

Urbanism Next Conference March 6, 2018

The Role of Transit in an Automated Future
Planning for Uncertainty

Lorna Parkins, AICP

Planning for Uncertain Times

How are Communities Planning for CAV?

Bloomberg and the Aspen Institute reached out to 38 cities who are actively working on CAV strategies and found that:

- Last mile transit is the "low-hanging fruit" (right)
- Lack of funds is seen as the biggest barrier to municipal CAV efforts

Anticipated Uses of CAVs

Technology Opportunities

- 1,065 Rankings for eight categories
- 57 Comments

Respondents could select 3 items

Technology Concerns

- 1,042 Rankings for eight categories
- 33 Comments

Respondents could select 3 items

Investment Priorities

- 6,102 Total Rankings
- 573 Comments
- Emerging technologies, mobility on demand, and autonomous shuttles all ranked outside the top 10

How do we plan for uncertainty?

Preparing for Uncertainty: Scenario Planning

OVERVIEW

Scenario Planning for Uncertain Times

Scenario Planning Approaches

Normative scenarios envision what SHOULD happen?

EXPLORATORY scenarios ask what COULD happen?

FHWA Scenario Planning Guidance

Stay tuned for new publications on "NextGen" Exploratory Scenario Planning...

Start with Drivers

Assessing Drivers

Example of Public Input Received on Technology Drivers

Chain of Logic from Inputs to Outputs

Potential Scenario Planning Outputs

Linking Land Use and Transportation

Two Key Criteria to Define Placetypes

The VTrans2040 Placetypes reflect areas with noticeable differences in travel behavior as it relates to land use patterns. Each place type varies by **mode split** and **VMT per capita**

V1 – Rural

V2 – Low-Density Suburban V3 – Small Town/ Suburban V4 – Multimodal Suburban V5 – High Density Suburban V6 – Multimodal Urban

Linking Land Use and Transportation - Example

V2V connectivity. I-95 Corridor Coalition

Scenario Overview

Key Findings: How can we prepare for the future?

Anticipate Increased Demand

- Automated and on-demand vehicles will unleash growth in travel demand
- Foreseeable changes in travel behavior with connected and automated vehicles (CAV) will increase travel demand
- Tech. innovations in the economy as well as transportation will spur growth in freight traffic

Technology Will Enhance System Performance

- Safety improvements will reduce congestion from incidents
- Information will improve efficient use of the whole system
- Vehicles will become safer, smaller, and able to travel closer together

Timing is Key – Balancing these two sides of the technology future is critical

Design is also Key – Walkable and multimodal places have the most balanced outcomes

Takeaways by Placetype

V1 – Rural

V2 – Low-Density Suburban

V4 – Multimodal Suburban

V5 – High Density Suburban

V6 – Multimodal Urban

V7 – High Density Urban

Recurring congestion on twolane rural roads

More VMT on local streets and collectors

More trips in high density suburban/urban areas

Operational Improvements

Innovative intersection design, dedicated CAV lanes on highways

Demand Management

*ITS, carpools, vanpools park & ride, transit, and peak travel restrictions

Complete Streets w/ flexible route transit

Complete Streets w/ integrated, full-spectrum transit

<u>^</u>

Risks Specific to Transit

- Mobility-on-demand could threaten transit viability
- Mobility-on-demand pricing could have equity implications
- Decoupling transit and land use planning could affect urban form, with additional consequences
- Rising transportation demand could cause additional congestion (and pollution)
- Local streets and other two-lane roads may have challenges accommodating higher demand

Opportunities

- Coordination of transportation, land use and community design can establish the roles of transit and mobility on demand to meet local objectives
- Early adoption of CAV technology in transit can support more efficient, cost effective and accessible public transportation
- Funding to support transit can be bolstered by partnerships with private sector entities on sharing trip-making data generated from CAVs, Smart Corridors, etc.

It's all Related

Thank You!

Lorna Parkins, AICP Vice President, Transportation Planning Michael Baker International

Lparkins@mbakerintl.com