Models for Incomplete Observations: Censoring, Truncation and Selection

Matteo Paradisi

(EIEF)

Applied Micro - Lecture 12

Incomplete Observations

- ► Today we study models where the dependent variable is not completely observed
- We study two main cases:
 - censoring: y is censored at some point of the distribution
 - truncation: y is set to missing above some point in the distribution

Censored Data

- A variable can be either top or bottom coded
- ► Top coded

$$\mathbf{y} = egin{cases} \mathbf{a} & ext{if } \mathbf{y}^* > \mathbf{a} \ \mathbf{y}^* & ext{if } \mathbf{y}^* \leq \mathbf{a} \end{cases}$$

▶ Bottom coded

$$\mathbf{y} = egin{cases} \mathbf{b} & ext{if } \mathbf{y}^* < \mathbf{b} \ \mathbf{y}^* & ext{if } \mathbf{y}^* \geq \mathbf{b} \end{cases}$$

Censored Data - Examples

Censored data can arise for two main reasons.

- First, data artificially top or bottom coded
 - e.g. wages above some level (ceiling on social security contributions)
 - sometimes censoring imposed to prevent identification
- Second, data arise naturally from the problem under consideration
 - e.g. charity donations, people decide not to donate and the distribution shows a mass point at zero
 - in natural censoring, the uncensored variable does not exist, true variable is already censored

Truncated Data

- Similar to censoring, but replaced with missing
- ► Hence, we have

$$\mathbf{y} = egin{cases} \mathbf{y}^* & \text{if a} < \mathbf{y}^* < \mathbf{b} \\ & \text{otherwise} \end{cases}$$

Sometimes truncation due to fact that X are missing

Implications of Censoring in OLS

Let's consider the model

$$\mathsf{y}^* = \mathsf{X}\beta + \mathsf{u}$$

- ► Suppose that y* is the complete variable
- Assume the model satisfies

$$\begin{aligned} E\left(u\right) &= 0 \\ E\left(X'u\right) &= 0 \end{aligned}$$

► However, we do not observe y*

Implications of Censoring in OLS

▶ The conditional mean or regression function of the OLS is

$$\mathsf{E}\left(\mathbf{y}^{*}|\mathbf{X}\right)=\mathbf{X}\boldsymbol{\beta}$$

- If we run OLS on censored variable we assume that conditional mean is linear
- Consider some censoring

$$\mathbf{y} = egin{cases} \mathbf{y}^* & \text{if } \mathbf{y}^* > \mathbf{0} \\ \mathbf{0} & \text{if } \mathbf{y}^* \leq \mathbf{0} \end{cases}$$

Implications of Censoring in OLS

The conditional mean can be decomposed as

$$\begin{split} \mathsf{E}\,(\mathsf{y}|\mathsf{X}) &= \mathsf{Pr}\,(\mathsf{y} = \mathsf{0}|\mathsf{X}) \times \mathsf{0} + \mathsf{Pr}\,(\mathsf{y} > \mathsf{0}|\mathsf{X})\,\mathsf{E}\,(\mathsf{y}|\mathsf{X},\mathsf{y} > \mathsf{0}) \\ &= \mathsf{Pr}\,(\mathsf{y} > \mathsf{0}|\mathsf{X})\,\mathsf{E}\,(\mathsf{y}|\mathsf{X},\mathsf{y} > \mathsf{0}) \\ &= \mathsf{Pr}\,(\mathsf{u} > -\beta\mathsf{X})\,[\mathsf{X}\beta + \mathsf{E}\,(\mathsf{u}|\mathsf{u} > -\mathsf{X}\beta)] \end{split}$$

- ► this is not linear!
- We can also rewrite it as

$$\mathsf{E}\left(\mathsf{y}|\mathsf{X}\right) = \mathsf{X}\beta + \left[\mathsf{Pr}\left(\mathsf{u} > -\beta\mathsf{X}\right)\mathsf{E}\left(\mathsf{u}|\mathsf{u} > -\beta\mathsf{X}\right) - \left(1 - \mathsf{Pr}\left(\mathsf{u} > -\beta\mathsf{X}\right)\right)\mathsf{X}\beta\right]$$

- Hence, estimation of OLS with censored variable is essentially an OLS with omitted variable!
- Notice that the omitted term is correlated with X

Implications of Truncation in OLS

Now, consider truncated data

$$y = \begin{cases} y^* & \text{if } y^* > 0 \\ . & \text{if } y^* \leq 0 \end{cases}$$

Here the conditional mean is

$$\begin{split} \mathbf{E}\left(\mathbf{y}|\mathbf{X}\right) &= \mathbf{E}\left(\mathbf{y}^*|\mathbf{X},\mathbf{y}^*>\mathbf{0}\right) \\ &= \mathbf{E}\left(\mathbf{X}\boldsymbol{\beta} + \mathbf{u}|\mathbf{X},\mathbf{X}\boldsymbol{\beta} + \mathbf{u}>\mathbf{0}\right) \\ &= \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\left(\mathbf{u}|\mathbf{X},\mathbf{u}> -\mathbf{X}\boldsymbol{\beta}\right) \end{split}$$

► We have an omitted variable problem

- We now introduce the Tobit model to solve the OLS bias
- As we have seen before when censoring at 0

$$\mathsf{E}(\mathsf{y}|\mathsf{X}) = \mathsf{Pr}(\mathsf{u} > -\beta \mathsf{X})[\mathsf{X}\beta + \mathsf{E}(\mathsf{u}|\mathsf{u} > -\mathsf{X}\beta)]$$

- ► Tobit assumptions:
 - 1. E(u) = 0
 - 2. E(X'u) = 0
 - 3. **u** \sim **N** (0, σ^2)

- ► The distributional assumption allows to derive the density of y | X
- ► Then we apply maximum likelihood
- ► The likelihood contribution of censored observations is

$$\Pr\left(\mathbf{y_i} = \mathbf{0}|\mathbf{X_i}\right) = \mathbf{1} - \Phi\left(\mathbf{X_i}\beta/\sigma\right)$$

ightharpoonup The likelihood contribution of non-censored observations ($y_i > 0$) is

$$f(y_i|X,y_i>0)=f(y_i^*|X,y_i^*>0)$$

- We need to find an expression for f
- Consider the cdf of f

$$\begin{split} F\left(c|y^*>0\right) &= \text{Pr}\left(y^* < c|y^*>0\right) = \frac{\text{Pr}\left(y^* < c, y^*>0\right)}{\text{Pr}\left(y^*>0\right)} \\ &= \frac{\text{Pr}\left(0 < y^* < c\right)}{\text{Pr}\left(y^*>0\right)} = \frac{F\left(c\right) - F\left(0\right)}{1 - F\left(0\right)} \end{split}$$

► f is just the derivative of the cdf

$$\begin{split} f(c|X,y^*>0) &= \frac{\partial F\left(c|y^*>0\right)}{\partial c} \\ &= \frac{\partial \left[\frac{F(c)-F(0)}{1-F(0)}\right]}{\partial c} \\ &= \frac{f\left(c\right)}{1-F\left(0\right)} \end{split}$$

Under the distributional assumptions

$$\mathbf{f}\left(\mathbf{c}\right) = \frac{1}{\sigma}\phi\left(\frac{\mathbf{c} - \mathbf{X}\beta}{\sigma}\right) \text{ and } \mathbf{1} - \mathbf{F}\left(\mathbf{0}\right) = \Phi\left(\frac{\mathbf{X}\beta}{\sigma}\right)$$

- f(c) is the density of a variable that integrates to 1 in $(0, +\infty)$
- We must weight this density for the share of obs above 0
- ▶ Hence

$$\Pr(\mathbf{y} > \mathbf{0}|\mathbf{X}) = \Pr(\mathbf{X}\boldsymbol{\beta} + \mathbf{u} > \mathbf{0}|\mathbf{X}) = \Pr(\mathbf{u} > -\mathbf{X}\boldsymbol{\beta}|\mathbf{X})$$
$$= 1 - \Phi(-\mathbf{X}\boldsymbol{\beta}/\sigma) = \Phi(\mathbf{X}\boldsymbol{\beta}/\sigma)$$

We have

$$\begin{split} f\left(y_{i} \middle| X_{i}, y_{i} > 0\right) &= \Phi\left(X_{i} \beta / \sigma\right) f\left(y_{i} \middle| X_{i}, y_{i}^{*} > 0\right) \\ &= \frac{1}{\sigma} \phi\left(\frac{y_{i} - X_{i} \beta}{\sigma}\right) \end{split}$$

Tobit Model: Maximum Likelihood

The individual contribution to the log-likelihood is

$$\ell\left(\beta,\sigma\right)=\mathbf{1}\left(\mathbf{y_{i}}=\mathbf{0}\right)\ln\left[1-\Phi\left(\mathbf{X_{i}}\beta/\sigma\right)\right]+\mathbf{1}\left(\mathbf{y_{i}}>\mathbf{0}\right)\ln\left[\frac{1}{\sigma}\phi\left(\frac{\mathbf{y_{i}}-\mathbf{X_{i}}\beta}{\sigma}\right)\right]$$

► The log-likelihood therefore is

$$L\left(\beta,\sigma\right) = \sum_{i=1}^{N} \left\{ 1\left(y_{i} = \mathbf{0}\right) \ln\left[1 - \Phi\left(X_{i}\beta/\sigma\right)\right] + 1\left(y_{i} > \mathbf{0}\right) \ln\left[\frac{1}{\sigma}\phi\left(\frac{y_{i} - X_{i}\beta}{\sigma}\right)\right] \right\}$$

▶ The maximization delivers estimates of (β, σ)

Truncated Data Models

- Using a similar procedure, we can write a likelihood function for truncated data
- lacktriangle Let's keep the assumption that $u \sim N \ (0, \sigma^2)$
- Take the model truncated below 0

$$y = \begin{cases} y^* & \text{if } y^* > 0 \\ . & \text{otherwise} \end{cases}$$

Truncated Data Models

▶ We know that the density of the model is

$$f(\mathbf{y}|\mathbf{X}) = f(\mathbf{y}^*|\mathbf{X}, \mathbf{y}^* > \mathbf{0}) = \frac{f(\mathbf{y})}{1 - F(\mathbf{0})}$$
$$= \frac{\frac{1}{\sigma}\phi\left(\frac{\mathbf{y} - \mathbf{X}\beta}{\sigma}\right)}{\Phi\left(\mathbf{X}\beta/\sigma\right)}$$

The log-likelihood contribution is

$$\ell_{i}\left(\beta,\sigma\right) = -\ln\sigma + \ln\phi\left(\frac{\mathbf{y}_{i} - \mathbf{X}_{i}\beta}{\sigma}\right) - \ln\Phi\left(\mathbf{X}_{i}\beta/\sigma\right)$$

Total log-likelihood is

$$\mathbf{L}\left(\beta,\sigma\right) = -\mathbf{N}\ln\sigma + \sum_{i=1}^{\mathbf{N}} \left\{ \ln\phi \left(\frac{\mathbf{y}_{i} - \mathbf{X}_{i}\beta}{\sigma} \right) - \ln\Phi \left(\mathbf{X}_{i}\beta/\sigma \right) \right\}$$

Comments on Censoring and Truncation

- Censoring is "better" than truncation
- censored data contain more information about the true underlying distribution
- censored observations are available (i.e. the X's are observable)
- truncated observations are not available

Comments on Censoring and Truncation

- ► Think about the marginal effects
- The type of marginal effects of main interest depends on the specific analysis
- ▶ If interested in effects on y^* , then $E(y^*|X) = X\beta$ and β s are already the marginal effects we need
- If interested in effects on y

Censoring:
$$\mathbf{E}(\mathbf{y}|\mathbf{X}) = \Pr(\mathbf{u} > -\mathbf{X}\beta) \left[\mathbf{X}\beta + \mathbf{E}(\mathbf{u}|\mathbf{u} > -\mathbf{X}\beta) \right]$$

Truncation: $\mathbf{E}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\beta + \mathbf{E}(\mathbf{u}|\mathbf{u} > -\mathbf{X}\beta)$

- ► When truncation or censoring is "natural" consequence of data structure, we want marginal effect on y
- ► When it arises because of some artifact, then we probably want marginal effect on y*

Marginal Effects

- ▶ To write the marginal effects, we must write $E(u|u>-X\beta)$
- Use the normality assumption on u distribution
- ► Rule with normal distributions

$$\mathsf{E}(\mathsf{z}|\mathsf{z}>\mathsf{c}) = \mu + \sigma \frac{\varphi\left(\frac{\mathsf{c}-\mu}{\sigma}\right)}{1 - \Phi\left(\frac{\mathsf{c}-\mu}{\sigma}\right)}$$

Hence

$$\mathbf{E}(\mathbf{u}|\mathbf{u} > -\mathbf{X}\boldsymbol{\beta}) = \sigma \frac{\varphi\left(\frac{-\mathbf{X}\boldsymbol{\beta}}{\sigma}\right)}{\Phi\left(\frac{\mathbf{X}\boldsymbol{\beta}}{\sigma}\right)}$$
$$= \sigma \cdot \lambda \left(\frac{\mathbf{X}\boldsymbol{\beta}}{\sigma}\right)$$

 $lackbox{ where } \lambda\left(rac{f X}{\sigma}
ight) = rac{arphi}{\Phi} \ {
m is called inverse \ Mills \ ratio}$

Marginal Effects

Using this result, we have

Censoring:
$$\mathbf{E}\left(\mathbf{y}|\mathbf{X}\right) = \Phi\left(\frac{\mathbf{X}\beta}{\sigma}\right)\mathbf{X}\beta + \sigma\varphi\left(\frac{\mathbf{X}\beta}{\sigma}\right)$$
Truncation: $\mathbf{E}\left(\mathbf{y}|\mathbf{X}\right) = \mathbf{X}\beta + \sigma\cdot\lambda\left(\frac{\mathbf{X}\beta}{\sigma}\right)$

Marginal effects can be easily computed with this formulas

Sample Selection: Heckman Model

- In many cases the sample is not a random draw from the population of interest
- In many applications this is not the case
- Consider the model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \ldots + \beta_K \mathbf{x}_K + \mathbf{u}$$

ightharpoonup where E(u|X)=0

Sample Selection: Heckman Model

- Suppose some info is missing
- we can run the model only on a selected set of N
- Indicator equal to 1 for those observations

$$s_i = \begin{cases} 1 & \text{if } \{y_i, X_i\} \text{ exists} \\ 0 & \text{if } \{y_i, X_i\} \text{ does not exist or is incomplete} \end{cases}$$

Sample Selection: Heckman Model

Let's write the OLS estimator for this model

$$\hat{\beta}_{OLS} = \left[\sum_{i=1}^{N} \mathbf{s}_{i} \mathbf{X}'_{i} \mathbf{X}_{i}\right]^{-1} \left[\sum_{i=1}^{N} \mathbf{s}_{i} \mathbf{X}'_{i} \mathbf{y}_{i}\right]$$

$$= \beta + \left[\sum_{i=1}^{N} \mathbf{s}_{i} \mathbf{X}'_{i} \mathbf{X}_{i}\right]^{-1} \left[\sum_{i=1}^{N} \mathbf{s}_{i} \mathbf{X}'_{i} \mathbf{u}_{i}\right]$$

- lacktriangle This estimator is consistent only if $E\left(sX'u\right)=0$, which is true if $E\left(u|s\right)=0$
- Hence, u must be independent of the selection process

Random Selection

- ightharpoonup Example: suppose that s \sim Bernoulli(p)
- p determines which fraction of the data we select
- you might do this to reduce the computational power needed
- or, data provider might give you only a random sample
- ► In this case, E(u|s) = 0

Deterministic Selection

- ightharpoonup Suppose that selection is based on deterministic rule g(x)
- e.g. selection is based on age, gender, region, etc.
- ightharpoonup Since E (u|X)=0, and s is a function of X, then E (u|s)=0
- Important: Xs that determine selection do not have to be in the dataset

Selection Based on Dependent Variable

- Truncated data arise from sample selection
- Selection based on y
- ► Hence s is

$$s_i = \begin{cases} 1 & \text{if } a_1 < y < a_2 \\ 0 & \text{otherwise} \end{cases}$$

- Obviously, this selection is not exogenous
- Indeed, E (u|y) cannot be equal to 0 since y is itself a function of u

Endogenous Selection

- ightharpoonup Endogenous selection arises whenever E $(u|s) \neq 0$
- e.g. survey data where people asked about income,
- people at the tails of the distribution refuse to answer.
- We only observe income data for those who actually answered the question

Endogenous Selection: Motivating Example

Motivating example in the literature: wages and labor market participation

- Individuals heterogenous in productivity and preference for work
- more productive will receive higher offers
- w_i⁰: wage offer received by i
- workers with higher preferences for work have lower reservation wages
- w_i: reservation wage for i, lowest w he/she would accept

Endogenous Selection: Motivating Example

Define w_i⁰ and w_i^r as

$$egin{aligned} \mathbf{w_{i}^{0}} &= \mathbf{X_{i1}} eta_{1} + \mathbf{u_{i1}} \ \mathbf{w_{i}^{r}} &= \mathbf{X_{i2}} eta_{2} + \mathbf{u_{i2}} \end{aligned}$$

- Assume that $E(u_{i1}|X_{i1}) = 0$ and $E(u_{i2}|X_{i2}) = 0$
- We want to estimate β_1 , but people work only if wage offer high enough

$$w_i^0 \geq w_i^r \Rightarrow i \, \text{works}$$

$$w_i^0 < w_i^r \Rightarrow i \, \text{is inactive/unemployed}$$

Endogenous Selection: Motivating Example

- In the data we only observe the wage for those who work
- ► Hence

$$\begin{split} \textbf{s}_i &= \mathbf{1} \left(\textbf{w}_i^0 \geq \textbf{w}_i^r \right) \\ &= \mathbf{1} \left(\textbf{X}_{i1} \beta_1 + \textbf{u}_{i1} \geq \textbf{X}_{i2} \beta_2 + \textbf{u}_{i2} \right) \\ &= \mathbf{1} \left(\textbf{Z}_i \delta + \textbf{v}_i \geq \textbf{0} \right) \end{split}$$

- where $Z_i = (X_{i1}, X_{i2})$, $\delta = (\beta_1, \beta_2)'$ and $v_i = u_{i1} u_{i2}$
- The model is

$$\begin{split} w_i^0 &= X_{i1}\beta_1 + u_{i1} \\ s_i &= 1\left(Z_i\delta + v_i \geq 0\right) \end{split}$$

Selection is endogenous since v_i depends on u_{i1}

Solving the problem: Heckman Selection

- ► Let's study a model to solve the selection problem
- This model will only work if we have some data on obs that were not selected
- Take a general model with main equation and selection equation

$$\begin{aligned} y_i &= X_i \beta + u_i \\ s_i &= 1 \left(Z_i \delta + v_i \geq 0 \right) \end{aligned}$$

- Assume: (s_i, Z_i) always observed for all N
- \triangleright (y_i, X_i) are observed only if s_i = 1
- ightharpoonup E (u|X, Z) = E (v|X, Z) = 0
- ightharpoonup v \sim N (0, 1) (can be relaxed to have N (0, σ^2))
- ► E (u|v) = γv: imposes a linear structure to conditional mean

Take the conditional mean

$$\begin{split} \mathbf{E}\left(\mathbf{y}|\mathbf{X},\mathbf{s}=1\right) &= \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\left(\mathbf{u}|\mathbf{X},\mathbf{s}=1\right) \\ &= \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\left(\mathbf{u}|\mathbf{X},\mathbf{v}> -\mathbf{Z}\boldsymbol{\delta}\right) \end{split}$$

lacktriangle Using the assumptions ${\sf u}=\gamma{\sf v}+\xi$, where ξ is non-systematic with zero mean

$$\begin{split} \mathbf{E}\left(\mathbf{y}|\mathbf{X},\mathbf{s}=\mathbf{1}\right) &= \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\left(\mathbf{u}|\mathbf{X},\mathbf{v}> -\mathbf{Z}\boldsymbol{\delta}\right) \\ &= \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\left(\gamma\mathbf{v} + \boldsymbol{\xi}|\mathbf{X},\mathbf{v}> -\mathbf{Z}\boldsymbol{\delta}\right) \\ &= \mathbf{X}\boldsymbol{\beta} + \gamma\mathbf{E}\left(\mathbf{v}|\mathbf{X},\mathbf{v}> -\mathbf{Z}\boldsymbol{\delta}\right) \end{split}$$

Now, let's exploit the assumption on v's distribution

$$\begin{split} \mathbf{E}\left(\mathbf{y}|\mathbf{X},\mathbf{s}=\mathbf{1}\right) &= \mathbf{X}\boldsymbol{\beta} + \gamma\mathbf{E}\left(\mathbf{v}|\mathbf{X},\mathbf{v}> -\mathbf{Z}\boldsymbol{\delta}\right) \\ &= \mathbf{X}\boldsymbol{\beta} + \gamma\frac{\varphi\left(-\mathbf{Z}\boldsymbol{\delta}\right)}{\mathbf{1} - \Phi\left(-\mathbf{Z}\boldsymbol{\delta}\right)} \\ &= \mathbf{X}\boldsymbol{\beta} + \gamma\frac{\varphi\left(\mathbf{Z}\boldsymbol{\delta}\right)}{\Phi\left(\mathbf{Z}\boldsymbol{\delta}\right)} \\ &= \mathbf{X}\boldsymbol{\beta} + \gamma \cdot \boldsymbol{\lambda}\left(\mathbf{Z}\boldsymbol{\delta}\right) \end{split}$$

- where λ (**Z** δ) is the inverse Mills ratio
- ► The true conditional mean includes a second term $\gamma \cdot \lambda$ (**Z** δ)
- Excluding this term we introduce a bias (X and Z most likely overlap)

$$\mathbf{E}\left(\mathbf{y}|\mathbf{X},\mathbf{s}=\mathbf{1}\right)=\mathbf{X}\mathbf{\beta}+\gamma\cdot\lambda\left(\mathbf{Z}\delta\right)$$

- lacktriangle Heckman: let's include the omitted variable and estimate γ
- ▶ However, we must first estimate δ
- ightharpoonup Recover the δ from a probit of s_i on Z_i

$$\Pr\left(\mathbf{s}=\mathbf{1}|\mathbf{Z}\right)=\Phi\left(\mathbf{Z}\delta\right)$$

$$\Pr\left(\mathbf{s} = \mathbf{1}|\mathbf{Z}\right) = \Phi\left(\mathbf{Z}\delta\right)$$

▶ With consistent estimates of δ called $\hat{\delta}$ we have

$$\hat{\lambda}_{\mathsf{i}} = \lambda \; (\mathsf{Z}_{\mathsf{i}} \hat{\delta})$$

Then use it in regression

$$\mathbf{y_i} = \mathbf{X_i}\boldsymbol{\beta} + \gamma \hat{\lambda}_i + \mathbf{u_i}$$

- lacktriangle Standard errors are more complicated since $\hat{\lambda}$ comes from a separate estimate
- ightharpoonup Notice: estimating γ you can test endogeneity of selection

Heckman Selection: Additional Comments

- Consider the relationship between X and Z
- May be completely separated or completely identical
- ▶ If completely separated omitting λ ($Z\delta$) does not generate OVB
 - OLS on selected sample gives consistent estimates (we still have exogeneity)
 - unless E $[\lambda (Z\delta)] = 0$ the constant will be inconsistent

Heckman Selection: Additional Comments

- ► If completely identical: X = Z
- ► Problem of multicollinearity: Mills ratio approximately linear

$$\mathsf{E}\left(\mathsf{y}|\mathsf{X}\right) pprox \mathsf{X}eta + \mathsf{a} + \mathsf{b}\mathsf{Z}\delta = \mathsf{X}\left(eta + \mathsf{b}\delta
ight) + \mathsf{a}$$

- ▶ So that cannot estimate β consistently
- Hence, when X = Z identification will only be guaranteed by non-linearity of Mills ratio
- ▶ In general, it is better to have $Z = X + Z_1$ so that there are "excluded variables", but all X appear in selection equation
- ► This is very much like with instrumental variables
- ► Without Z₁ identification with instrumental variables would be impossible