Discussing the "positive utilities" of autonomous vehicles:

Will travelers really use their time productively?

Patrick A. Singleton, Ph.D. – Utah State University 2018 Urbanism Next Conference – 5 March 2018 – Portland, OR

If someone from the 1950s suddenly appeared today, what would be the most difficult thing to explain to them about life today?

A: I possess a device [a smartphone], in my pocket, that is capable of accessing the entirety of information known to man.

I use it to look at pictures of cats and get in arguments with strangers.

Autonomous vehicles \rightarrow Travel behavior

- Report Potential implications
 - ↑ Highway capacity
 - ↑ Intersection capacity
 - ↑ Mobility
 - ↑ Vehicle miles traveled

 - Representation of the Parking demand

$AVs \rightarrow \downarrow Value of time (VOT) \rightarrow \uparrow VMT$

- Subjective value of travel time savings \rightarrow value of (travel) time (VOT)
 - Willingness to pay for marginal reduction in travel time (\$/min or \$/hr)
- Travel-based multitasking = engaging in other activities while traveling

Images: https://mondaynote.com/autonomous-cars-the-level-5-fallacy-247ae9614e14
https://www.studentnewsdaily.com/daily-news-article/feds-want-to-regulate-self-driving-cars/

Simulation studies: some +50% ↓ VOT

Study	Area	AV VOT Assumptions
Gucwa, 2014	San Francisco Bay Area, CA	100% of high-quality rail VOT; 50% of car driver VOT; zero
Speiser et al., 2014	Singapore	30% of car driver VOT
Childress et al., 2015	Seattle, WA	65% of car driver VOT (for high-income travelers only)
Davidson & Spinoulas, 2015	Brisbane, Australia	95–75% of car driver VOT (for lower level AVs); 90–50% of car driver VOT (for higher level AVs)
Kim et al., 2015	Atlanta, GA	50% of car driver VOT
van den Berg & Verhoef, 2015	United States, the Netherlands	100–61% of car driver VOT
La Mondia et al., 2016	Michigan	75% of car driver VOT
Wadud et al., 2016	(none)	95% of car driver VOT (for lower level AVs); 50–20% of car driver VOT (for higher level AVs)
Auld et al., 2017	Chicago, IL	100%, 75%, 50%, 25% of car driver VOT
Kockelman et al., 2017	Austin, TX	100% of transit VOT; 50% of car driver VOT; zero

What do travel behavior/modeling experts think?

Travel behavior/modeling "experts" are more skeptical than industry leaders.

- Delphi poll of 45 travel modeling experts (Willumsen & Kohli, 2016)
 - Average $10\% \downarrow VOT$ (but wide range of estimates)
- Survey of 20 Netherlands transport experts (Milakis, Snelder, et al., 2017)
 - Most aggressive AV scenario: 18% ↓ VOT (2030), 31% ↓ VOT (2050)
 - More realistic AV scenarios: $3\% \downarrow \text{VOT} (2030), \sim 20\% \downarrow \text{VOT} (2050)$
- Poll of 109 travel survey researchers/practitioners (ISCTSC, 2017)
 - Will commuters tolerate ↑ TT in AVs? 45% certain, 39% perhaps, 16% no

How useful is travel-based multitasking?

Most multitasking isn't productive/useful, except for long-distance train travel.

- Review of travel-based multitasking (Keseru & Macharis, 2017)
 - Train travelers more likely to read, write, rest, sleep, or do any other activities
- Survey of ~700 commuters in Portland, OR (Singleton, 2017, 2018)
 - Transit/auto passengers: most common activities not traditionally productive: thinking/daydreaming, viewing scenery or watching people, listening to music
 - Most activity participation was not (or negatively) associated with mode choice
 - Common travel-based multitasking may be less about productivity and more about passing the time or coping with burden/boredom of commuting.

What does the general public think?

General public may not perceive "productive time use" as a major AV benefit.

- Survey of 1,000 Germans (Cyganski, Fraedrich, & Lenz, 2015)
 - Biggest perceived advantages of AVs:
 - "Enjoy[ing] the trip and the landscape"
 - "Talk[ing] to companions or other passengers"
 - ~13% of respondents thought they would use an AV to "work during the trip"
- Willingness-to-pay for AV features (Bansal et al., 2016; Daziano et al., 2017)
 - \sim \$3,000 for partially-automated; \sim \$5,000–7,000 for fully-automated
 - Non-trivial share of respondents unwilling to pay anything for AV technologies

Will AVs feel more like trains or cars?

AV experience may be closer to a car passenger, with limited multitaskability.

- Human comfort, performance, and multitasking
 - Calculation Limited ranges of acceleration/deceleration, lateral motion, and jerk
- Microsimulation study of AV operations (Le Vine, Zolfaghari, & Polak, 2015)
 - Restricting AV accelerations/decelerations to light-rail transit levels

 decreased intersection capacity, increased intersection delay
- Carsickness (Diels & Bos, 2016; Nelson, 2017)
 - \approx >\frac{2}{3} of the population exhibits motion sickness while riding in a car

What about private vs. shared AVs?

Time value efficiencies of AVs may be diminished for shared vehicles/trips.

- Survey of 556 residents of Austin, TX (Zmud, Sener, & Wagner, 2016)

 Most people would rather own an AV than use a shared AV or take a ride-share AV
- Survey of 435 Australians (Krueger, Rashidi, & Rose, 2016)

 VOT impacts: \$\dagger\$ 45\% for ride-alone shared AVs; \$\dagger\$ 10\% for shared-ride AVs
- Stated preference experiment in Netherlands (Yap, Correia, & van Arem, 2016)

 Egress trips from train: VOT for AV car-share > VOT for manual car-share

Summary

Emerging evidence contrary to popular narrative

 \triangle AVs \rightarrow more productive uses of travel time (for working, reading, being entertained,

sleeping, etc.) → reductions in VOT

 \bigcirc Importance: VOT \rightarrow travel demand \rightarrow VMT \rightarrow ...

- Echo others with similar arguments:
 - Cyganski, Fraedrich, & Lenz, 2015
 - Milakis, van Arem, & van Wee, 2017
 - Sivak & Schoettle, 2016

Questions? Comments?

Photos © Patrick A. Singleton

Patrick A. Singleton

Assistant Professor Civil & Environmental Engineering Utah State University

patrick.singleton@usu.edu 435-797-7109

