloaded for monitoring and auditing purposes. A small Http service gets executed,
which allows the users to download the file from this component—implemented with the Single Tenant
scaleout approach.

Subversion (SVN) Server

Apache Subversion (abbreviated as SVN) is a software versioning and revision control system distributed
as open-source under the Apache License. The Platform uses SVN to version all the metadata
configurations to revert in the same instance or move the configurations to multiple instances for
different milestones. All the applications in the Platform use the foundation APIs to version their objects
as needed.

@taZapm @taZenm @ataZense“‘ @mart App Builder™

Loader Adapters, Data Model, Data Set, Object Model,

Data Objects, Rules, Views, Layouts,

Data Extracts, Augmentations, Dashboards, Workflow

Data Flows, Workflow Ad-hoc Reports
Process Flows,
Migrations Flows,

Reconciliations

ChainSys Platform uses SOLR for the data cataloging
needs as an indexing and search engine.

Solr is an open-source enterprise-search platform.
Its major features include full-text search, hit highlighting, Apache SO | R
faceted search, real-time indexing, dynamic clustering,
database integration, NoSQL features, and rich
document handling.

Apache Solr was used over the others for the
following reasons.

Real-Time, Massive Read, and Write Scalability

Solr supports large-scale, distributed indexing, search, and aggregation/statistics operations, enabling it to
handle large and small applications. Solr also supports real- time updates and can take millions of writes
per second.

SQL and Streaming Expressions/Aggregations

Streaming expressions and aggregations provide the basis for running traditional data warehouse workloads
on a search engine with the added enhancement of basing those workloads on much more complex
matching and ranking criteria.

Security Out of the Box

With Solr, Security is built-in, integrating with systems like Kerberos, SSL, and LDAP to secure the design
and the content inside of it.

Fully distributed sharding model

Solr moved from a master-replica model to a fully distributed sharding model in Solr 4 to focus on
consistency and accuracy of results over other distributed approaches.

Cross-Data Center Replication Support

Solr supports active-passive CDCR, enabling applications to synchronize indexing operations across
data centers located across regions without third-party systems.

Solr is highly Big Data enabled

Users can storeSolr's data in HDFS. Solr integrates nicely with Hadoop's authentication approaches, and
Solr leverages Zookeeperto simplify fault tolerance infrastructure

Documentation and Support

Solr has an extensive reference guide that covers the functional and operational aspects of Solr for
every version.

Solr and Machine Learning
Solr is actively adding capabilities to make LTR an out of the box functionality.

Chainsys Platform uses CouchDB for mobile applications
in the Application Builder module. PostgreSQL would be
the initial entry point for the Dynamic Web Applications.
Apache CouchDB The data in the PostgreSQLwill sync with CouchDB if
mobile applications are enabled. In contrast, the initial
ntry point for the Dynamic Mobile Applications would be
in the PouchDB. CouchDB syncs with the PouchDB in the
mobile devices, which then syncs with PostgreSQL.
The main feature for having CouchDB are

o CouchDB throws the HTTP and REST as its primary means of communication out the window to talk
to the database directly from the client apps.

o The Couch Replication Protocol lets your Data flow seamlessly between server clusters to mobile
phones and web browsers, enabling a compelling offline-first user-experience while maintaining high
performance and strong reliability.

e Another unique feature of CouchDB is that it was designed from the bottom-up to
enable easy synchronization between different databases.

e CouchDB has JSON as its data format.

(Smart Data Platform™

]

Distributed Mode

Chainsys Smart Data Platform is a highly Deployment at
distributed application and with a highly Customer

scalable environment. Most of the nodes are
horizontally and vertically scalable.

DMZ Services \IM

APACHEHTTPD Server g single sign on

Database Layer

Web Page Services Collaborate Services API Gateway Versioning VM

— git

Web Container Cluster

= Nodel - Node n % Node1 Node1 Node n

Foundation Services Cluster

ORACLE’

Database Culster _
PostgreSQL DATABASE

Foundation Services Cluster File/Log Services Scheduling Services Primary Node Secondary Node
« Metadata « Metadata
redis Caching Node Node1 PrimaryNode ~ Secondary Node . Datamart . Datamart
/
SOLR Cluster SOU’Q
Smart Data Platform Cluster
Master Node Stave node
« Corel « Corel
@taZap“‘ @taze"“‘ @ataZense“‘ . Core2 Core 2
5 Web Page Services Web Page Services Web Page Services Web Page Services .
ot CouchDB Cluster ‘: CouchDB
= % Nodel .- Node n Nodel .- Node n Nodel .- Node n ‘R Nodel - Node n
am Node 1 Node 1
Doc 2 « Doc2
« Doc2 « Doc2
(Smart BOTS™ @mart App Builder™
Design & Process Layout Build Layout Rendering
Nodel .- Node n @
Nodel .- Node n Node1 @ Nodel ... Node n @

DMZ Nodes

o Apache HTTPD would be needed in a distributed environment as a load balancer. This would also be
used as a reverse proxy for access outside the network. This would be a mandatory node to be available.

e SSO Node would be needed only if there is a need for the Single-Sign-On capability with any federated
services.
Web Cluster

» (Chainsys recommends having a minimum of two web node clusters to handle high availability and
Load balanced for better performance. This is a mandatory node to be deployed for the
Chainsys Platform.

* The number of nodes is not restricted to two and can be scaled as per the application
pages' concurrent usage.

* The Collaborate node generally is a single node, but the Node can be configured for
High Availability if needed.

Gateway Cluster

e The API Gateway Nodes are not mandatory to be deployed. It would be required only when there is a
need to expose the application APIs outside the Platform.

* When deployed, Chainsys would recommend having a two-node cluster to handle high availability and
load balancing in high API call expectations.

e The number of nodes in the clustered can be determined based on API calls’ volume and is not
restricted to two.

Application Cluster

e The HAProxy or Apache HTTPD acts as the load balancer. All the calls within the application nodes are
handled based on the node configuration. If the Apache HTTPD is used in the DMZ for Reverse Proxy,
it is recommended to have HAProxy for internal routing or a separate Apache HTTPD.

e The number of nodes in the cluster is not restricted to two. Individual application nodes can be scaled
horizontally for load balancing as per the processing and mission-critical needs.

* Integration Cluster is a mandatory node that will be deployed in the Platform. All the other applications
depend on this application for all the integration needs.

 Visualization Cluster is also a mandatory node that will be deployed in the Platform. All the other
applications depend on this application for all the dashboard report needs.

The visualization uses the R Studio Server for Machine Learning capabilities. It is needed only when
the Machine Learning algorithms are to be used.

When deploying the MDM, the “"Smart Application Builder” node would be needed for
the dynamic layout generation and augmentation. The vice versa doesn't apply as
“Smart Application Builder” is not dependent on the MDM nodes.

Node]S would be needed only when mobile applications are to be dynamically generated. The Apache
HTTPD server will handle load balancing.

The Scheduler cluster would be needed even if one of the applications use the scheduling capability.
The cluster would only be a High Availability (Failover) and not load balanced. The number of nodes is
restricted to two.

Data Storage Nodes

Generally, the PostgreSQL database would be configured for High Availability as an Active - Passive
instance. Depending on the number of read-write operations, it can be Load balanced too. This can be
replaced by Oracle 11g or more significant if the client wants to use the existing database license.

File Server would be needed only if there is no NAS or SAN availability to mount the same disk space
into the clusters to handle the distributed logging. The NFS operations for distributed logging would
require this Node.

SVN server would be mandatory to store all the configuration objects in the repository for porting from
one instance to the other. Generally, it would be a single node as the operation on this would not be
too high.

REDIS is used as a cache engine. It is mandatory for distributed deployment. This can be configured for
high availability using the master-slave replication.

SOLR would be needed only if data cataloging is implemented, and search capability is enabled.
This can be configured for High Availability. SOLR sharding can be done when the Data is too large for
one Node or distributed to increase performance/throughput.

CouchDB would be needed only if dynamic mobile applications are to be generated. CouchDB can be
configured for high availability. For better performance, Chainsys recommends having individual
instances of CouchDB for each active application.

@mart Data Platform™

Single Node does not mean that literally.

Here we would say that all application services produced by

the ChainSys Platform are deployed in a Single Node or Server.

: The rest of the data storage nodes are separate servers

Slngl e Node or nodes. This type of installation would generally be for a
patching environment where there are not too many operations.
These would also be recommended for non-mission critical
development activities where high availability and scalability
are not a determining factor.

DMZ Services VM

o single sign on /APACHE HTTPD Server @undation Package

S50

Application Services VM (Foundation Package

: Apache () @ woore Collaborate

a © -

File / log Server Scheduling Services

Foundation Services

Caching Service

@mart Data Platform™ (dataZap““ @tazenm Qﬂtazense"‘ QZ?V'Y;!? 2253.'?55

&=_ Services '~ _Services
Smart BOTS" (: m Design & Process Layout Build & @
C Services Emart APP Builder Services Render Services
! l 1 !

NoSQL VM Indexing VM

Database VM Versioning VM

Metadata / Datamart

B N

E
omas T @it c‘haos Solr -

PostgreSQL

DMZ Nodes

Apache HTTPD would be needed only if a reverse proxy is required for access outside the network.
This is not a mandatory node for a Single Node installation.

SSO Node would be needed only if there is a need for the Single-Sign-On capability with any federated
services.

Application Server

There will be just one Apache Tomcat as the web application service and will not be configured for
high availability.

Collaborate service will have the Apache ActiveMQ and the spring integration service.

The API Gateway would be required only if the objects are to be published as a REST API or SOAP Service.
This service can be shut down if not needed.

The Integration Service, Visualization Service, and Scheduler Service would be mandatory services
running.

The rest of the applications would be running or shut down depending on the license and need.

Data Storage Nodes

PostgreSQL would be in a separate node. Chainsys does not recommend having the applications and the
Databases on the same machine.

SVN server would be mandatory to store all the configuration objects in the repository for porting from
one instance to the other.

SOLR would be needed only if data cataloging is implemented, and search capability is enabled.

CouchDB would be needed only if dynamic mobile applications are to be generated as a separate node.

Built-in Configuration management
approaches for check-in and check-out
without leaving ChainSys Platform.

- Gives a great Software development
lifecycle process for your projects.

- All your work is protected in a secure
location and backed up regularly.

Instance Strategy

o —
|
J) y
DEV TST/QA PRD
DEV Meta DB TST Meta DB PRD Meta DB

Generally, the above instance propagation strategy is recommended. Depending on the applications in
use and the Load, it could be determined to go with a single node deployment or a distributed model
deployment. Generally, it is recommended to have a distributed deployment for Production instances.
The adapters are forward propagated using the SVN repository.

All the instances need not follow the same deployment model. For the reverse propagation of the example
from Production to Non-Production instances, we can clone the application and the data storage layer and
have the node configurations re-configured to the lower instances.

ChainSys Platform is available on the cloud.

The Platform has