

Thank you - your ongoing membership makes Leonardo English possible. If you have guestions we'd love to hear from you: hi@leonardoenglish.com

Episode #258 The War of The Currents 29th Apr, 2022

[00:00:00] Hello, hello hello, and welcome to English Learning for Curious Minds, by Leonardo English.

[00:00:12] The show where you can listen to fascinating stories, and learn weird and wonderful things about the world at the same time as improving your English.

[00:00:22] I'm Alastair Budge, and today we are going to be talking about the War of the Currents, an epic battle to <a href="mailto:standardise the electricity system in 19th century America.

[00:00:35] Now, you might not have woken up this morning and thought "I want to know about electrical currents", but <u>stick with me</u>³, this story is anything but boring.

¹ extraordinary or very impressive, grande

² cause to follow some standard rules or use

³ stay with me, continue reading

[00:00:46] We'll encounter brilliant geniuses, <u>vicious</u>⁴ rivalries, huge fortunes, the creation of the electric chair and why you didn't want to be a <u>stray</u>⁵ dog in 19th century America.

[00:01:01] OK then, let's plug ourselves in to the story of the War of the Currents.

[00:01:08] Before we get started with the story, I'd like to quickly go over DC and AC, as these are two terms that you'll be hearing a lot, and are <u>vital</u>⁶ for an understanding of the story.

[00:01:23] DC stands for direct current. It's a <u>unidirectional</u>⁷, one directional flow of electrical charge.

[00:01:33] AC, on the other hand, stands for alternating current. AC changes directional multiple times every second.

[00:01:44] Today, AC is what you get out of your power sockets at home, whereas DC is generally used for batteries and <u>sensitive</u>⁸ electronics.

⁵ having no home, wandering

⁴ intense, fierce

⁶ necessary, very important

⁷ one directional

⁸ easily damaged

[00:01:56] To transform AC to DC, for example for smartphones and laptops, you need a transformer. You may not have noticed this before, but if you have a laptop, you might see that the wire goes through a box - in there is the transformer.

[00:02:15] Now, we don't need to have a detailed knowledge about the science behind all of this, the important thing to remember is that AC and DC are <u>fundamentally</u>⁹ different ways of transporting electricity.

[00:02:32] With that clarification out of the way, we can get on with our story, which starts in 1870s America.

[00:02:40] This period was known as the Gilded, or Golden Age - a period of economic boom¹⁰ and industrial and technological growth that took place after the end of the American Civil War in 1865.

[00:02:57] While the Gilded Age was a period of <u>prosperity¹¹</u>, growing fortunes, <u>leaps¹²</u> in technology and opportunity, it was also <u>tainted¹³</u> by political corruption and the

⁹ completely, in essence

¹⁰ a sudden increase or growth

¹¹ success and wealth

¹² large jumps or advances

¹³ affected in a bad way, spoiled

<u>accumulation</u>¹⁴ of huge amounts of wealth by a handful of industrialists, politicians and bankers <u>at the expense</u>¹⁵ of the working classes.

[00:03:19] The War of the Currents was not just a battle to electrify America, it also pitted¹⁶ some of the century's most excellent minds against one another and exposed¹⁷ the darker side of the Gilded Age - avoidable¹⁸ deaths, smear campaigns¹⁹ and political corruption.

[00:03:39] So, let's take a look at how the War of the Currents got started and find out more about the key²⁰ figures involved.

[00:03:49] Now, before electricity, life was obviously very different. Perhaps one of the most visible differences, or you could say invisible differences, was how people would light the world.

[00:04:04] The options available to provide light were candles, oil and gas. Essentially, burning something to create light.

¹⁴ collection, gathering

 $^{^{\}rm 15}$ in a way that harmed

¹⁶ put them in competition

¹⁷ made it known, revealed

¹⁸ possible to be avoided, unnecessary

¹⁹ plans to harm the reputation or fame of someone by telling lies

²⁰ very important

[00:04:14] After the discovery of electricity in the early 1800s, the race was on²¹ to find a way to channel²² this new, amazing technology.

[00:04:25] The first popular electric light was invented by an Englishman called Humphry Davy, a man who was from Cornwall, the county of Southwest England, which you may remember from our episode on smugglers²³.

[00:04:40] Davy wasn't a <u>smuggler²⁴</u>, but he did invent a form of lighting called "<u>arc²⁵</u> lighting", which was very different from the light bulbs we think of today.

[00:04:51] Arc lighting uses a special bulb in which two carbon <u>electrodes</u> are placed close together.

[00:04:59] When the bulb is supplied with electricity, the current passes through the air between the two electrodes²⁶ creating an electric arc which gives off²⁷ a very bright light.

²³ people who illegally transferred goods in the country

²¹ the competition had started

²² direct, transfer

²⁴ someone who illegally transferred goods in the country

²⁵ a curved line, something having the shape of part of a circle

²⁶ pieces through which an electric current enters or leaves an object

²⁷ sends out, emits

[00:05:12] The problem was that <u>arc</u> lighting required a very high <u>voltage</u>²⁸, over 3,000 volts, to work properly, making it very dangerous to work with.

[00:05:24] For reference, today's standard supply <u>voltage</u> is between 220 and 240 volts for most of the world and 120 volts in the USA.

[00:05:36] To top it off²⁹, this arc lighting also required regular maintenance, it buzzed

30 constantly and it was a major fire hazard³¹.

[00:05:47] Pretty scary stuff.

[00:05:49] As you can imagine, <u>arc</u> lighting was <u>unsuitable</u>³² for indoor use and was mainly used for street lighting and factory <u>yards</u>³³.

[00:06:01] Clearly, <u>arc</u> lighting was not going to replace indoor gas lights, oil lamps or candles anytime soon.

[00:06:10] The race to invent and manufacture an electrical light bulb for indoor use had been ongoing for over 50 years.

²⁸ a measure of how strong an electrical current is, expressed in volts

²⁹ to make it even worse

³⁰ made a low sound

³¹ something that could easily cause a fire

³² not right or appropriate for this purpose

³³ areas of land used for a particular business

[00:06:18] While <u>breakthroughs</u>³⁴ had been made, it wasn't until 1789 that a 31-year-old inventor by the name of Thomas Edison found a practical solution, with his <u>incandescent</u>³⁵ light bulb.

[00:06:32] Edison will appear a lot in this story, but if you're interested in learning more about his life, our last member-only episode, number 257, goes into that in great detail.

[00:06:46] If you haven't listened to that one, Edison was already a well-known inventor and a rich man by this time. He had already invented an almost magical-seeming device that could record and playback sound called the phonograph, but then he set his sights on 36 something bigger.

[00:07:05] The big, hairy, almost holy 37 goal of lighting every house in America.

[00:07:12] He started with the actual light itself, and invented and <u>patented</u>³⁸ an electric light bulb that was <u>suitable</u>³⁹ for indoor use - the <u>incandescent</u> light bulb.

35 producing light as a result of heat

³⁴ important developments

³⁶ decided to achieve, set his goal on

 $^{^{}m 37}$ regarded as deserving special respect

³⁸ received an official licence that allowed him to use his invention exclusively for a period of time

³⁹ right or appropriate

[00:07:24] Incandescent, by the way, means something that emits⁴⁰, or gives out⁴¹, light when it is heated.

[00:07:31] Edison's light bulb was by no means the first <u>incandescent</u> light bulb but it was the most practical that had ever been made, as it was relatively inexpensive to produce and it had a long burn time of over 1,200 hours.

[00:07:49] It's important to note that Edison's light bulb <u>ran⁴²</u> at a low <u>voltage</u> of 110 volts on a direct current supply, the direct current part is very important for our story.

[00:08:03] Now, a light bulb is great, but it's pretty useless unless you have electricity to power it.

[00:08:10] So, Edison set himself the task of building the infrastructure to get electricity into people's houses, so that they could buy and then power his light bulbs.

[00:08:23] As his bulbs were made to run on DC current, he developed a DC supply system complete with electric meters to measure his clients' usage.

⁴³ the basic organisational structure or systems

⁴⁰ produces and sends out, releases

⁴¹ produces and sends out, releases

⁴² worked, functioned

[00:08:35] Edison had a huge <u>incentive</u>⁴⁴ to <u>ensure</u>⁴⁵ that DC, not AC, was adopted as the standard current across the country.

[00:08:46] Just think about the scale of things for one moment.

[00:08:50] Edison owned the <u>patents⁴⁷</u> for the <u>incandescent</u> light bulb that was initially designed to run on DC power.

[00:08:57] He also sold his DC systems to cities to power these lights and he held all of the key <u>patents</u> for DC power distribution and he controlled all technical development.

[00:09:12] One word springs to mind⁴⁸: a monopoly.

[00:09:15] Edison stood to make billions upon billions as the country, and indeed the entire world, began to electrify its houses, workplaces and streets.

[00:09:28] And all of this money depended on his <u>patented</u> direct current system being <u>standardised</u> being adopted as the standard current for electricity supply.

⁴⁵ make it certain to happen

⁴⁴ reason, motive

⁴⁶ size, degree or scope

⁴⁷ official licences that allowed him to use his inventions exclusively for a period of time

⁴⁸ comes to mind

⁴⁹ had a high likelihood of making

⁵⁰ adopted or accepted as the standard way to do it

[00:09:39] Imagine if there was one individual who would profit from every part of the creation of <u>artificial</u>⁵¹ light, and this gives you an idea of the <u>scale</u> of what Edison was <u>on the cusp of</u>⁵² achieving.

[00:09:53] This point is important to bear in mind⁵³ as it will go some way to explaining the dishonourable⁵⁴ tactics that Edison would later use to discredit⁵⁵ his competitors.

[00:10:04] The reality was that DC, direct current, simply <u>wasn't up to the task</u>56, it wasn't <u>suitable</u>.

[00:10:12] When transmitted over distances longer than one and half kilometres, <u>substantial</u>⁵⁷ amounts of energy were lost.

[00:10:20] And if you want to transmit power across the third largest country in the world, this is evidently a bit of a problem.

[00:10:28] For Edison's dream to come true, there would need to be power stations in every town on every street corner, and this simply wasn't a possibility.

52 at the point when it was about to happen

⁵¹ made by people, not natural

⁵³ to have or keep in mind, to remember

⁵⁴ not fair and bringing shame

⁵⁵ harm their good reputation or fame

⁵⁶ wasn't right or appropriate for this purpose

⁵⁷ large

[00:10:40] Another problem with DC, with direct current, was that it was not easily converted to higher or lower <u>voltages</u>⁵⁸. As DC ran at a constant rate, if another <u>voltage</u> supply was required, separate lines would need to be installed.

[00:10:59] While Edison never lost faith, at least publicly, in the <u>superiority</u> of his DC power supply system, he did become aware of some of the limitations quite early on.

[00:11:12] These faults inspired Edison to offer a <u>substantial</u> financial reward to any of his employees who could improve upon the performance of his DC machinery.

[00:11:24] And it's here that we'll meet another character whose name you may well have heard of, and one who will be central to our story.

[00:11:33] He was a young Serbian genius who had just moved to America, the legendary inventor Nikola Tesla.

[00:11:42] By the way, our next member-only episode is going to be a deep dive on the life of Nikola Tesla, that's going to be episode number 259, so do give that one a listen if you'd like to know more about this eccentric⁶⁰ but brilliant man.

[00:11:58] Tesla had been fascinated with electricity since he was a child, and had long been working on a plan to improve the DC motors that he had studied at university.

_

⁵⁸ measures of how strong an electrical current is, expressed in volts

⁵⁹ the fact that it was better

⁶⁰ strange or unusual

[00:12:10] He was a bit younger than Edison, 9 years younger to be precise, and had started working for Edison's company first in Paris, and then when he emigrated to America as a 28-year-old.

[00:12:24] Tesla, as an Edison employee at the time, shared his plans for an AC motor that was far superior to Edison's DC ones, and he was hopeful for the reward that Edison had promised.

[00:12:39] Unfortunately for Tesla, and you could say unfortunately for Edison, he wasn't given the reward, and was instead told that the prize money was a joke, and he didn't understand American humour.

[00:12:53] Understandably annoyed at being <u>turned down⁶¹</u> by Edison, Tesla <u>promptly</u>

62 left Edison's company and started up his own company.

[00:13:04] What Edison perhaps didn't realise, though, is that Tesla <u>was onto</u>

something⁶³ with his ideas for an AC motor.

[00:13:12] Alternating current, or AC, didn't have the same problems as DC.

[00:13:18] AC could be transmitted over long distances then transformed with very little energy loss.

illilliculately

⁶¹ rejected, dismissed

⁶² immediately

⁶³ had discovered or produced something important

[00:13:26] This meant fewer power plants would be needed, saving a huge amount of money.

[00:13:33] What's more, AC used thinner copper lines, saving even more money.

[00:13:39] AC, put shortly, was far more efficient and cheaper.

[00:13:44] It could, in theory, supply rural areas and small towns, all of the places where it was just impossible to supply DC and still make a profit.

[00:13:55] Plus AC could also be <u>stepped up or down⁶⁴</u> to other <u>voltages</u> as needed without the need for separate supply lines.

[00:14:04] However, AC still needed some innovations and improvements to enable it to work as a functioning electrical supply and a direct competitor to DC.

[00:14:17] What's more, Tesla may have been a genius, but at the time he was a young, unconnected immigrant without the funding or business knowledge to market and produce his AC motor.

[00:14:30] This is where we meet our third and final character, a certain George Westinghouse.

-

⁶⁴ increased or decreased

⁶⁵ with no powerful friends to help him

[00:14:38] George Westinghouse was a Pittsburgh industrialist⁶⁶ and a savvy⁶⁷ businessman who had made his fortune in the railway industry but was now trying his hand⁶⁸ at the next big thing: electricity.

[00:14:52] He was quite a <u>discrete⁶⁹</u> character, unlike his <u>soon-to-be⁷⁰</u> rival Edison who enjoyed his time <u>in the limelight⁷¹</u>, and his status as a celebrity inventor.

[00:15:03] Westinghouse was a little bit of a <u>latecomer⁷²</u> to the electricity sector, but with his good business head, he soon realised the advantages of AC over DC for power supply.

[00:15:18] Plus, with some modifications, <u>incandescent</u> lighting, Edison's indoor lighting, could be made to <u>run off⁷³</u> either AC or DC.

[00:15:29] In short, Westinghouse realised that he could build a truly competitive AC system rather than simply copying Edison's DC system.

⁶⁶ someone in a high position in industry

⁶⁷ intelligent or skillful

⁶⁸ trying doing it for the first time

⁶⁹ independent, separate

⁷⁰ in a short time, before long

 $^{^{71}}$ at the centre of public attention

⁷² a person who appeared late

⁷³ work or function with

[00:15:40] Doing so would have been barely competitive and would have still needed various <u>patents</u> to get around Edison's monopoly.

[00:15:49] What's more, as Edison was <u>struggling</u>⁷⁴ to build enough power plants and could only connect properties within a one-and-a-half kilometre radius from his plants, Westinghouse could easily supply all of Edison's unsupplied city customers, as well as those in small towns and rural areas.

[00:16:10] It was a big and bold idea.

[00:16:13] To make it come true, Westinghouse had the <u>cash</u>⁷⁵, investors and the business skills.

[00:16:19] But to create and develop the AC motors and generators necessary to get his project off the drawing board and make it a reality, he needed Tesla's AC motor.

[00:16:32] Tesla and Westinghouse came together after Tesla left Edison's company, after he was refused the bonus⁷⁷.

⁷⁵ money (in the form of notes and coins)

⁷⁴ trying with difficulty

⁷⁶ beyond the planning stage

⁷⁷ a sum of money as a reward for his good performance

[00:16:40] Westinghouse went on to <u>licence</u>⁷⁸ Tesla's <u>patents</u> for his AC system, <u>pitting</u>

79 him directly against Edison.

[00:16:50] In 1886 the Westinghouse Electrical Company had built the first commercial AC power system in America, in Buffalo, New York.

[00:17:00] By the end of 1887, just one year later, Westinghouse had 68 AC power stations compared to Edison's 121 DC stations.

[00:17:13] Remember, AC stations could supply many more customers over a greater area. To make matters worse for Edison, another electrical supply company,

Thompson-Houston, had also <u>muscled in</u>⁸⁰ on the scene with 22 power stations supplying both AC and DC.

[00:17:35] Other smaller companies also got involved in supplying electricity, resulting in numerous legal battles with Edison over his <u>patents</u>.

[00:17:45] <u>Mired in</u>⁸¹ legal battles and struggling to make any significant improvements to his DC distribution system, Edison was losing out on power and profits.

⁷⁹ putting him in competition

⁷⁸ permit, authorise

⁸⁰ forced their way, got involved in

⁸¹ involved in (a difficult situation)

[00:17:57] However, having built up his lighting company and light bulbs to be mutually⁸² inclusive, he was understandably⁸³ reluctant⁸⁴ to admit⁸⁵ defeat⁸⁶ and switch to AC power.

[00:18:10] As the inventor of the light bulb that all of these other companies were <u>vying</u>

87 to supply with power, as well as being considered a <u>veritable</u> "magician" by the public thanks to his inventions and research laboratory, Edison did not feel <u>compelled</u>

89 to <u>back down</u>, to give in 91.

[00:18:30] He firmly stood his ground , insisting that DC was better and safer than AC.

[00:18:37] But, he was wrong.

⁸² in a way that one depended on the other

⁸³ in a way that is easy to understand

⁸⁴ not willing

⁸⁵ accept that it was true

⁸⁶ the state of being defeated, loss

⁸⁷ competing

⁸⁸ true, genuine

⁸⁹ required, forced or obliged

⁹⁰ accept that he was wrong

⁹¹ finally accept that he was wrong

⁹² refused to change his opinion or belief

[00:18:40] And as AC continued to grow in popularity, and Edison sensed he might not be able to win the battle if he competed fairly, he started to <u>play dirty</u>⁹³, his tactics becoming increasingly <u>underhand</u>⁹⁴.

[00:18:56] His primary tactic was to make the public think that AC, the electricity system proposed by Westinghouse, was so dangerous that it would kill you.

[00:19:09] In 1886, he publicly declared that Westinghouse would kill someone within six months due to the high <u>voltages</u> used in his AC power lines.

[00:19:21] But not content with simply hoping that someone would eventually get electrocuted⁹⁵ and killed, he wanted a way to demonstrate publicly how dangerous AC electricity was.

[00:19:35] And what better way to do this than getting the US government to kill someone with Westinghouse's electricity?

[00:19:44] How Edison did this was both <u>cunning</u>⁹⁶, clever, and horrible at the same time.

 $^{^{\}rm 93}$ act in a dishonest or unfair way

⁹⁴ secret and dishonest

⁹⁵ injured by electricity

⁹⁶ showing skill at achieving his goals by tricking or deceiving people

[00:19:50] He managed to persuade politicians that using electricity would be a more effective way of <u>conducting⁹⁷</u> the death sentence than <u>hanging⁹⁸</u>.

[00:20:00] There was already some knowledge that electricity could kill, because people working with electrical wires would sometimes die in an instant after touching a live wire.

[00:20:13] After reports of a drunken man being killed by a live electricity generator, a New York dentist called Alfred P. Southwick became interested in the idea of using electricity to kill, even publicly <u>electrocuting</u> hundreds of <u>stray dogs</u> to prove his point.

[00:20:33] So politicians thought that electricity could be an alternative to hanging, and wanted to explore this idea.

[00:20:42] Naturally, they consulted, they asked, the electricity experts of the day, including Westinghouse and Edison.

[00:20:51] Westinghouse said that he wanted nothing to do with it, as he didn't agree with capital punishment.

⁹⁷ organising and carrying out or performing

⁹⁸ killing someone by dropping them with a rope tied around their neck

⁹⁹ killing by electricity

¹⁰⁰ lost or homeless dogs

[00:20:58] Edison, on the other hand, recommended that Westinghouse's AC system was used and even came up with the term "Westinghoused" to refer to a person who was intentionally or accidentally killed with electricity.

[00:21:14] The government <u>made up its mind</u>¹⁰², and it was decided to test using electricity as opposed to <u>hanging</u> as a way to <u>conduct</u>¹⁰³ the death penalty.

[00:21:24] You probably know what I'm talking about: the electric chair.

[00:21:29] Westinghouse had refused to sell his AC generators to be used to kill, but Edison made sure that a Westinghouse AC generator was used when the first electric chair was being designed.

[00:21:43] Edison was secretly paying an electrical engineer called Brown, who would organise the purchase of Westinghouse's generators specifically for use with the electric chair.

¹⁰¹ introduced, thought up

¹⁰² made its choice

¹⁰³ organise and carry out or perform

[00:21:56] Horrified¹⁰⁴ that his electrical machinery was going to be used to kill someone, Westinghouse even paid a substantial amount for the chosen convict's the criminal's, appeal¹⁰⁶.

[00:22:09] This was all to no avail 107, it had no impact.

[00:22:14] William Kremmler, a man <u>convicted</u>¹⁰⁸ of killing his wife, became the first person <u>executed</u>¹⁰⁹ by the electric chair in 1890.

¹⁰⁴ filled with horror, extremely shocked

¹⁰⁵ of the person who was found guilty, the criminal's

¹⁰⁶ application to a higher court in order to change the first decision and sentence

¹⁰⁷ without success

¹⁰⁸ found guilty of

¹⁰⁹ killed as punishment for his crime

¹¹⁰ causing horror and shock

¹¹¹ causing suffering, cruel and without compassion

[00:22:37] I will <u>spare you¹¹²</u> the worst details, but <u>suffice it to say¹¹³</u> that it took ten minutes and Westinghouse later commented "They would have done better using an axe".

[00:22:50] While Edison was adamant that AC was more dangerous due to the high voltages used, both types of current can cause severe injury and death.

[00:23:01] And although Westinghouse's AC system was forever associated with the electric chair in the public's mind, this didn't really stop its <u>ascent¹¹⁵</u>, stop its <u>rise to the top¹¹⁶</u>.

[00:23:15] As AC continued to spread, Edison's profits fell while his legal costs and the copper prices went up.

[00:23:24] Remember DC lines needed more copper than AC ones.

¹¹² not tell you every detail about it because it is too unpleasant

¹¹³ it is enough to say

¹¹⁴ not willing to change his opinion

¹¹⁵ way upward towards success

¹¹⁶ way upward towards success

[00:23:29] Given the <u>increasingly</u>¹¹⁷ <u>gloomy</u>¹¹⁸ <u>outlook</u>¹¹⁹, some of Edison's investors and engineers attempted to convince him to consider AC.

[00:23:40] However, their concerns fell upon deaf ears 120.

[00:23:44] Edison, not used to being wrong, was <u>adamant</u> that his DC system was <u>superior¹²¹</u> and he was determined to succeed even if it meant continuing to <u>play even</u> <u>dirtier¹²²</u> than before.

[00:23:58] He put out adverts and newspaper articles, <u>blamed</u>¹²³ accidents where workmen were killed by electricity on Westinghouse, and did anything he could to <u>discredit</u> his rival's system.

[00:24:12] Despite all of the bad publicity and attacks, the <u>spread</u>¹²⁴ of AC couldn't be stopped. It was more efficient and cheaper.

¹²² act in a more dishonest or unfair way

¹¹⁷ more and more, growingly

¹¹⁸ without hope

¹¹⁹ likely future situation

¹²⁰ failed to be heard

¹²¹ better

¹²³ said that he was responsible for them

¹²⁴ expansion, advancement

[00:24:21] Westinghouse, and his more cost-efficient AC, won the contract to supply electricity to the 1893 World Fair in Chicago, which provided an impressive showcase for Tesla and Westinghouse's AC supply system.

[00:24:38] This was one of the largest displays of electrical power ever created, with hundreds of lights <u>illuminating</u>¹²⁶, lighting up, the lake and the <u>purpose-built</u>¹²⁷ neoclassical buildings, while brightly coloured <u>searchlights</u>¹²⁸ <u>dazzled</u>¹²⁹ across the night sky.

[00:24:55] That very same year the Niagara Falls Power Company awarded
Westinghouse the contract to generate power from the Niagara Falls with Tesla's AC induction motor.

[00:25:07] This achievement was largely considered to represent the end of the War of the Currents and confirmed AC's position as the dominant current in the electricity supply industry.

[00:25:20] However, DC didn't die out 130 completely.

¹²⁷ built for that particular purpose

¹²⁵ occasion or place for presenting it to general attention

¹²⁶ lighting up

¹²⁸ powerful outdoor electric lights that can be turned in any direction

¹²⁹ were lit in an impressive and very bright way

¹³⁰ finally stop existing

[00:25:23] In fact, DC has been **gaining ground**¹³¹ in recent years, being better **suited**¹³² for use with batteries and other sensitive electronic appliances.

[00:25:34] Today, DC is used for electric vehicles, computers, <u>solar panels</u>¹³³ and LEDs, for example.

[00:25:42] Methods have also been developed to enable us to more easily convert DC to higher and lower voltages.

[00:25:51] Thanks to advances in high <u>voltage</u> DC, companies are finding new ways to transmit DC over long distances with less energy loss.

[00:26:02] So, while AC may have been declared the winner of War of the Currents at the turn of the last century, it looks like DC is here to stay and perhaps it may go on to play an even more important role in the years to come.

[00:26:21] OK then, that is it for today's episode on the War of the Currents

¹³¹ becoming more popular

¹³² appropriate, fitting

¹³³ devices that change energy from the sun into electricity

¹³⁴ make it possible for

¹³⁵ at the time when the particular century ended and the next began

¹³⁶ likely to last for a long time

[00:26:26] I hope it's been an interesting one, and you've learned a little bit about the history of lighting and electricity, as well as some of the people whose inventions have changed the world.

[00:26:37] As always, I would love to know what you thought of this episode.

[00:26:41] Do you think Westinghouse was <u>unfairly¹³⁷ targeted¹³⁸</u> by Edison?

[00:26:46] Could you imagine living in a world without electricity?

[00:26:49] You can head right into our community forum, which is at community.leonardoenglish.com and get chatting away to other curious minds.

[00:26:58] You've been listening to English Learning for Curious Minds, by Leonardo English.

[00:27:03] I'm Alastair Budge, you stay safe, and I'll catch you in the next episode.

[END OF EPISODE]

¹³⁷ in a way that was not fair or just

¹³⁸ selected as an object of criticism

Key vocabulary

Word	Definition
Epic	extraordinary or very impressive, grande
Standardise	cause to follow some standard rules or use
Stick with me	stay with me, continue reading
Vicious	intense, fierce
Stray	having no home, wandering
Vital	necessary, very important
Unidirectional	one directional
Sensitive	easily damaged
Fundamentally	completely, in essence
Boom	a sudden increase or growth
Prosperity	success and wealth
Leaps	large jumps or advances

Tainted affected in a bad way, spoiled

Accumulation collection, gathering

At the expense in a way that harmed

Pitted put them in competition

Exposed made it known, revealed

Avoidable possible to be avoided, unnecessary

Smear campaigns plans to harm the reputation or fame of someone by telling lies

Key very important

The race was on the competition had started

Channel direct, transfer

Smugglers people who illegally transferred goods in the country

Smuggler someone who illegally transferred goods in the country

Arc a curved line, something having the shape of part of a circle

Electrodes pieces through which an electric current enters or leaves an object

Gives off sends out, emits

Voltage a measure of how strong an electrical current is, expressed in volts

To top it off to make it even worse

Buzzed made a low sound

Fire hazard something that could easily cause a fire

Unsuitable not right or appropriate for this purpose

Yards areas of land used for a particular business

Breakthroughs important developments

Incandescent producing light as a result of heat

Set his sights on decided to achieve, set his goal on

Holy regarded as deserving special respect

Patented received an official licence that allowed him to use his invention

exclusively for a period of time

Suitable right or appropriate

Emits produces and sends out, releases

Gives out produces and sends out, releases

Ran worked, functioned

Infrastructure the basic organisational structure or systems

Incentive reason, motive

Ensure make it certain to happen

Scale size, degree or scope

Patents official licences that allowed him to use his inventions exclusively for a

period of time

Springs to mind comes to mind

Stood to make had a high likelihood of making

Standardised adopted or accepted as the standard way to do it

Artificial made by people, not natural

On the cusp of at the point when it was about to happen

To bear in mind to have or keep in mind, to remember

Dishonourable not fair and bringing shame

Discredit harm their good reputation or fame

Wasn't up to the task wasn't right or appropriate for this purpose

Substantial large

Voltages measures of how strong an electrical current is, expressed in volts

Superiority the fact that it was better

Eccentric strange or unusual

Turned down rejected, dismissed

Promptly immediately

Was onto something had discovered or produced something important

Stepped up or down increased or decreased

Unconnected with no powerful friends to help him

Industrialist someone in a high position in industry

Savvy intelligent or skillful

Trying his hand trying doing it for the first time

Discrete independent, separate

Soon-to-be in a short time, before long

In the limelight at the centre of public attention

Latecomer a person who appeared late

Run off work or function with

Struggling trying with difficulty

Cash money (in the form of notes and coins)

Off the drawing beyond the planning stage

board

Bonus a sum of money as a reward for his good performance

Licence permit, authorise

Pitting putting him in competition

Muscled in forced their way, got involved in

Mired in involved in (a difficult situation)

Mutually in a way that one depended on the other

Understandably in a way that is easy to understand

Reluctant not willing

Admit accept that it was true

Defeat the state of being defeated, loss

Vying competing

Veritable true, genuine

Compelled required, forced or obliged

Back down accept that he was wrong

Give in finally accept that he was wrong

Stood his ground refused to change his opinion or belief

Play dirty act in a dishonest or unfair way

Underhand secret and dishonest

Electrocuted injured by electricity

Cunning showing skill at achieving his goals by tricking or deceiving people

Conducting organising and carrying out or performing

Hanging killing someone by dropping them with a rope tied around their neck

Electrocuting killing by electricity

Stray dogs lost or homeless dogs

Came up with introduced, thought up

Made up its mind made its choice

Conduct organise and carry out or perform

Horrified filled with horror, extremely shocked

Convict's of the person who was found guilty, the criminal's

Appeal application to a higher court in order to change the first decision and

sentence

To no avail without success

Convicted found guilty of

Executed killed as punishment for his crime

Horrific causing horror and shock

Inhumane causing suffering, cruel and without compassion

Spare you not tell you every detail about it because it is too unpleasant

Suffice it to say it is enough to say

Adamant not willing to change his opinion

Ascent way upward towards success

Rise to the top way upward towards success

Increasingly more and more, growingly

Gloomy without hope

Outlook likely future situation

Fell upon deaf ears failed to be heard

Superior better

Play even dirtier act in a more dishonest or unfair way

Blamed said that he was responsible for them

Spread expansion, advancement

Showcase occasion or place for presenting it to general attention

Illuminating lighting up

Purpose-built built for that particular purpose

Searchlights powerful outdoor electric lights that can be turned in any direction

Dazzled were lit in an impressive and very bright way

Die out finally stop existing

Gaining ground becoming more popular

Suited appropriate, fitting

Solar panels devices that change energy from the sun into electricity

Enable make it possible for

At the turn of at the time when the particular century ended and the next began

Here to stay likely to last for a long time

Unfairly in a way that was not fair or just

Targeted selected as an object of criticism

We'd love to get your feedback on this episode.

What did you like? What could we do better?

What did you struggle to understand?

Let us know in the forum <u>community.leonardoenglish.com</u>