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Abstract
Background: Delays in clinical trial enrollment and difficulties enrolling representative samples continue to vex sponsors, sites, and
patient populations. Here we investigated use of an artificial intelligence-powered technology, Mendel.ai, as a means of over-
coming bottlenecks and potential biases associated with standard patient prescreening processes in an oncology setting.Methods:
Mendel.ai was applied retroactively to 2 completed oncology studies (1 breast, 1 lung), and 1 study that failed to enroll (lung), at
the Comprehensive Blood and Cancer Center, allowing direct comparison between results achieved using standard prescreening
practices and results achieved with Mendel.ai. Outcome variables included the number of patients identified as potentially eligible
and the elapsed time between eligibility and identification. Results: For each trial that enrolled, use of Mendel.ai resulted in a 24% to
50% increase over standard practices in the number of patients correctly identified as potentially eligible. No patients correctly
identified by standard practices were missed by Mendel.ai. For the nonenrolling trial, both approaches failed to identify suitable
patients. An average of 19 days for breast and 263 days for lung cancer patients elapsed between actual patient eligibility (based on
clinical chart information) and identification when the standard prescreening practice was used. In contrast, ascertainment of
potential eligibility using Mendel.ai took minutes. Conclusions: This study suggests that augmentation of human resources with
artificial intelligence could yield sizable improvements over standard practices in several aspects of the patient prescreening
process, as well as in approaches to feasibility, site selection, and trial selection.
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Introduction

In recent years, pressure to achieve greater efficiency and

higher quality in clinical trial execution has resulted in numer-

ous forays into the use of technology to augment human

resources. Technology tools are now routinely applied to the

management of patient and clinical trial records, collection

and cleaning of trial data, monitoring and modeling of trial

progress, oversight of trial operational tasks and patient

safety, and countless other clinical trial tasks. In each of these

cases, technology has improved the productivity and work

quality of the often-limiting, skilled human resources respon-

sible for these functions.

Despite gains in these areas, sizable delays in clinical trial

startup and enrollment continue to vex sponsors, sites, and the

patient populations that stand to benefit from new treatments.

In fact, research from the Tufts Center for Drug Development

has shown that despite the industry’s high investment in this

area, the process of clinical trial startup has become more,

rather than less, lengthy over the past decade.1 Across all ther-

apeutic areas, the typical clinical trial must double the planned

enrollment period to reach the recruitment target, and even

then, approximately 40% of sites in a multicenter trial will

underenroll compared to plan, and 10% will fail to enroll a
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single patient.1,2 Worse, despite the enormous resource and

opportunity costs associated with this deficiency, no improve-

ment in these figures has been observed over the last 15þ
years.1,2 The failure to match eligible patients with clinical

trials is particularly tragic given that in a 2017 study, 75% of

patients reported that they would be “somewhat” (44%) or

“very” (31%) willing to participate in a clinical trial,3 yet even

among oncology patients, only 3% to 5% are matched into and

enrolled in one.4

Commonly discussed contributors to unsatisfactory enroll-

ment rates include complex protocol designs involving highly

restrictive eligibility criteria, an increased focus on rare dis-

eases or disease subtypes, and patient barriers to participation.

However, an often overlooked, critical factor is the consider-

able time required of investigative site staff to identify poten-

tially eligible patients (“prescreen”) from among those in their

practices, given that much of the clinical information needed

for this process appears in patient records as unstructured free

text or in scanned documents (eg, PDF images of radiology

reports) and thus is not readily searchable using existing tech-

nologies.5 In a 2017 study of 2000 physicians and nurses, as

well as in a previous study, time limitations and difficulties

accessing information were in fact cited as key reasons for not

referring patients into clinical trials.6,7 Although attempts

have been made to use machine-learning techniques to create

standardized, coded information from free text notes, these

techniques have not to date produced sufficiently reliable

results5; hence the process remains resource-intensive, and

as such, competes for priority with the many other, often

time-sensitive clinical trial tasks that place demands on the

same resources.

Resource constraints limit both the number of potentially

eligible patients prescreened, and the promptness with which

this is done. These impacts not only result in enrollment delays

for clinical trials, but also have additional negative conse-

quences from the perspective of the patient population. For one

thing, the inability to effectively prescreen all patients in an

institution’s database means that there may be a sizeable dis-

crepancy between the fraction of patients eligible to access a

potentially disease-modifying or even life-saving treatment,

and the fraction that actually do so. Further, delays in prescre-

ening result in delays, for individual patients, in access to

potentially life-saving investigational treatments. The inability

to prescreen the entire patient population may also contribute to

unintended biases in patient screening, which in turn may con-

tribute to biases in the patient population enrolled, and hence in

the study results. For example, patients with less frequent visits

to medical practitioners may be less “top of mind” than new

referrals or frequently seen patients, and hence less likely to be

identified for trials. Similarly, patients with less vs more com-

plex charts requiring review, or under the care of one practi-

tioner vs another, may differ in their probabilities of

identification. Even within the spectrum of eligibility for a

given study, such groups of patients likely differ in their clin-

ical and/or demographic characteristics and hence may differ in

their responses to investigational treatment, thus impacting the

relevance of the results to the patient population as a whole.

In this study, we investigated use of a novel, artificial intel-

ligence–powered technology solution currently in beta devel-

opment, Mendel.ai, as a means of overcoming the bottlenecks

and potential biases associated with standard prescreening

practices in an oncology setting. Using proprietary artificial

intelligence algorithms that pair text recognition in scanned

documents with natural language understanding of clinical text

and automated clinical reasoning, Mendel.ai can interpret both

structured and unstructured medical records and can cross-

reference these with protocol eligibility criteria to evaluate

patient eligibility. Mendel.ai can thus comb through, and eval-

uate for clinical trial eligibility, the entirety of patient records

available to a care facility within seconds. We posited that

augmenting skilled human resources with use of this technol-

ogy could substantially increase the number of patients identi-

fied as potentially eligible for a trial, while at the same time

reducing the man-hours required, the elapsed time between

patient eligibility and identification, and any unintended biases

resulting from the standard prescreening process. Applying

Mendel.ai retroactively to 3 oncology studies (1 breast, 2 lung)

that had recently completed enrolment permitted a direct com-

parison between results actually achieved in a typical setting

and results achieved through augmentation with Mendel.ai

applied to exactly the same data. Thus, any confounding

impacts of direct “competition” between the approaches or

differences between historical vs present protocols, as well as

any ethical or logistical issues associated with running the

approaches contemporaneously were avoided.

Patients and Methods

This study was conducted in May and June of 2018 using

patient and clinical trial enrollment data from the Comprehen-

sive Blood and Cancer Center (CBCC) in Bakersfield, CA. The

Mendel.ai system was already installed and active at CBCC

upon initiation of this study.

The 3 oncology protocols used for this study were selected

from among those for which enrollment was completed at

CBCC within the last 4 years. To investigate a range of enroll-

ment challenges, the investigators selected one study that had

enrolled well at CBCC (a breast cancer trial referred to herein

as protocol 1), one that had enrolled moderately (a non–small

cell lung cancer [NSCLC] trial referred to herein as protocol 2),

and one that had not enrolled a single patient (an NSCLC trial

referred to herein as protocol 3). Site staff were unaware when

these clinical trials were enrolling that the present study would

be performed; hence, all patient recruitment tasks were per-

formed according to usual practices and without any biases

potentially associated with “competing” with the technology

platform or “relaxing” under the assumption that potentially

eligible patients would be identified by the system. Usual prac-

tices included an initial structured filtering of electronic med-

ical records for high-level clinical trial suitability, followed by
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direct review of patient charts by CBCC clinical trial recruiters

and then physicians for ascertainment of eligibility criteria.

For each protocol, historical CBCC data were obtained

regarding opening and closing dates for screening and the total

number of patients identified as potentially eligible through

prescreening. In addition, for each patient screened, we

obtained the date at which the patient became eligible for the

study (the later of the date at which screening began for the trial

and the date at which prescreening eligibility criteria were met

based on information available in the chart), and the actual date

of trial screening.

The Mendel.ai technology was applied to the same sets of

patient records, and the same sets of information within each

record (ie, time-bounded), to which the CBCC clinical trial

recruitment staff had access during screening. The Mendel.ai

software is composed of a collection of proprietary algorithms

(some of which are novel) and recipes of algorithms (combina-

tions, order of execution, finely tuned parameters, etc) that

support all of the following functional components:

1. The Text Recognition System extracts text from scanned

medical documents and includes algorithms for

denoising (removing the visual noise on the scanned

page), restoration (rotation and skew correction), lay-

out analysis (identifying text blocks from images and

illustrations), line segmentation (extracting lines from

text blocks), optical character recognition of lines,

reordering of extracted text lines, and correction of

spelling errors.

2. The Clinical Language Understanding and Entailment

system “reads” the output of the text recognition system

and understands its meaning, outputting knowledge to

the systems downstream. It has two components:

a. The Clinical Language Understanding component

performs state-of-the-art natural language process-

ing (NLP) algorithms (eg, dependency parsing and

entity-relationship extraction) tailored to clinical

text, including tagging and understanding concepts

such as the relationship between a text statement

and a patient vs another (eg, in “her aunt died of

breast carcinoma”), the difference between a risk

and an actuality (eg, in “has an increased risk for

[disease]”), ambiguity and uncertainty (eg, in

“appears to be [disease]” or “typical for [disease]”),

and negation (eg, “she denies having allergies

to . . . ”).
b. The Clinical Language Entailment component

attempts to entail information that was not men-

tioned explicitly; for example, staging a cancer

patient according to the TNM system, or ascertain-

ing whether a patient’s condition is stable on the

current medication.

3. The Knowledge-base, Ontology, and Wisdom System

has 3 major components:

a. A Central Knowledge Base stores all knowledge

extracted from clinical text, that is, learned fromReal

World Data (RWD) representing actual patients,

in a machine-understandable representation.

b. AnOntology represents abstract knowledge created

by experts (eg, medical ontologies: ICD10,

SNOMED) and learned from publications (eg,

PubMed, clinical trial protocols).

c. Wisdom represents insights inferred from the

knowledge base and ontology.

4. The Semantic Search Engine and Clinical Trial Match-

ing system allows a user to query the knowledge base in

plain English, analyzes and disambiguates the query,

retrieves matching patients, and highlights evidence for

the match in the patient record.

Validation of the technology is iterative and proceeds along

multiple lines. Individual components of the system were vali-

dated prior to the conduct of this study. For example, the Text

Recognition system was evaluated vs the best-available free

and commercial optical character recognition (OCR) systems

by comparing the output of each to a standard of human tran-

scription; on an evaluation set of 430 pages (137,000þ words)

of scanned medical documents, Mendel.ai performed at a

10.07% Word Error Rate (WER) while the closest competitor

performed at a 24.10% WER. Similarly, Mendel.ai’s identifi-

cation of patients meeting simple criteria (eg, breast cancer)

was compared against an appropriate standard for each criter-

ion. The ability of the Mendel.ai technology to identify

patients meeting complete trial eligibility criteria is by its

nature dynamic, based on a continuous machine learning pro-

cess whereby a clinical research professional employed by

Mendel.ai reviews each prospective clinical trial subject iden-

tified by the technology and provides feedback to the system.

This human review thus provides validation of each result,

while simultaneously improving the performance of the sys-

tem with each iteration; thus, validation is essentially a con-

tinuous process.

In addition to applying the eligibility criteria of each proto-

col to the searches performed for this study, Mendel.ai was also

configured to apply additional, clinical criteria applied by

CBCC recruitment staff; for example, patients with stable dis-

ease on existing treatment were excluded. System output from

the Mendel.ai prescreening process (ie, the list of potentially

eligible patients) was then reviewed by a patient recruitment

professional to verify and refine the results obtained by the

system. For this study, these reviewers were blind to whether

each patient had been screened for a clinical trial. Reviewers

spent an average of between 2.5 and 5 minutes per patient

identified by the system performing this task.

Finally, CBCC patient recruitment staff reviewed records

for all patients that were identified by Mendel.ai and that had

not been identified by CBCC during study screening. This was

done to ensure that Mendel.ai was not “accepting” patients that

site staff had considered but excluded based on information
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outside of the protocol eligibility criteria. This review ensured

that estimates of any potential gain in screened patients through

use of Mendel.ai were conservative.

This article does not contain any studies with human or

animal subjects performed by any of the authors. No investi-

gator or associate involved in the conduct of this research had

access to any identifying patient information to which they did

not already have access as part of their responsibilities outside

of the conduct of this research. Further, Mendel.ai was not

applied to any data to which it did not have access for reasons

outside of the conduct of this research. Finally, no information

that identified specific patients was recorded as part of docu-

menting the results of this research. Thus, it was determined by

the Western Institutional Review Board (WIRB) that this

research was exempt from the requirement for IRB review.

Results

As can be seen in Table 1, for the high-enrolling trial (protocol

1), and low-enrolling trial (protocol 2), use of Mendel.ai

resulted in a 24% to 50% increase in the number of patients

correctly identified as potentially eligible for clinical trial par-

ticipation (ie, met all eligibility criteria that could be estab-

lished from the medical chart upon review by a medically

trained clinical trial professional), while consuming only a total

of 20 man-hours for protocol 1, and 1.15 man-hours for proto-

col 2. For protocol 3, both Mendel.ai and standard practices

failed to identify any potentially suitable patients; for the Men-

del.ai system, establishing the lack of suitable patients required

a total of 1.3 man-hours.

Across all protocols, every patient identified by the Mende-

l.ai prescreening process that had also been identified by CBCC

staff was in fact screened for the respective clinical trial. For

protocol 2, in addition to the 2 patients who are reflected in

Table 1, 2 additional patients who were not identified by

Mendel.ai were seen for screening visits. However, neither was

eligible for the trial based on information that Mendel.ai had

detected from chart review. Thus, these patients had been

incorrectly identified by standard practices.

The elapsed time between the date on which the patient

could be characterized from information in the medical record

as potentially eligible for the trial, and the date on which the

patient was screened for the trial, varied widely across patients

(Table 1). For protocol 1, the mean elapsed time was 19 days,

with a standard deviation of 28. Twelve patients were enrolled

within 1 week of becoming eligible; for these patients, the

mean time lapse between determination of potential eligibility

and screening visit was 1.2 days. However, for the remaining

13, the mean time lapse between eligibility and screening was

37 days. For protocol 2, the mean elapsed time was 263 days,

with a standard deviation of 22.

Discussion

To our knowledge, this study represents the first in which a

direct comparison has been made between the results of clinical

trial prescreening with vs without augmentation of human

resources by artificial intelligence technology. In this compar-

ison, augmentation of human resources by Mendel.ai resulted

in meaningful improvements over standard practices in the

number of patients identified as potentially eligible for oncol-

ogy clinical trials, and in the expected elapsed time between

patient eligibility and identification for screening. Given the

very limited amount of time expended by human resources

through this process, ranging between 1.6 and 20 hours per

clinical trial to screen through databases of tens of thousands

of patients, one can also surmise that use of Mendel.ai would

drastically reduce the human resource demand of the patient

identification process. Although not offering the same direct

comparison, recent research by IBM utilizing the Watson arti-

ficial intelligence platform, in which an 80% increase in oncol-

ogy clinical trial enrollment was observed at Mayo after

introduction of the technology,8 further supports the potential

of an AI application to enhance patient screening in the oncol-

ogy space. Thus, the fact that no other applications have pub-

lished results in which AI has been used to this end, or in any

other aspect of clinical trial conduct, appears simply to reflect

the nascence of AI in this space.

Table 1. Potential Trial Participants Identified Through Prescreening by Each of Mendel.ai and Standard Practices.

Protocol
Indication/
Phase

Total No. of Patient
Records (Documents)
Searched by Mendel.ai

Total Patient Recruitment
Resource Time Expended
Using Mendel.ai Approach

Patients Correctly Identified as
Potentially Eligible by CBCC Staff

Patients Correctly
Identified as

Potentially Eligible
by Mendel.ai

Total
No.

No. Not
Identified

by
Mendel.ai

Days Between
Eligibility and

Screening, Mean
(SD)

Total
No.

No. Not
Identified
by CBCC

1 Breast
cancer

11,902 (261,923) 20 h 25 0 19 (28) 31 6

2 NSCLC 27,540 (787,919) 1.15 h 2 0 263 (22) 3 1
3 NSCLC 8,682 (33,469) 1.3 h 0 0 n/a 0 –

Abbreviations: CBCC, Comprehensive Blood and Cancer Center; NSCLC, non–small cell lung cancer.
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From a clinical trial sponsor perspective, gains such as those

observed here provide multiple meaningful benefits. Based on

the results of this research, we can surmise that had Mendel.ai

been employed as a prescreening tool for the protocols that

enrolled patients at CBCC, not only could between 24% and

50%more patients have been correctly identified for screening,

but a large fraction could have been identified much more

quickly, thus providing a 2-fold mechanism for increasing the

rate of enrollment. Moreover, some patients who were deter-

mined not to be eligible after having been brought to the site for

a screening visit would have been correctly excluded without

the visit. Extrapolated across all research centers potentially

employing such technology, such an effect could have mean-

ingfully accelerated development of the product candidate, as

well as increasing the efficiency of both human and financial

resources. By increasing the range of patients identified, it

could also have reduced any unintended screening biases and

hence improved applicability of the results to the patient pop-

ulation as a whole.

Also from the sponsor perspective, the ability to quickly and

accurately prescreen patient records at sites, even prior to

initiation of screening, can improve site selection, enhance the

ability to forecast enrollment both overall and by patient subset

(eg, demographic), and even allow for modeling of the impact

of different eligibility criteria during protocol development.

Together, these impacts would be expected to yield a substan-

tial improvement over standard practices for feasibility assess-

ment and trial forecasting. Among the protocols studied in this

research, CBCC was selected and initiated for one trial for

which no potentially eligible patients were then screened. For

this trial, augmentation of human resources by Mendel.ai

would have permitted early determination that CBCC’s data-

base contained no eligible patients, with only 1.3 man-hours of

effort. Thus, had Mendel.ai been applied at the time of site

selection, it is likely that both sponsor and site resources

devoted to this trial would have been spared. Given that the

expenditure of resources on nonperforming sites remains a

significant efficiency issue, particularly as sponsors demon-

strate increased interest in rare diseases and patient subpopula-

tions, it is easy to see that the impact of these enhancements

could be profound.

Optimizing the match between site and clinical trial is also

important from a site perspective. The ability for a site to

selectively participate in only the clinical trials that are most

likely to enroll suitable patients would be expected to increase

site profitability, site marketability and desirability to sponsors,

and staff satisfaction. In this case, across the 3 trials studied,

much time had been spent by CBCC staff performing a tedious

and largely automatable task. Again, extrapolated across mul-

tiple trials, a substantial reduction in this figure would allow

staff to devote less resources not only to this task but also to

trial tasks in general (eg, training, setup, etc) for nonenrolling

trials. Such resources could then be diverted to increased par-

ticipation in trials that represented a better fit to the site’s

patient population, a particularly important impact for settings

in which institutional participation in research may be limited

by the scarcity of human resources with the background and

skills required to perform research activities. From a care per-

spective, an added benefit, particularly for oncology and other

diseases with significant unmet medical need, would be the

knowledge that a site’s patient population was being screened

for potential participation as thoroughly and as quickly as pos-

sible, even when site staff may be unable to immediately attend

to the task of patient identification due to other important and

time-sensitive demands on their time.

The benefits to patients of potential improvements in

screening and enrollment processes are not often discussed.

Had Mendel.ai been applied at the time of execution of these

protocols, not only would more patients have been screened for

the opportunity to participate in each trial but they could have

been presented with this opportunity considerably sooner, con-

ceivably altering the course of their diseases. In the case of

protocol 1, patients could have been presented with this oppor-

tunity an average of almost 3 weeks sooner. The case of pro-

tocol 2 was more extreme. In this case, lags in patient

identification resulted in part from lags between the dates on

which critical eligibility information became available in

scanned pathology reports, and the dates on which that infor-

mation was entered into patient records in a structured, search-

able format. Through its ability to read scanned documents

directly, the Mendel.ai system would have been able to circum-

vent this lag altogether. A faster research process and more

comprehensive prescreening process would also mean earlier

access to an effective treatment, and increased relevance of the

results, for the patient population as a whole.

The benefits of any technology must be weighed against its

costs (both direct and indirect) and associated risks. For Men-

del.ai, the principal costs are associated with server time and

processing power, which at CBCC are currently approximately

$14,000 per 100,000 patients per year, a small fraction of the

cost of employing a single Study Coordinator/Research Nurse.

For this cost, the technology may be used as frequently as

desired, and for whatever purposes desired. In addition, a

one-time cost of approximately $11,000 is associated with ini-

tial, complete integration of the technology into the EMR sys-

tem. For the application discussed here, Mendel.ai then simply

acts as a search engine—a highly efficient information-

gathering system—and requires only the trivial level of training

associated with such (virtually zero cost). Used in this manner,

all clinical trial eligibility decisions are ultimately reviewed

and approved by the Investigator; hence there are no regulatory

implications to its use (it is not intended to diagnose or direct

the treatment of any disease), and associated risks in terms of

inappropriate identification of patients are virtually nil. Thus,

in this example, the cost savings associated with reduced time

expenditure by recruitment staff, together with the revenue

gains and patient care benefits associated with identifying all

potential clinical trial subjects in the practice, strongly justify

the costs and risks associated with the technology.
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The accuracy and thoroughness of the results obtained by

Mendel.ai in this study suggest that artificial intelligence tech-

nology, when appropriately targeted and trained, is in fact

capable of interpreting free text and scanned patient data with

a level of precision and cost-effectiveness sufficient to support

research activities. In addition, here the technology was not

only able to screen potential patients based on objective pro-

tocol eligibility criteria, but it was also able, in a customizable

way, to screen based on clinical concepts such as “stable dis-

ease,” thus further improving the quality of output while reduc-

ing the human effort required for the process. These

foundational capabilities pave the way to additional applica-

tions of the technology to real-world data, including under-

standing the patient journey and patient subsets, real-world

treatment practices and outcomes, patterns of comorbidity,

impacts of environmental variables, etc. Future work will

explore leveraging the Mendel.ai system for these types of

research questions.

Conclusions

The present study suggests that augmentation of human

resources with artificial intelligence technology could yield

sizable improvements over standard practices in several

aspects of the patient prescreening process for oncology clin-

ical trials. Benefits appear to include an increased number of

patients identified as potentially eligible, a reduced number of

man-hours expended in the process, and reduced elapsed time

between patient eligibility and identification. Particularly as

this technology improves, all stakeholders in the process stand

to benefit substantially from increases in both the speed and

efficiency of clinical research, and the applicability of the data

acquired. Future work will explore additional applications of

the system in leveraging real-world data to answer a broader

array of research questions.
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