Models for Incomplete Observations: Censoring, Truncation and Selection

Matteo Paradisi
(EIEF)

Applied Micro - Lecture 12

Incomplete Observations

- Today we study models where the dependent variable is not completely observed
- We study two main cases:
- censoring: y is censored at some point of the distribution
- truncation: y is set to missing above some point in the distribution

Censored Data

- A variable can be either top or bottom coded
- Top coded

$$
y= \begin{cases}a & \text { if } y^{*}>a \\ y^{*} & \text { if } y^{*} \leq a\end{cases}
$$

- Bottom coded

$$
y= \begin{cases}b & \text { if } y^{*}<b \\ y^{*} & \text { if } y^{*} \geq b\end{cases}
$$

Censored Data - Examples

Censored data can arise for two main reasons.

- First, data artificially top or bottom coded
- e.g. wages above some level (ceiling on social security contributions)
- sometimes censoring imposed to prevent identification
- Second, data arise naturally from the problem under consideration
- e.g. charity donations, people decide not to donate and the distribution shows a mass point at zero
- in natural censoring, the uncensored variable does not exist, true variable is already censored

Truncated Data

- Similar to censoring, but replaced with missing
- Hence, we have

$$
y= \begin{cases}y^{*} & \text { if } \mathbf{a}<\mathbf{y}^{*}<\mathrm{b} \\ . & \text { otherwise }\end{cases}
$$

- Sometimes truncation due to fact that X are missing

Implications of Censoring in OLS

- Let's consider the model

$$
\mathbf{y}^{*}=\mathrm{X} \beta+\mathbf{u}
$$

- Suppose that y^{*} is the complete variable
- Assume the model satisfies

$$
\begin{aligned}
\mathrm{E}(\mathbf{u}) & =0 \\
\mathrm{E}\left(\mathrm{X}^{\prime} \mathbf{u}\right) & =0
\end{aligned}
$$

- However, we do not observe y^{*}

Implications of Censoring in OLS

- The conditional mean or regression function of the OLS is

$$
\mathrm{E}\left(\mathbf{y}^{*} \mid \mathbf{X}\right)=\mathbf{X} \beta
$$

- If we run OLS on censored variable we assume that conditional mean is linear
- Consider some censoring

$$
y= \begin{cases}y^{*} & \text { if } y^{*}>0 \\ 0 & \text { if } y^{*} \leq 0\end{cases}
$$

Implications of Censoring in OLS

- The conditional mean can be decomposed as

$$
\begin{aligned}
\mathbf{E}(\mathbf{y} \mid \mathbf{X}) & =\operatorname{Pr}(\mathbf{y}=\mathbf{0} \mid \mathbf{X}) \times \mathbf{0}+\operatorname{Pr}(\mathbf{y}>\mathbf{0} \mid \mathbf{X}) \mathbf{E}(\mathbf{y} \mid \mathbf{X}, \mathbf{y}>\mathbf{0}) \\
& =\operatorname{Pr}(\mathbf{y}>\mathbf{0} \mid \mathbf{X}) \mathbf{E}(\mathbf{y} \mid \mathbf{X}, \mathbf{y}>\mathbf{0}) \\
& =\operatorname{Pr}(\mathbf{u}>-\beta \mathbf{X})[\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{u}>-\mathbf{X} \beta)]
\end{aligned}
$$

- this is not linear!
- We can also rewrite it as

$$
\mathbf{E}(\mathbf{y} \mid \mathbf{X})=\mathbf{X} \beta+[\operatorname{Pr}(\mathbf{u}>-\beta \mathbf{X}) \mathbf{E}(\mathbf{u} \mid \mathbf{u}>-\beta \mathbf{X})-(\mathbf{1}-\operatorname{Pr}(\mathbf{u}>-\beta \mathbf{X})) \mathbf{X} \beta]
$$

- Hence, estimation of OLS with censored variable is essentially an OLS with omitted variable!
- Notice that the omitted term is correlated with X

Implications of Truncation in OLS

- Now, consider truncated data

$$
y= \begin{cases}y^{*} & \text { if } y^{*}>0 \\ . & \text { if } y^{*} \leq 0\end{cases}
$$

- Here the conditional mean is

$$
\begin{aligned}
\mathbf{E}(\mathbf{y} \mid \mathbf{X}) & =\mathbf{E}\left(\mathbf{y}^{*} \mid \mathbf{X}, \mathbf{y}^{*}>\mathbf{0}\right) \\
& =\mathbf{E}(\mathbf{X} \beta+\mathbf{u} \mid \mathbf{X}, \mathbf{X} \beta+\mathbf{u}>\mathbf{0}) \\
& =\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{X}, \mathbf{u}>-\mathbf{X} \beta)
\end{aligned}
$$

- We have an omitted variable problem

Dealing with Censored Data: Tobit Model

- We now introduce the Tobit model to solve the OLS bias
- As we have seen before when censoring at 0

$$
\mathbf{E}(\mathbf{y} \mid \mathbf{X})=\operatorname{Pr}(\mathbf{u}>-\beta \mathbf{X})[\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{u}>-\mathbf{X} \beta)]
$$

- Tobit assumptions:

1. $\mathbf{E}(\mathbf{u})=0$
2. $E\left(X^{\prime} \mathbf{u}\right)=0$
3. $\mathbf{u} \sim \mathbf{N}\left(\mathbf{0}, \sigma^{2}\right)$

Dealing with Censored Data: Tobit Model

- The distributional assumption allows to derive the density of $y \mid X$
- Then we apply maximum likelihood
- The likelihood contribution of censored observations is

$$
\operatorname{Pr}\left(\mathbf{y}_{\mathbf{i}}=0 \mid \mathbf{x}_{\mathbf{i}}\right)=1-\Phi\left(\mathbf{X}_{\mathbf{i}} \beta / \sigma\right)
$$

Dealing with Censored Data: Tobit Model

- The likelihood contribution of non-censored observations $\left(y_{i}>0\right)$ is

$$
f\left(y_{i} \mid X, y_{i}>0\right)=f\left(y_{i}^{*} \mid X, y_{i}^{*}>0\right)
$$

- We need to find an expression for f
- Consider the cdf of f

$$
\begin{aligned}
\mathbf{F}\left(\mathbf{c} \mid \mathbf{y}^{*}>\mathbf{0}\right) & =\operatorname{Pr}\left(\mathbf{y}^{*}<\mathbf{c} \mid \mathbf{y}^{*}>\mathbf{0}\right)=\frac{\operatorname{Pr}\left(\mathbf{y}^{*}<\mathbf{c}, \mathbf{y}^{*}>\mathbf{0}\right)}{\operatorname{Pr}\left(\mathbf{y}^{*}>\mathbf{0}\right)} \\
& =\frac{\operatorname{Pr}\left(\mathbf{0}<\mathbf{y}^{*}<\mathbf{c}\right)}{\operatorname{Pr}\left(\mathbf{y}^{*}>\mathbf{0}\right)}=\frac{\mathbf{F}(\mathbf{c})-\mathbf{F}(\mathbf{0})}{1-\mathbf{F}(\mathbf{0})}
\end{aligned}
$$

Dealing with Censored Data: Tobit Model

- f is just the derivative of the cdf

$$
\begin{aligned}
f\left(c \mid X, y^{*}>0\right) & =\frac{\partial F\left(c \mid y^{*}>0\right)}{\partial c} \\
& =\frac{\partial\left[\frac{F(c)-F(0)}{1-F(0)}\right]}{\partial c} \\
& =\frac{f(c)}{1-F(0)}
\end{aligned}
$$

- Under the distributional assumptions

$$
\mathbf{f}(\mathbf{c})=\frac{1}{\sigma} \phi\left(\frac{\mathbf{c}-\mathrm{X} \beta}{\sigma}\right) \text { and } 1-\mathbf{F}(0)=\Phi\left(\frac{\mathrm{X} \beta}{\sigma}\right)
$$

Dealing with Censored Data: Tobit Model

- $f(c)$ is the density of a variable that integrates to 1 in $(0,+\infty)$
- We must weight this density for the share of obs above 0
- Hence

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{y}>\mathbf{0} \mid \mathbf{X}) & =\operatorname{Pr}(\mathbf{X} \beta+\mathbf{u}>\mathbf{0} \mid \mathbf{X})=\operatorname{Pr}(\mathbf{u}>-\mathbf{X} \beta \mid \mathbf{X}) \\
& =\mathbf{1}-\Phi(-\mathbf{X} \beta / \sigma)=\Phi(\mathbf{X} \beta / \sigma)
\end{aligned}
$$

- We have

$$
\begin{aligned}
\mathbf{f}\left(\mathrm{y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}>0\right) & =\Phi\left(\mathrm{X}_{\mathrm{i}} \beta / \sigma\right) \mathbf{f}\left(\mathrm{y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}^{*}>0\right) \\
& =\frac{1}{\sigma} \phi\left(\frac{\mathrm{y}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}} \beta}{\sigma}\right)
\end{aligned}
$$

Tobit Model: Maximum Likelihood

- The individual contribution to the log-likelihood is

$$
\ell(\beta, \sigma)=1\left(\mathrm{y}_{\mathrm{i}}=0\right) \ln \left[1-\Phi\left(\mathrm{x}_{\mathrm{i}} \beta / \sigma\right)\right]+1\left(\mathrm{y}_{\mathrm{i}}>0\right) \ln \left[\frac{1}{\sigma} \phi\left(\frac{\mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \beta}{\sigma}\right)\right]
$$

- The log-likelihood therefore is

$$
\mathrm{L}(\beta, \sigma)=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left\{1\left(\mathrm{y}_{\mathrm{i}}=0\right) \ln \left[1-\Phi\left(\mathrm{X}_{\mathrm{i}} \beta / \sigma\right)\right]+\mathbf{1}\left(\mathrm{y}_{\mathrm{i}}>0\right) \ln \left[\frac{1}{\sigma} \phi\left(\frac{\mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \beta}{\sigma}\right)\right]\right\}
$$

- The maximization delivers estimates of (β, σ)

Truncated Data Models

- Using a similar procedure, we can write a likelihood function for truncated data
- Let's keep the assumption that $\mathbf{u} \sim \mathbf{N}\left(0, \sigma^{2}\right)$
- Take the model truncated below 0

$$
y= \begin{cases}y^{*} & \text { if } y^{*}>0 \\ . & \text { otherwise }\end{cases}
$$

Truncated Data Models

- We know that the density of the model is

$$
\begin{aligned}
\mathbf{f}(\mathbf{y} \mid \mathbf{X}) & =\mathbf{f}\left(\mathbf{y}^{*} \mid \mathbf{X}, \mathbf{y}^{*}>0\right)=\frac{\mathbf{f}(\mathbf{y})}{1-\mathbf{F}(0)} \\
& =\frac{\frac{1}{\sigma} \phi\left(\frac{\mathbf{y}-\mathbf{X} \beta}{\sigma}\right)}{\Phi(\mathbf{X} \beta / \sigma)}
\end{aligned}
$$

- The log-likelihood contribution is

$$
\ell_{\mathrm{i}}(\beta, \sigma)=-\ln \sigma+\ln \phi\left(\frac{\mathrm{y}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}} \beta}{\sigma}\right)-\ln \Phi\left(\mathrm{X}_{\mathrm{i}} \beta / \sigma\right)
$$

- Total log-likelihood is

$$
\mathbf{L}(\beta, \sigma)=-\mathbf{N} \ln \sigma+\sum_{\mathbf{i}=1}^{\mathbf{N}}\left\{\ln \phi\left(\frac{\mathbf{y}_{\mathbf{i}}-\mathbf{X}_{\mathbf{i}} \beta}{\sigma}\right)-\ln \Phi\left(\mathbf{X}_{\mathbf{i}} \beta / \sigma\right)\right\}
$$

Comments on Censoring and Truncation

- Censoring is "better" than truncation
- censored data contain more information about the true underlying distribution
- censored observations are available (i.e. the X's are observable)
- truncated observations are not available

Comments on Censoring and Truncation

- Think about the marginal effects
- The type of marginal effects of main interest depends on the specific analysis
- If interested in effects on \mathbf{y}^{*}, then $\mathrm{E}\left(\mathbf{y}^{*} \mid \mathbf{X}\right)=\mathbf{X} \beta$ and $\beta \mathbf{s}$ are already the marginal effects we need
- If interested in effects on y

$$
\begin{aligned}
& \text { Censoring: } \mathbf{E}(\mathbf{y} \mid \mathbf{X})=\operatorname{Pr}(\mathbf{u}>-\mathbf{X} \beta)[\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{u}>-\mathbf{X} \beta)] \\
& \text { Truncation: } \mathbf{E}(\mathbf{y} \mid \mathbf{X})=\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{u}>-\mathbf{X} \beta)
\end{aligned}
$$

- When truncation or censoring is "natural" consequence of data structure, we want marginal effect on y
- When it arises because of some artifact, then we probably want marginal effect on y^{*}

Marginal Effects

- To write the marginal effects, we must write $\mathrm{E}(\mathbf{u} \mid \mathbf{u}>-\mathrm{X} \beta)$
- Use the normality assumption on u distribution
- Rule with normal distributions

$$
\mathbf{E}(\mathbf{z} \mid \mathbf{z}>\mathbf{c})=\mu+\sigma \frac{\varphi\left(\frac{\mathbf{c}-\mu}{\sigma}\right)}{1-\Phi\left(\frac{\mathbf{c}-\mu}{\sigma}\right)}
$$

- Hence

$$
\begin{aligned}
\mathbf{E}(\mathbf{u} \mid \mathbf{u}>-\mathbf{X} \beta) & =\sigma \frac{\varphi\left(\frac{-\mathrm{X} \beta}{\sigma}\right)}{\Phi\left(\frac{\mathrm{X} \beta}{\sigma}\right)} \\
& =\sigma \cdot \lambda\left(\frac{\mathrm{X} \beta}{\sigma}\right)
\end{aligned}
$$

- where $\lambda\left(\frac{\mathrm{X} \beta}{\sigma}\right)=\frac{\varphi}{\Phi}$ is called inverse Mills ratio

Marginal Effects

- Using this result, we have

$$
\begin{aligned}
& \text { Censoring: } \mathbf{E}(\mathbf{y} \mid \mathbf{X})=\Phi\left(\frac{\mathbf{X} \beta}{\sigma}\right) \mathbf{X} \beta+\sigma \varphi\left(\frac{\mathbf{X} \beta}{\sigma}\right) \\
& \text { Truncation: } \mathbf{E}(\mathbf{y} \mid \mathbf{X})=\mathbf{X} \beta+\sigma \cdot \lambda\left(\frac{\mathbf{X} \beta}{\sigma}\right)
\end{aligned}
$$

- Marginal effects can be easily computed with this formulas

Sample Selection: Heckman Model

- In many cases the sample is not a random draw from the population of interest
- In many applications this is not the case
- Consider the model

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\ldots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{K}}+\mathbf{u}
$$

- where $\mathrm{E}(\mathrm{u} \mid \mathrm{X})=0$

Sample Selection: Heckman Model

- Suppose some info is missing
- we can run the model only on a selected set of N
- Indicator equal to 1 for those observations

$$
s_{i}= \begin{cases}1 & \text { if }\left\{y_{i}, X_{i}\right\} \text { exists } \\ 0 & \text { if }\left\{y_{i}, X_{i}\right\} \text { does not exist or is incomplete }\end{cases}
$$

Sample Selection: Heckman Model

- Let's write the OLS estimator for this model

$$
\begin{aligned}
\hat{\beta}_{\text {OLS }} & =\left[\sum_{i=1}^{N} \mathbf{s}_{i} X_{i}^{\prime} \mathbf{x}_{\mathrm{i}}\right]^{-1}\left[\sum_{i=1}^{N} \mathbf{s}_{i} X_{i}^{\prime} \mathbf{y}_{\mathrm{i}}\right] \\
& =\beta+\left[\sum_{i=1}^{N} \mathbf{s}_{i} X_{i}^{\prime} \mathbf{X}_{\mathrm{i}}\right]^{-1}\left[\sum_{i=1}^{N} \mathbf{s}_{i} X_{i}^{\prime} \mathbf{u}_{\mathbf{i}}\right]
\end{aligned}
$$

- This estimator is consistent only if $E\left(s X^{\prime} \mathbf{u}\right)=0$, which is true if $E(\mathbf{u} \mid \mathbf{s})=0$
- Hence, u must be independent of the selection process

Random Selection

- Example: suppose that $\mathbf{s} \sim \operatorname{Bernoulli}(\mathbf{p})$
- p determines which fraction of the data we select
- you might do this to reduce the computational power needed
- or, data provider might give you only a random sample
- In this case, $\mathrm{E}(\mathrm{u} \mid \mathrm{s})=0$

Deterministic Selection

- Suppose that selection is based on deterministic rule $\mathrm{g}(\mathrm{x})$
- e.g. selection is based on age, gender, region, etc.
- Since $E(\mathbf{u} \mid X)=0$, and s is a function of X, then $E(u \mid s)=0$
- Important: Xs that determine selection do not have to be in the dataset

Selection Based on Dependent Variable

- Truncated data arise from sample selection
- Selection based on y
- Hence s is

$$
s_{i}= \begin{cases}1 & \text { if } a_{1}<y<a_{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Obviously, this selection is not exogenous
- Indeed, $E(u \mid y)$ cannot be equal to 0 since y is itself a function of u

Endogenous Selection

- Endogenous selection arises whenever $\mathrm{E}(\mathbf{u} \mid \mathbf{s}) \neq 0$
- e.g. survey data where people asked about income,
- people at the tails of the distribution refuse to answer.
- We only observe income data for those who actually answered the question

Endogenous Selection: Motivating Example

Motivating example in the literature: wages and labor market participation

- Individuals heterogenous in productivity and preference for work
- more productive will receive higher offers
- $\mathrm{w}_{\mathrm{i}}^{0}$: wage offer received by i
- workers with higher preferences for work have lower reservation wages
- w_{i}^{r} : reservation wage for i , lowest w he/she would accept

Endogenous Selection: Motivating Example

- Define $\mathrm{w}_{\mathrm{i}}^{0}$ and $\mathrm{w}_{\mathrm{i}}^{\mathrm{r}}$ as

$$
\begin{aligned}
\mathbf{w}_{\mathrm{i}}^{0} & =\mathrm{X}_{\mathrm{i} 1} \beta_{1}+\mathbf{u}_{\mathrm{i} 1} \\
\mathbf{w}_{\mathrm{i}}^{r} & =\mathrm{X}_{\mathrm{i} 2} \beta_{2}+\mathbf{u}_{\mathrm{i} 2}
\end{aligned}
$$

- Assume that $\mathrm{E}\left(\mathrm{u}_{\mathrm{i} 1} \mid \mathrm{X}_{\mathrm{i} 1}\right)=0$ and $\mathrm{E}\left(\mathrm{u}_{\mathrm{i} 2} \mid \mathrm{X}_{\mathrm{i} 2}\right)=0$
- We want to estimate β_{1}, but people work only if wage offer high enough

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{i}}^{0} \geq \mathrm{w}_{\mathrm{i}}^{r} \Rightarrow \mathrm{i} \text { works } \\
& \mathrm{w}_{\mathrm{i}}^{0}<\mathrm{w}_{\mathrm{i}}^{r} \Rightarrow \mathrm{i} \text { is inactive/unemployed }
\end{aligned}
$$

Endogenous Selection: Motivating Example

- In the data we only observe the wage for those who work
- Hence

$$
\begin{aligned}
s_{i} & =1\left(w_{i}^{0} \geq w_{i}^{r}\right) \\
& =1\left(X_{i 1} \beta_{1}+u_{i 1} \geq X_{i 2} \beta_{2}+u_{i 2}\right) \\
& =1\left(Z_{i} \delta+v_{i} \geq 0\right)
\end{aligned}
$$

- where $\mathbf{Z}_{\mathrm{i}}=\left(\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right), \delta=\left(\beta_{1}, \beta_{2}\right)^{\prime}$ and $\mathrm{v}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i} 1}-\mathrm{u}_{\mathrm{i} 2}$
- The model is

$$
\begin{aligned}
\mathrm{w}_{\mathrm{i}}^{0} & =\mathrm{X}_{\mathrm{i} 1} \beta_{1}+\mathrm{u}_{\mathrm{i} 1} \\
\mathrm{~s}_{\mathrm{i}} & =1\left(\mathrm{Z}_{\mathrm{i}} \delta+\mathrm{v}_{\mathrm{i}} \geq 0\right)
\end{aligned}
$$

- Selection is endogenous since v_{i} depends on $u_{i 1}$

Solving the problem: Heckman Selection

- Let's study a model to solve the selection problem
- This model will only work if we have some data on obs that were not selected
- Take a general model with main equation and selection equation

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \beta+\mathrm{u}_{\mathrm{i}} \\
& \mathbf{s}_{\mathrm{i}}=1\left(\mathrm{Z}_{\mathrm{i}} \delta+\mathrm{v}_{\mathrm{i}} \geq 0\right)
\end{aligned}
$$

- Assume: ($\mathrm{s}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}}$) always observed for all N
- $\left(y_{i}, X_{i}\right)$ are observed only if $s_{i}=1$
- $E(\mathbf{u} \mid X, Z)=E(v \mid X, Z)=0$
- $\mathrm{v} \sim \mathbf{N}(0,1)$ (can be relaxed to have $\mathbf{N}\left(0, \sigma^{2}\right)$)
- $\mathbf{E}(\mathbf{u} \mid \mathbf{v})=\gamma \mathbf{v}$: imposes a linear structure to conditional mean

Heckman Selection

- Take the conditional mean

$$
\begin{aligned}
\mathbf{E}(\mathbf{y} \mid \mathbf{X}, \mathbf{s}=1) & =\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{X}, \mathbf{s}=1) \\
& =\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{X}, \mathbf{v}>-\mathbf{Z} \delta)
\end{aligned}
$$

- Using the assumptions $\mathbf{u}=\gamma \mathbf{v}+\xi$, where ξ is non-systematic with zero mean

$$
\begin{aligned}
\mathbf{E}(\mathbf{y} \mid \mathbf{X}, \mathbf{s}=\mathbf{1}) & =\mathbf{X} \beta+\mathbf{E}(\mathbf{u} \mid \mathbf{X}, \mathbf{v}>-\mathbf{Z} \delta) \\
& =\mathbf{X} \beta+\mathbf{E}(\gamma \mathbf{v}+\xi \mid \mathbf{X}, \mathbf{v}>-\mathbf{Z} \delta) \\
& =\mathbf{X} \beta+\gamma \mathbf{E}(\mathbf{v} \mid \mathbf{X}, \mathbf{v}>-\mathbf{Z} \delta)
\end{aligned}
$$

Heckman Selection

- Now, let's exploit the assumption on v's distribution

$$
\begin{aligned}
\mathbf{E}(\mathbf{y} \mid \mathbf{X}, \mathbf{s}=\mathbf{1}) & =\mathbf{X} \beta+\gamma \mathbf{E}(\mathbf{v} \mid \mathbf{X}, \mathbf{v}>-\mathbf{Z} \delta) \\
& =\mathbf{X} \beta+\gamma \frac{\varphi(-\mathbf{Z} \delta)}{1-\Phi(-\mathbf{Z} \delta)} \\
& =\mathbf{X} \beta+\gamma \frac{\varphi(\mathbf{Z} \delta)}{\Phi(\mathbf{Z} \delta)} \\
& =\mathbf{X} \beta+\gamma \cdot \lambda(\mathbf{Z} \delta)
\end{aligned}
$$

- where $\lambda(\mathbf{Z} \delta)$ is the inverse Mills ratio
- The true conditional mean includes a second term $\gamma \cdot \lambda(\mathbf{Z} \delta)$
- Excluding this term we introduce a bias (X and Z most likely overlap)

Heckman Selection

$$
\mathbf{E}(\mathbf{y} \mid \mathbf{X}, \mathbf{s}=\mathbf{1})=\mathbf{X} \beta+\gamma \cdot \lambda(\mathbf{Z} \delta)
$$

- Heckman: let's include the omitted variable and estimate γ
- However, we must first estimate δ
- Recover the δ from a probit of s_{i} on Z_{i}

$$
\operatorname{Pr}(\mathbf{s}=\mathbf{1} \mid \mathbf{Z})=\Phi(\mathbf{Z} \delta)
$$

Heckman Selection

$$
\operatorname{Pr}(\mathbf{s}=1 \mid \mathbf{Z})=\Phi(\mathbf{Z} \delta)
$$

- With consistent estimates of δ called $\hat{\delta}$ we have

$$
\hat{\lambda}_{i}=\lambda\left(\mathbf{Z}_{i} \hat{\delta}\right)
$$

- Then use it in regression

$$
\mathbf{y}_{\mathbf{i}}=\mathbf{X}_{\mathbf{i}} \beta+\gamma \hat{\lambda}_{\mathbf{i}}+\mathbf{u}_{\mathbf{i}}
$$

- Standard errors are more complicated since $\hat{\lambda}$ comes from a separate estimate
- Notice: estimating γ you can test endogeneity of selection

Heckman Selection: Additional Comments

- Consider the relationship between X and Z
- May be completely separated or completely identical
- If completely separated omitting $\lambda(\mathbf{Z} \delta)$ does not generate OVB
- OLS on selected sample gives consistent estimates (we still have exogeneity)
- unless $\mathrm{E}[\lambda(\mathbf{Z} \delta)]=0$ the constant will be inconsistent

Heckman Selection: Additional Comments

- If completely identical: $\mathrm{X}=\mathrm{Z}$
- Problem of multicollinearity: Mills ratio approximately linear

$$
\mathbf{E}(\mathbf{y} \mid \mathbf{X}) \approx \mathbf{X} \beta+\mathbf{a}+\mathbf{b} \mathbf{Z} \delta=\mathbf{X}(\beta+\mathbf{b} \delta)+\mathbf{a}
$$

- So that cannot estimate β consistently
- Hence, when $\mathbf{X}=\mathbf{Z}$ identification will only be guaranteed by non-linearity of Mills ratio
- In general, it is better to have $\mathbf{Z}=\mathrm{X}+\mathrm{Z}_{1}$ so that there are "excluded variables", but all X appear in selection equation
- This is very much like with instrumental variables
- Without Z_{1} identification with instrumental variables would be impossible

