

Agenda

- Clean Energy Transition Institute
- Deep Decarbonization Studies
- > CETI Programs
- > Questions and Answers

Clean Energy Transition Institute

- What We Are: Independent, nonpartisan Northwest research and analysis nonprofit organization
- > Our Mission: Accelerate an equitable clean energy transition in the Northwest
- > Our Role:
 - Provide unbiased research and analytics
 - Offer an information clearinghouse for policymakers
 - Convene diverse stakeholders

Why Northwest Deep Decarbonization Studies?

Common set of assumptions to inform decisions about how the clean energy transition could unfold over the coming decades

- Unbiased, analytical baseline for the region
- Variety of pathways to lower carbon emissions
- Surface trade-offs, challenges, and practical implications of achieving mid-century targets
- Broaden conversations about actions needed

Comparison to Prior Decarbonization Studies

			WA	OR	ID	MT
2016	State of Washington Office of the Governor	All sectors				
2017	Public Generating Pool	Electricity sector only				
2018	Portland General Electric	All sectors				
	Climate Solutions	Electricity sector only				
	Northwest Natural Gas Company	All sectors; optimized decisions limited to electricity sector only				
2019	Public Generating Pool	Electricity sector only; reliability study				
	Clean Energy Transition Institute	All sectors; optimized decisions across entire energy supply side				

What Did We Want to Know?

- How do we get to a 100% Clean Grid quickly?
- How do we avoid outages with intermittent supply and changing demand?
- How much and how fast can we electrify?
- How do we manage the cost impacts, overall and for different customers?
- What business and regulatory models and markets are needed?

Northwest in the Context of a Western Grid

- Holistic Approach
 - Integrated across geographies and economic sectors
- Regional Representation
 - Other state's actions impact the availability and cost of solutions
 - 11 Western states
- Remainder of the U.S. also modeled

9

Northwest Deep Decarbonization Target

Northwest Pillars of Deep Decarbonization

Transforming Washington's Energy System

Washington State's 2030 Challenge:

53% Reduction in Emissions in less than a decade

Source: Washington State Department of Ecology and Washington State.

Appendix A – Deep Decarbonization Pathways Modeling Technical Report, December 11, 2020 (p. 15)

What Did We Want to Know?

- What is the impact of rapid and aggressive electrification of energy systems?
- What if we don't electrify transportation as quickly as required?
- What happens if we retain gas instead of electrifying buildings?
- What if transmission expansion is limited due to siting or permitting?
- What if policies or behavior change (i.e., more telecommuting after Covid) lower demand?

Washington Deep Decarbonization Pathways

Energy Efficiency

Energy Consumption (Gigajoules/person)

Clean Electricity

Electricity Carbon Intensity (Grams CO₂ per kWh)

2050

Electrification

Electricity Share of Total Energy (% of Final Energy)

Clean Fuels

Fuels Carbon Intensity (kG/MMBtu)

Carbon Sequestration

(Million tonnes CO₂)

Decarbonization Pathways Studies 2019-2021

2019 2020

We strengthen communities

We strengthen communities

Washington 2021

State Energy Strategy

Transitioning to an Equitable Clean Energy Future

2021

2021

Common Findings Decarbonization Scenarios

- Greater regional coordination required to facilitate clean energy transfers across the West
- Strengthened/expanded Western grid needed to take advantage of resource and geographic diversity
- Major clean fuels industry developed with biofuels and hydrogen from electrolysis
- Electrification of buildings and transportation is key
- Large build of solar in the Southwest and wind states (MT, WY)

Net-Zero Northwest Overview

- Key Components
 - Decarbonization pathways
 - Employment/workforce projections
 - Health benefits analysis
 - Incorporates InflationReduction Act
 - Focus on actions from now to 2030 to put the region on path to net-zero in 2050

Preliminary Results

- Significant decrease in energy demand due to efficiency gains as fuels switch to electricity
 - Transportation efficiency gains are the largest contributor to energy demand reductions
- While the demand for electricity doubles from 2021 to 2050, overall economywide energy demand drops by 30%
 - New transportation loads drive just over half of all electricity growth 2021 to 2050

Preliminary Results (cont'd)

- Montana becomes a major hydrogen producer in the long term (40 GW of wind support H2 production and electricity exports)
- Nuclear, electrolysis, direct air capture all built earlier than in prior studies due to IRA incentives
 - Without IRA, the cost of clean fuels was much higher
- > 13 GWs of nuclear retrofits of coal and gas plants across the West
 - Cost effective due to IRA incentives

Tasks to Run November 2022-January 2023

TASK	SUMMARY	KEY QUESTIONS INVESTIGATED	
1. Core Case	All four states hit net-zero target by 2050	What resources must be built to meet clean energy demand for different energy sectors in the Northwest by 2030 and 2050?	
2. Accelerated/Constrained Transmission	Varies transmission expansion potential in six scenarios	What is the impact of accelerated or constrained transmission expansion across the Western grid?	
3. Gas vs. Electrification in Buildings	Examines relative costs of gas vs. electricity in buildings	How does decarbonizing gas compare with electrification as a decarbonization strategy in buildings?	
4. Role of Distributed Energy Resources	Varies distributed energy (rooftop solar; customer appliance; flexible load)	What role can distributed energy resources play decarbonization?	
5. Pace of Transportation Electrification	Varies the pace of transportation electrification	What is the impact of the pace of transportation electrification on the overall cost of decarbonization for the Northwest?	
6. Clean Fuels Tradeoffs	Explores impact of pricing for biofuels, synthetic fuels, and hydrogen	What are the tradeoffs between clean fuels, including biofuels and synthetic fuels/hydrogen?	
7. Health Impacts	Determines changes in criteria pollutants and their impact on health metrics	What is the impact on health metrics in the Northwest if criteria pollutants are reduced as a result of decarbonization?	

Current Institute Programs

- > Building Decarbonization
 - Operation 2030
- Industrial Decarbonization
 - Clean Materials Manufacturing
- > Rural & Tribal Decarbonization
 - Community-Defined Decarbonization
 - Claiming Power
- Northwest Clean Energy Atlas
 - Interactive dashboard NW decarbonization visualizations

Clean Energy Transition Impact 2018-2021

Download our Case Statement

Download our Impact Report

Clean Energy Transition Institute Releases

- Meeting the Challenge of Our Time: Pathways to a Low-Carbon
 Future for the Northwest (NWDDP Analysis)—June 2019
- Montana Governor's Climate Solutions Council
 —September 2020
- Washington 2021 State Energy Strategy; Chapter B from the WA <u>SES</u>; Deep Decarbonization Modeling Final Report—January 2021
- Oregon Clean Energy Pathways Analysis July 2021
- Washington State Industrial Emissions Analysis July 2021
- Operation 2030: Scaling Building Decarbonization in Washington State—January 2022
- Northwest Clean Energy Atlas May 2022
- Washington State Clean Industrial Economy Summit June 2022
- Rural Community-Defined Decarbonization September 2022
- Claiming Power: Stories of Rural Communities and Clean Energy—October 2022

