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Incomplete Observations

» Today we study models where the dependent variable is not completely observed

» We study two main cases:

® censoring: y is censored at some point of the distribution

® truncation: y is set to missing above some point in the distribution



Censored Data

» A variable can be either top or bottom coded

» Top coded

» Bottom coded

ify* > a
ify* <a

ify* <b
ify* > b



Censored Data - Examples

Censored data can arise for two main reasons.

» First, data artificially top or bottom coded

® e.g. wages above some level (ceiling on social security contributions)

® sometimes censoring imposed to prevent identification

» Second, data arise naturally from the problem under consideration

® e.g. charity donations, people decide not to donate and the distribution shows a mass
point at zero

® in natural censoring, the uncensored variable does not exist, true variable is already
censored



Truncated Data

» Similar to censoring, but replaced with missing

» Hence, we have
y* fa<y"<b
y= .
otherwise

» Sometimes truncation due to fact that X are missing



Implications of Censoring in OLS

» Let's consider the model
y"=XB+u

» Suppose that y* is the complete variable

» Assume the model satisfies

» However, we do not observe y*



Implications of Censoring in OLS

» The conditional mean or regression function of the OLS is

E(y'[X) = Xp

» If we run OLS on censored variable we assume that conditional mean is linear

» Consider some censoring
)y ify" >0
~lo ify* <o



Implications of Censoring in OLS

» The conditional mean can be decomposed as

E (y|X) = Pr(y =0|X) x 0+ Pr(y > 0]X) E(y|X,y > 0)
= Pr(y>0[X)E(yX,y > 0)
= Pr(u> —pX) [XB +E (ulu > —XB)]
» this is not linear!
» We can also rewrite it as
E (y|X) = X8 + [Pr(u > —BX) E (ulu > —BX) — (1 — Pr (u > —pBX)) XB]

» Hence, estimation of OLS with censored variable is essentially an OLS with
omitted variable!

» Notice that the omitted term is correlated with X



Implications of Truncation in OLS

» Now, consider truncated data

_Jyr ify*>0
. ify* <0

» Here the conditional mean is

E(y[X) = E(y"|X,y* > 0)
—E(XB+ulX,XB +u > 0)
= XB+E (uX,u> —Xg)

» We have an omitted variable problem



Dealing with Censored Data: Tobit Model

» We now introduce the Tobit model to solve the OLS bias

» As we have seen before when censoring at 0

E (y|X) = Pr(u > —BX) [XB + E (u|lu > —XB)]

» Tobit assumptions:
1. E(u)y=0
2. E(X'u) =0
3. u~N(0,02)



Dealing with Censored Data: Tobit Model

» The distributional assumption allows to derive the density of y|X

» Then we apply maximum likelihood

» The likelihood contribution of censored observations is

Priyi=0[X) =1-®(XB/0)



Dealing with Censored Data: Tobit Model

» The likelihood contribution of non-censored observations (y; > 0) is

fyilX,y;i > 0) = f(y/|X,y; >0)

» We need to find an expression for f

» Consider the cdf of f

Pr(y* <c,y* > 0)

Fely™>0) =Pr(y" <ely">0) = —5 =5

_ Pr(0<y*<c) F(c)—F(0)
~ Pr(y>0  1-F(0)




Dealing with Censored Data: Tobit Model

» fis just the derivative of the cdf

oF (cly* > 0)
Jc

disiin

Jc
_ f(o)
~ 1-F(0)

f(c|Xy" >0) =

» Under the distributional assumptions

f(c) = f4> <°_xﬁ) and 1 —F(0):<1><)ff>



Dealing with Censored Data: Tobit Model

» f(c) is the density of a variable that integrates to 1 in (0, 4-0)
> We must weight this density for the share of obs above 0

» Hence

Pr(y > 0|X) = Pr(Xp +u > 0|X) = Pr (u > —Xp|X)
— 1D (—XB/o) = D (XB/0)

» We have

f(yilXi,yi > 0) = @ (XiB/0) f(yi|Xi,yi > 0)
1 yi—Xp
- (*57)



Tobit Model: Maximum Likelihood

» The individual contribution to the log-likelihood is

C(B,o) =1(yi=0)In[1 — @ (X;/0)] +1(y; > 0)In LT(,)(' ﬁ)}

(o4

» The log-likelihood therefore is

N

L(B.o) = 2{1 (yi=0)In[1 —®(XB/c)] +1(y; >0)In Eqﬁ (Yi *Xiﬁ)]}

i=1 g

» The maximization delivers estimates of (5, o)



Truncated Data Models

» Using a similar procedure, we can write a likelihood function for truncated data
> Let's keep the assumption thatu ~ N (0, (72)
» Take the model truncated below 0

y* ify* >0
y= .
. otherwise



Truncated Data Models

» We know that the density of the model is
Y o f
fylX) =f(y"[X,y* >0) = W)

1—F(0)
1 (L2)
~ @ (Xg/0)

» The log-likelihood contribution is

6(Bo) = —Ino+Ing (y';X'ﬁ) —In® (XB/0)

> Total log-likelihood is

L(B,0) = —Nlna+i{ln<p (y,—X,ﬁ) —|nq>(xi[3/a)}

i1 v



Comments on Censoring and Truncation

» Censoring is “better” than truncation
» censored data contain more information about the true underlying distribution
» censored observations are available (i.e. the X’s are observable)

» truncated observations are not available



Comments on Censoring and Truncation

>

>

>

Think about the marginal effects
The type of marginal effects of main interest depends on the specific analysis

If interested in effects on y*, then E (y*|X) = XB and Bs are already the marginal
effects we need

If interested in effects on'y

Censoring: E (y|X) = Pr(u > —XB) [XB + E (uju > —XpB)]
Truncation: E (y|X) = XB + E (u|lu > —Xp)

When truncation or censoring is “natural” consequence of data structure, we want
marginal effect ony

When it arises because of some artifact, then we probably want marginal effect on
y*



Marginal Effects

» To write the marginal effects, we must write E (uju > —Xp)
» Use the normality assumption on u distribution

» Rule with normal distributions

E(zlz>c)=pu+o

» Hence

> where A (g) = % is called inverse Mills ratio



Marginal Effects

» Using this result, we have

g

Censoring: E (y|X) = ® (Xﬁ) Pt <)ff>

Truncation: E (y|X) =Xg+0-A ()Ef)

» Marginal effects can be easily computed with this formulas



Sample Selection: Heckman Model

» In many cases the sample is not a random draw from the population of interest
» In many applications this is not the case

» Consider the model
y=PBo+pixi+...+ BkXk +u

» where E (u|X) =0



Sample Selection: Heckman Model

» Suppose some info is missing
» we can run the model only on a selected set of N
» Indicator equal to 1 for those observations

. — 1 if {y;, Xi} exists
' 10 if{y,X]} does notexist or is incomplete



Sample Selection: Heckman Model

> Let’s write the OLS estimator for this model

N TN

PoLs = [ZSinXi] ZSiX{Yi]
i—1 =

-1

N -
= ‘B —+ ZSiX{Xi
i=1

> This estimator is consistent only if E (sX'u) = 0, which is true if E (u|s) = 0

» Hence, u must be independent of the selection process



Random Selection

» Example: suppose that s ~ Bernoulli(p)

» p determines which fraction of the data we select

» you might do this to reduce the computational power needed
» or, data provider might give you only a random sample

» In this case, E (u|s) =0



Deterministic Selection

» Suppose that selection is based on deterministic rule g(x)
> e.g. selection is based on age, gender, region, etc.
» Since E (u|X) = 0, and s is a function of X, then E (u|s) =0

» Important: Xs that determine selection do not have to be in the dataset



Selection Based on Dependent Variable

» Truncated data arise from sample selection
> Selection based ony

» Hencesis

o 1 ifag<y<a
' )0 otherwise

» Obviously, this selection is not exogenous

> Indeed, E (u]y) cannot be equal to 0 since y is itself a function of u



Endogenous Selection

» Endogenous selection arises whenever E (u|s) # 0
> e.g. survey data where people asked about income,
» people at the tails of the distribution refuse to answer.

» We only observe income data for those who actually answered the question



Endogenous Selection: Motivating Example

Motivating example in the literature: wages and labor market participation
» Individuals heterogenous in productivity and preference for work
» more productive will receive higher offers
> wl: wage offer received by i
» workers with higher preferences for work have lower reservation wages

> w;: reservation wage for i, lowest w he/she would accept



Endogenous Selection: Motivating Example

> Define w? and w! as

w? = Xi1 B1 + uin
wi = Xi2B2 + Uj

» Assume that E (uj;|Xj;) = 0and E (uj|Xjz) =0
> We want to estimate j3;, but people work only if wage offer high enough

w? > wl = iworks

w? < wl = iis inactive/unemployed



Endogenous Selection: Motivating Example
» In the data we only observe the wage for those who work

» Hence

si=1 (wfJ > w[)

(Xi1B1 + uip > XizB2 + uip)
(Zi(S +v; > 0)

=1

=1
» where Zi = (XihXiZ)- 0= (‘31 , ‘32)1 and Vi = Uj1 — Uj2
» The modelis

wy = Xin 1 + Ui
si=1 (Zi(5+Vi > 0)

» Selection is endogenous since v; depends on uj;



Solving the problem: Heckman Selection
» Let’s study a model to solve the selection problem
» This model will only work if we have some data on obs that were not selected
» Take a general model with main equation and selection equation

Vi = Xip +u;
si=1 (Zi(S—I—Vi > 0)

> Assume: (s;, Z;) always observed for all N

> (yi, X;) are observed only if 5; = 1

> E(u|X,Z) =E(v|]X,Z) =0

» v~ N(0,1) (can be relaxed to have N (0, 0?))
>

E (u]v) = yv: imposes a linear structure to conditional mean



Heckman Selection

» Take the conditional mean

E(yX,s=1)=XB+E(uXs=1)
=XB+E (u|X,v> —126)

» Using the assumptions u = v + ¢, where ¢ is non-systematic with zero mean

E(ylX,s =1) =XB+E (u|X,v> —Z9)
= XB +E (v + EX,v > —Z5)
=XB+ YE(v[X,v > —Z9)



Heckman Selection

> Now, let’s exploit the assumption on v’s distribution
E(y(X,s=1) =XB+yE (v|X,v > —Z0)
_ ¢ (=29)
=X o )

_ ¢ (29)
~ @)

= XB + 7 - A (20)

» where A (Z0) is the inverse Mills ratio
» The true conditional mean includes a second term -y - A (Z9)

» Excluding this term we introduce a bias (X and Z most likely overlap)



Heckman Selection

E(yX,s =1)=XB+7-A(Zd)

» Heckman: let’s include the omitted variable and estimate -y
» However, we must first estimate ¢

» Recover the § from a probit of s; on Z;

Pr(s = 1|Z) = ® (26)



Heckman Selection

Pr(s =1|Z) = ®(Z))
> With consistent estimates of ¢ called 5 we have

Ai = A (Zi6)

» Then use it in regression
Yi = Xif + vAi + Ui

> Standard errors are more complicated since A comes from a separate estimate

» Notice: estimating -y you can test endogeneity of selection



Heckman Selection: Additional Comments

» Consider the relationship between X and Z
» May be completely separated or completely identical

» If completely separated omitting A (Z6) does not generate OVB

® OLS on selected sample gives consistent estimates (we still have exogeneity)

® unless E [\ (Z5)] = 0 the constant will be inconsistent



Heckman Selection: Additional Comments

>

>

If completely identical: X = Z

Problem of multicollinearity: Mills ratio approximately linear

E (y|X) ~ XB +a +bZ5 = X (B + b5) + a

So that cannot estimate j consistently

Hence, when X = Z identification will only be guaranteed by non-linearity of Mills
ratio

In general, it is better to have Z = X 4 Z; so that there are "excluded variables”, but
all X appear in selection equation

This is very much like with instrumental variables

Without Z, identification with instrumental variables would be impossible



