
ABSTRACT

Although the large-scale stratigraphy of
many terrestrial foreland basins is punctu-
ated by major episodes of gravel prograda-
tion, the relationships of such facies to hinter-
land tectonism and climate change are often
unclear. Structural reentrants provide win-
dows into older and more proximal parts of
the foreland than are usually exposed, and
thus provide key insights to earlier phases of
foreland evolution. Our magnetostrati-
graphic studies show that, although the ma-
jor lithofacies preserved within the Himachal
Pradesh structural reentrant in northwestern
India resemble Neogene facies in Pakistan,
they have a much greater temporal and spa-
tial variability. From 11.5 to 7 Ma, major fa-
cies boundaries in Himachal Pradesh vary by
as much as 2–3 m.y. across distances of
20–30 km and are controlled by the interfer-
ence between a major southeastward-flowing
axial river and a major southwestward-flow-
ing transverse river. A thick but highly con-
fined middle to late Miocene conglomerate fa-
cies includes the oldest extensive Siwalik
conglomerates yet dated (10 Ma) and implies
the development of significant erosional
topography along the Main Boundary thrust
prior to 11 Ma. Our studies document exten-
sive syntectonic gravel progradation with
conglomerates extending tens of kilometers
into the undeformed foreland during a period
of increased subsidence rate and within
1–2 m.y. of major thrust initiation. Overall,
gravel progradation is modulated by the in-
terplay among subsidence, sediment supply,
and the proportion of gravels in rivers enter-
ing the foreland.

Keywords: fold-and-thrust belt, basin analysis,
Siwaliks, Himalaya, magnetostratigraphy.

INTRODUCTION

The evolution of terrestrial foreland basins is
marked by the reorganization of fluvial systems on
spatial scales of kilometers to thousands of kilo-
meters at temporal scales ranging from coseismic
to millennia (e.g., Meghraoui et al., 1988; Bur-
bank, 1992; Talling et al., 1995; Pivnik and John-
son, 1995). Depositional systems within the fore-
land respond to changes in at least five factors: (1)
flexure of the loaded plate, (2) incipient deforma-
tion at the leading edge of the encroaching load,
(3) climate change, (4) hinterland rock types ex-
posed to erosion, and (5) biological factors, partic-
ularly anthropogenic influences in the past several
thousand years. Thus, sedimentary rocks poten-
tially preserve information on paleoclimate, sedi-
ment flux, crustal structure, and basin dynamics.
However, both field studies and numerical model-
ing demonstrate that there is considerable uncer-
tainty in giving genetic interpretations to the sedi-
mentological variations seen in real and synthetic
foreland basins (Burbank, 1992; DeCelles, 1994;
DeCelles et al., 1993; Flemings and Jordan, 1989,
1990; Fraser and DeCelles, 1992; Graham et al.,
1986; Paola et al., 1992; Sinclair and Allen, 1992;
Sinclair et al., 1991; Waschbusch and Royden,
1992; Watts, 1992).

Because the development of foreland basins is
strongly asymmetric (Turcotte and Schubert,
1982; Allen and Allen, 1990), there is often a
dichotomy in the interpretation of lateral and verti-
cal facies variations. In proximal settings, facies
variability is generally interpreted in terms of in-
cipient structural disruption of the foreland (Pivnik
and Johnson, 1995; Burbank et al., 1996). Sedi-
mentologically similar variability in the medial or
distal foreland may be linked to large-scale hinter-
land tectonic reorganization or climate change
(e.g., Johnson et al., 1985; Burbank, 1992). In or-
der to link proximal and distal depositional sys-
tems, it is necessary to synthesize data from across
the foreland. Correlation among widely separated
outcrops requires good time control. Terrestrial de-

posits are generally marked by a paucity of fossil
material of known age, making biostratigraphy
difficult. In such areas without fossils or radio-
metrically dateable volcanic rocks, magnetostra-
tigraphy can sometimes provide excellent temporal
control if sufficiently long, continuous strati-
graphic sections can be studied (Burbank, 1996).

GEOLOGIC FRAMEWORK OF THE
HIMALAYAN FORELAND

India-Asia collision was initiated as early as
65 Ma in the westernmost part of the orogen
(Beck et al., 1995). Ongoing convergence has led
to flexural downwarping of the overridden Indian
plate, forming the Himalayan molasse basin, the
world’s largest terrestrial foreland basin (Fig. 1;
Burbank, 1996; Watts, 1992). Due to subduction,
uplift, and erosion, there is a dearth of preserved
and exposed Paleogene foreland (Bossart and
Ottiger, 1989; Critelli and Garzanti, 1994; Naj-
man et al., 1993). From early Miocene time on-
ward, however, there is a well exposed, continu-
ous record of detritus shed from the Himalaya.
These sedimentary rocks, deposited in a variety of
fluvial regimes in the medial to distal part of the
foreland, are known as the Rawalpindi and Siwa-
lik Groups (Shah, 1977). The Siwalik strata tradi-
tionally have a tripartite division into the progres-
sively younger Lower, Middle, and Upper Siwalik
Formations (Shah, 1977): these roughly corre-
spond to lithofacies (and have generally been re-
garded as chronofacies) dominated by siltstone,
sandstone, and conglomerate, respectively.

The Himalayan foreland results primarily from
subsidence driven by thrust loading. Sediment
carried into the foreland by hinterland rivers can
either be stored within the foreland or can bypass
it and be transported by the Ganges or Indus
Rivers to the sea, where it is stored in the Bengal
fan or Indus cone. Sustained rapid Neogene accu-
mulation within these deep-sea fans suggests that
the Himalayan foreland was persistently filled to
overflowing by sediment. Thus, the rate of sedi-
ment delivery from the hinterland is interpreted to
have consistently exceeded the rate of creation of
space to store the sediments within the foreland.
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Over the past 20 yr, magnetostratigraphic stud-
ies have established a robust chronology for the
Miocene–Pleistocene foreland in northwest India
and Pakistan (Appel et al., 1991; Burbank and
Beck, 1991; Burbank et al., 1986, 1988; G. D.
Johnson et al., 1979, 1983; N. M. Johnson et al.,
1982, 1985; Khan et al., 1988; Meigs et al., 1995;
Mulder and Burbank, 1993; Raynolds and John-
son, 1985; Tauxe and Opdyke, 1982; and many
others; for a complete review of Himalayan mag-
netostratigraphic studies, see Burbank, 1996).
Nonetheless, there are still many unresolved ques-
tions concerning the evolution of the Himalayan
foreland and the hinterland tectonic and climatic
signals as recorded in its sedimentary rocks. The
possible links between major climatic events such
as Himalayan glaciation, the inferred strength-
ening of the Asian monsoon at 7–8 Ma, and the
major alteration of atmospheric circulation pat-
terns caused by uplift of the Tibetan Plateau are
poorly understood, as are the impacts of these
changes on denudation rates within the Himalaya
and sediment flux to the foreland (Burbank, 1992;
Burbank et al., 1993; Quade et al., 1989; Raymo
and Ruddiman, 1992; Ruddiman and Kutzbach,
1989). The distribution of fluvial systems within
the ancient foreland is poorly constrained, partic-
ularly the presence and downstream continuity of
major axial drainages such as the paleo–Indus
river (Burbank and Beck, 1991; Willis, 1993a,
1993b). The timing, partitioning, and magnitude
of displacement along major Himalayan thrusts
and the effect of irregularities in the evolving
thrust load on basin subsidence and deposition
has been defined in relatively few localities across

this vast orogen (e.g., Macfarlane, 1993; Meigs
et al., 1995; Srivastava and Mitra, 1994). The role
of basement topography and preexisting faults in
controlling depositional systems and structural
style (i.e., thin- versus thick-skinned thrusting)
has similarly been little studied (Karunakaran and
Rao, 1979; Leathers, 1987; Lillie et al., 1987;
Raiverman et al., 1983; Yeats and Lillie, 1991;
Yeats et al., 1992).

Structural Setting and Characteristics of the
Himachal Pradesh Reentrant

In northwest India, the Siwalik and Rawalpindi
Groups are exposed within the Sub-Himalaya, an
active thin-skinned fold-and-thrust belt between
30 and 80 km wide that accommodates some of
the convergence between the Eurasian plate and
the underthrusting Indian plate (Figs. 1 and 2;
Lillie et al., 1987; Yeats and Lillie, 1991; Powers
and Lillie, 1995). The northeastern boundary of
the Sub-Himalaya is the Main Boundary thrust, an
intracontinental megathrust, which places the
Lesser Himalayan igneous and metamorphic se-
quences over the molasse basin. Although the trace
of the Main Boundary thrust generally follows the
sweeping arc of the Himalaya, it is perturbed by
several salients and reentrants. The largest of these,
the Jhelum and Himachal Pradesh reentrants, have
dimensions of ~100 km by 50 km (Figs. 1 and 2).
They preserve older, more proximal sedimentary
rocks than those seen elsewhere in the foreland:
Eocene deposits within the Jhelum reentrant, and
early Miocene Dharamsala and Eocene Subathu
Formations within the Himachal Pradesh re-

entrant. Several previous studies have considered
sedimentation within reentrants of the Main
Boundary thrust: the Jhelum reentrant (Raynolds,
1980; Raynolds and Johnson, 1985; Visser and
Johnson, 1978), the Himachal Pradesh reentrant
(Johnson and Vondra, 1972; Johnson et al., 1983;
Meigs et al., 1995), and the Ravi reentrant (Tandon
and Rangaraj, 1979). Within the Jhelum reentrant,
excellent magnetostratigraphic time control, a high
density of measured sections, and detailed sedi-
mentology have allowed several studies to con-
sider the impact of both the Main Boundary thrust
and more local structures on foreland depositional
systems (Burbank et al., 1988; Raynolds, 1980;
Raynolds and Johnson, 1985). These studies docu-
ment gravel progradation and focusing of fluvial
systems by increased subsidence along the axis of
the reentrant, and the competition between coeval
axial and transverse drainages.

We present new sedimentologic and chrono-
stratigraphic data from Miocene foreland basin
strata exposed within the Himachal Pradesh struc-
tural reentrant of the Main Boundary thrust in
northwest India (Fig. 2). These represent more
proximal Miocene deposits than have been stud-
ied elsewhere within the Himalayan foreland, and
include the oldest extensive Siwalik conglomer-
ates yet dated (10 Ma), suggesting that the Main
Boundary thrust developed significant erosional
topography prior to 10 Ma. Although there is no
evidence for localized synsedimentary structural
disruption, the study area shows extreme spatial
and temporal variability in lithofacies, which may
be linked to the longer term development of the
reentrant. Moreover, this variability contrasts with
the general uniformity of the more distal Miocene
foreland preserved in Pakistan, and allows the
possible impacts on foreland fluvial systems of
the development of the Main Boundary thrust and
the Himachal Pradesh reentrant to be evaluated.
Our studies highlight the uniformity and contem-
poraneous character of some of the major basinal
lithofacies as well as the diachrony of others over
distances of kilometers to hundreds of kilometers.

DATA SETS

Stratigraphy and Sedimentology

Two new sections are described in this study, at
Kangra and the Nalad Khad (Fig. 2). Together with
the previously measured sections at Haritalyangar
and Jawalamukhi (Johnson et al., 1983; Meigs
et al., 1995), these are among the longest continu-
ously exposed sections without major faulting that
can be measured within the Siwalik sequence of
the reentrant. The new sections at Kangra and the
Nalad Khad were measured using a Jacob’s staff
and Abney level. Lithostratigraphy, paleocurrent
directions, conglomerate-clast counts and facies
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variations were studied at all four sections within
the reentrant. Measured paleocurrent indicators in-
cluded trough and planar cross-stratification, fur-
rows, scours, channel margins, parting current lin-
eations, and conglomerate clast imbrications.
Where necessary, paleocurrent measurements were
corrected for the dip of strata and for postdeposi-
tional tectonic rotations as indicated by mean pale-
omagnetic vectors. Conglomerate-clast rock types
were counted over a 1 m2 area, more than 100
clasts per locality. Major lithofacies boundaries
were traced along the front of the Jawalamukhi
thrust sheet using exposures along rivers and road
cuts wherever possible, and binoculars and local
topography in areas with poor access.

Kangra Section

The Kangra section is located at lat 32°2′N,
long 76°15′E, in the hanging wall of the Jawala-
mukhi thrust sheet (Figs. 2 and 3). The 2300-m-

thick section is characterized by an overall coars-
ening upward with distinct sedimentological
boundaries that allow three major lithofacies to
be defined, corresponding to the traditional
Lower, Middle, and Upper Siwalik lithofacies
(Figs. 4, A and B, and 5). The major rock types
present in the lower 500 m of the section are in-
terbedded siltstones, mudstones, and thin fine-
grained sandstones. Well developed red-brown
soil horizons with rootlets are common, as are
green finely laminated silts. Sandstone thickness
is generally 5 m or less, though there are rare
multistoried sandstones with an amalgamated
thickness of 30–40 m (Fig. 4B). Paleocurrent in-
dicators (mostly planar cross bedding) show flow
to the southeast (Fig. 5). This facies is similar in
appearance to the Lower Siwalik Chinji Forma-
tion in the Potwar Plateau (Fig. 1; Tauxe and
Opdyke, 1982; N. M. Johnson et al., 1982, 1985).

The interval from 500 m to 2250 m is domi-
nated by thicker sandstones separated by siltstone

and clay intervals (Fig. 4, A and B). The sand-
stones are often multistoried with a thickness of as
much as 45 m (though most are between 10 and
20 m), and show a “salt-and-pepper” composi-
tional texture. This texture is characteristic of the
Middle Siwalik Nagri Formation in Pakistan and
the Nahan Sandstone in India and suggests that
this predominantly sandy facies at Kangra is either
part of, or corresponds to, the Nahan Sandstone
(Fig. 5; N. M. Johnson et al., 1982, 1985). Planar
and trough cross-stratification are common, and
woody material is uncommonly preserved (Fig.
4B). With height, there is a concurrent increase in
average grain size, sandstone thickness and pro-
portion, and the frequency of conglomerate lags.
The siltstone intervals are often laminated and
have numerous thin (5–50 cm) laterally discon-
tinuous fine sandstone beds; occasional channel
geometries are preserved. Red-brown soil hori-
zons with rootlets, bioturbation, and common car-
bonate concretions are well developed throughout
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the facies, except in the last 150 m, where green,
gray, and lilac clays and laminated silts predomi-
nate. Paleocurrent directions within this facies are
generally to the south, with a progressive shift to
the southwest higher in the section (Fig. 5).

The change into laterally extensive and contin-
uous clast-supported conglomerate at 2250 m is
very abrupt. The conglomerates are massive with
no fine-grained intervals, although there are com-
mon clay rip-ups up to several meters in size near
the base of the unit (Fig. 4, A and B). The con-
glomerate clasts are well rounded and fairly well
sorted; quartzite accounts for 45% of the clasts.
Paleocurrent directions from imbricated clasts in-
dicate flow to the southwest (Fig. 5). This con-
glomeratic facies is analogous to the Upper
Siwalik Soan Formation in Pakistan and is
known as the “Boulder Conglomerate” in north-
west India (N. M. Johnson et al., 1982).

Nalad Khad Section

The Nalad Khad section is located at lat
31°46′N, long 76°43′E, on the western limb of the
Sarkaghat anticline, and in the Jawalamukhi
thrust sheet (Figs. 2 and 6). There is no exposure
between the base of the 2200 m section and a ma-
jor fault that cuts across the Nalad Khad about
500 m downstream from the base. Four major
lithofacies occur within the section (Fig. 7, A
and B). The dominant lithology in the lower
1000 m of the section is coarse-grained sandstone.
These sandstones are multistoried and commonly
show “salt-and-pepper” texture, meter-scale
planar cross-beds, matrix- and clast-supported
conglomerate intervals, small channels (10–20 m
across), and commonly preserved logs. In the
lowest 300 m of the section, sandstone thickness
varies from <5 m to 40 m, with interbeds of green
laminated siltstone, gray clay, and occasional red-
brown silty soil horizons (Figs. 5 and 7,A and B).
From 300 m to 900 m, very few strata are finer
grained than medium sand, with average sand-
stone thicknesses increasing to ~40 m, though
100-m-thick sandstones are present. The amount
of conglomerate also increases upsection, with
pebble lags and discontinuous bands in the lower
portion, as well as gravel-filled channels and
15–20-m-thick conglomerate beds in the upper
portion. In the uppermost 100 m of the facies,
there is a decrease in bed thickness and grain size,
and there are more common red-brown siltstone
interbeds. Paleocurrents in this facies are to the
south-southwest in the lower portion, swinging
westward with height (Fig. 5). The sedimento-
logical similarity between this lithofacies, the
Nagri Formation in Pakistan, and the Nahan Sand-
stone in northwest India suggests that it is part of
the Nahan Sandstone lithofacies (Fig. 5; N. M.
Johnson et al., 1982, 1985).

From 1100 to 1700 m, the section is composed
of thick, clast-supported, cobble-sized conglom-
erates with thin interbeds of orange-yellow sand-
stone and red-brown to orange siltstone (Fig. 7,A
and B). Conglomerate thickness increases rapidly
at the base of the facies from about 10 m to
>100 m, and then decreases to 30–40 m in the up-
per portion of the facies (Fig. 5). White and pink
quartzites are the dominant clasts, although sand-
stone clasts are also numerous (Fig. 5). Paleocur-
rents, based on clast imbrications, are to the west-
southwest (Fig. 5). This facies is similar in
appearance to the ubiquitous Upper Siwalik
“Boulder Conglomerate” and to the “Middle Si-
walik conglomerate” described at Jawalamukhi
by Meigs et al. (1995). The magnetostratigraphic
correlation presented in the following suggests
that it is within the “traditional” Middle Siwalik

sequence and hence is part of the “Middle Siwa-
lik conglomerate” lithofacies. This lithofacies is
recognized only at Jawalamukhi and Nalad Khad.

From 1700 to 2100 m, there is a finer grained
interval, with interbedded green and red-brown
siltstones, sands, and conglomerates generally
5–10 m thick (Fig. 7, A and B). Paleocurrents in-
dicate flow to the west (Fig. 5). We suggest that
this facies is part of the Middle Siwalik sandstone
sequence, though not necessarily related to the
other Middle Siwalik sandstones within the reen-
trant. At 2100 m, the lithology abruptly changes to
massive conglomerates, with occasional sandy
bands and no finer material (Fig. 7, A and B).
Once again, clast imbrications suggest a west-
ward flow and clast compositions are dominated
by quartzites (Fig. 5). This facies is part of the Up-
per Siwalik “Boulder Conglomerate,” which is
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found over a large part of the Lambagraon syn-
cline within the Himachal Pradesh reentrant
(Fig. 2; Johnson and Vondra, 1972).

Jawalamukhi Section

The Jawalamukhi section was described by
Meigs et al. (1995). It is located at lat 31°53′N,

long 76°19′E, in the hanging wall of the Jawala-
mukhi thrust sheet (Fig. 2). The thickness of the
measured section is 3400 m (Fig. 8). From the
base of the section to a height of 470 m, the sec-
tion consists of interbedded sandstones and green
and red-brown siltstones. Soil horizons are well
developed and the siltstones are often bioturbated
with rootlets preserved. The sandstones are gener-

ally thin (2–5 m); they have a maximum thickness
of about 10 m, the thicker beds occasionally
showing planar cross-stratification (Fig. 5). Paleo-
currents indicate flow to the southeast (Fig. 5).
This lithofacies is sedimentologically similar to
the Lower Siwalik Chinji Formation in the Potwar
Plateau region (Tauxe and Opdyke, 1982; N. M.
Johnson et al., 1982, 1985).

From 470 m to 1620 m, the section is domi-
nated by much thicker multistoried sandstones
with thicknesses averaging 20–30 m but reaching
100 m (Fig. 5). Pebble lags and thin conglomer-
ate beds are common and composed of well-
rounded quartzite and other metamorphic and
igneous clasts. Trough cross-stratification and
other paleocurrent indicators show directions to
the south, with a shift to the southwest with
height (Fig. 5). This lithofacies is part of the Mid-
dle Siwalik Nahan Sandstone, and corresponds to
the Nagri Formation in the Potwar Plateau region
(N. M. Johnson et al., 1982, 1985).

At 1620 m, thick extensive clast-supported con-
glomerates appear. These have broad scours and
coarse stratification with individual stories gener-
ally 3–10 m thick (Fig. 5). There are occasional
sandstone interbeds and sandy bands within the
conglomerate, and rare silty bands. Clasts within
the conglomerate include quartzite, igneous, and
metamorphic rocks, and limestone (Fig. 5). Clast
imbrications and cross-stratification suggest flow
to the southwest (Fig. 5). Extensive conglomerate
facies such as these do not appear in any other
Middle Siwalik sections except at Nalad Khad.
This lithofacies has been labeled “Middle Siwalik
conglomerate” by Meigs et al. (1995).

From 2100 m to 2400 m, there is a finer inter-
val consisting of interbedded conglomerates,
sandstones, siltstones, and clays (Fig. 5). These
often occur in fining-upward sequences 15–20 m
thick. Paleocurrent indicators are to the south-
west (Fig. 5). At 2400 m, there is a return to the
conglomerate-dominated facies, with very little
sandstone and finer material; this lithofacies con-
tinues to the top of the measured section. Multi-
storied conglomerate units between 10 and
150 m thick are separated by thin orange sand-
stones, siltstones, and clays (Fig. 5). Conglomer-
ate clast imbrications suggest continued flow to
the southwest (Fig. 5). This conglomeratic facies
is part of the Upper Siwalik “Boulder Conglom-
erate” described by Johnson and Vondra (1972).

Haritalyangar Section

The stratigraphy of the Haritalyangar area was
described by Johnson and Vondra (1972). The
1600-m-thick section is located at lat 31°32′N, long
76°37′E (Fig. 2), and is the southeasternmost sec-
tion in the hanging wall of the Jawalamukhi thrust
sheet. Johnson and Vondra (1972) defined four
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lithofacies for the Haritalyangar section (Fig. 8).
The lowermost 500 m consists of interbedded
sandstones and siltstones of the Nahan Sandstone.
Multistoried sandstones with average thicknesses
of 15–25 m dominate the section, and have a “salt-
and-pepper” texture, with common trough cross-
bedding, basal scours, and occasional pebble lags
(Fig. 5). Orange to red-brown siltstones and clays
are often mottled and soil horizons are generally
well developed. Paleocurrents in the Nahan Sand-
stone indicate flow to the southeast (Fig. 5).

The Nahan Sandstone is transitional with the
overlying “Lower Alternations,” which are charac-
terized by a decrease in average sandstone thick-
ness to 10–15 m, with an increase in the proportion
of siltstone (Fig. 5). The “Lower Alternations”
occur from 500 to 1170 m in the measured section,
and are similar in appearance to the coeval Dhok
Pathan lithofacies in the Potwar Plateau region of
Pakistan (G. D. Johnson et al., 1982; N. M. John-
son et al., 1982). They are overlain by the “Upper
Alternations,” which are similar, though marked

by a slight fining in sandstone thicknesses and a
change in the composition of pebble lags toward
an increased proportion of granitic and gneissic
material (Johnson et al., 1983). The “Upper Alter-
nations” have been correlated with the upper part
of the Dhok Pathan lithofacies of the Potwar
Plateau region (G. D. Johnson et al., 1982; N. M.
Johnson et al., 1982). Paleocurrents in the “Lower”
and “Upper Alternations” at Haritalyangar show a
shift from the southeast toward the southwest
(Fig. 5). The top of the “Upper Alternations” is
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Figure 5. Sedimentological data for the Himachal Pradesh sections. The figure shows simplified lithostratigraphy (patterns follow Fig. 4A), pale-
ocurrent directions, mean sandstone thicknesses, percentage of conglomerate, and conglomerate-clast counts for the four measured magnetic sec-
tions in Himachal Pradesh. Note that the vertical scale varies between sections, but that the vertical scale for all the data within each section is the
same. The stratigraphic position and age of several chron boundaries are shown by thick gray lines for each section (base C4r.1n—8.225 Ma, top
C5n—9.92 Ma, base C5n—10.949 Ma; Cande and Kent, 1995). The base of chron 5n is shown as a dashed gray line for the Haritalyangar section to
indicate that this is stratigraphically the highest possible boundary, because the lowest magnetic sample in the section has a normal polarity. Mean
paleocurrent directions are shown by the small arrows (up—north, down—south) and have been corrected for postdepositional vertical-axis rota-
tions as shown by the section mean magnetic vectors (a positive angle represents clockwise postdepositional rotation and a counterclockwise cor-
rection of the same magnitude): +14° at Kangra, +7° at Haritalyangar, and negligible rotations at Nalad Khad and Jawalamukhi. Thick black ar-
rows represent mean direction of paleocurrent indicators; the numbers to the right of the arrows indicate the number of paleocurrent measurements
used. Thick white arrows indicate approximate flow direction only. Paleocurrent directions for the Jawalamukhi section are from A. J. Meigs (1992,
unpublished data). The thickness of channel-fill sandstone beds was averaged over 125 m intervals. The percentage conglomerate was calculated as
the amount of conglomeratic material over a 125 m interval. Conglomerate-clast rock types were counted over a 1 m2 area. The figure shows the
relative proportions of each lithology counted, and the stratigraphic height and position of each count. Abbreviations as in Figure 4.
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marked by a rapid increase in the amount of grav-
elly lag material and an abrupt transition into thick,
extensive conglomerates of the Upper Siwalik
“Boulder Conglomerate” lithofacies (Johnson and
Vondra, 1972).

PALEOMAGNETIC RESULTS AND 
CORRELATIONS

New magnetic chronologies were established
for the Kangra and Nalad Khad sections (Figs. 4A
and 7A). Sampling for magnetic polarity stratig-
raphies (MPSs) focused on mudstones and silt-

stones, as other rock types are usually either too
weakly magnetized or too coarse grained to yield
a primary depositional remanent magnetism. Ori-
ented hand samples of suitable strata were col-
lected, with four to six samples per site (stratig-
raphic level). The natural remanent magnetism
(NRM) of the samples was measured on a cryo-
genic magnetometer at the University of Southern
California. For each of the sections, representative
pairs of samples were chosen from 20 stratig-
raphic levels, so that the full range of sample rock
types and magnetic behavior was represented.
Stepwise thermal demagnetization (measure-

ments at 100, 200, 300, 400, 450, 500, 525, 550,
575, 600, 625, and 650 °C) was conducted on
these subsets to determine suitable demagnetiza-
tion levels for the entire sample population. Mag-
netic susceptibilities were measured after each
heating step to determine whether new magnetic
minerals were growing at elevated temperatures
(this would invalidate the sample data for steps of
that temperature and higher).

The results indicate that there is a viscous over-
print that is easily removed by thermal demagneti-
zation at temperatures of 100–200 °C (Fig. 9).
Some of the samples lost all of their NRM by
600°C, while others retained relatively high mag-
netic intensities, suggesting that both magnetite
and hematite are magnetic carriers. Above 200 °C,
most samples revealed a clear normal or reverse
polarity, although samples with weaker intensities
showed conversion to new minerals, as evidenced
by increased susceptibilities at temperatures above
300 °C. The more strongly magnetized samples
generally showed a decline in intensity with a
steady magnetization direction throughout thermal
demagnetization. On the basis of these results, the
remainder of the samples were divided into ini-
tially “strong” and initially “weak” samples. A
stepwise thermal demagnetization was chosen
with temperature steps of 400, 450, and 500 °C for
initially “strong” samples (J0 > 0.025 A/m). Ini-
tially “weak” samples (J0 < 0.025A/m) were ther-
mally demagnetized first at 200, 250, and 300 °C
and then at the three higher temperature steps;
magnetic susceptibility measurements were made
at each higher temperature step to determine
whether new mineral growth was taking place. If
magnetic susceptibilities changed significantly, in-
dicating mineral growth, data from that tempera-
ture step were discarded and no higher tempera-
ture steps were measured.

After thermal demagnetization,magnetic vectors
were corrected for sample orientation and bedding,
and the dispersion between the sample magnetic
vectors at each site, at each measured temperature
step, was calculated using Fisher statistics (Fisher,
1953). For each site, data from the temperature step
yielding the highest Fisher k value were used in site
classification and further calculations. Following
the classification described in Burbank and Johnson
(1983), sites that showed a good agreement be-
tween all of the samples (Fisher kvalues >10) were
termed class I (Fig. 10). Sites with unambiguous po-
larities but with Fisher k < 10 or sites with fewer
than three surviving samples were classified as class
II and unambiguous polarity. Sites for which no
Fisher k value could be calculated because the sam-
ple vectors were too dispersed and ambiguous data
were termed class III, and discarded from further
analysis. The total number of sites in this study was
244, with 1100 samples. These yielded 209 class I
sites (86%), 34 class II sites, and 1 class III site.
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Reversal and fold tests were applied to the
paleomagnetic data following the procedures de-
scribed in McFadden (1990) and McFadden and
McElhinny (1990). Normal and reverse polarity
limbs, each composed of the mean of class I and
II site means with the same tectonic correction
(McFadden, 1990), were used in the statistical
analyses. Unfolded data for both the Nalad Khad
and Kangra sections pass the reversal test of Mc-
Fadden and McElhinny (1990) at the 95% confi-
dence limit (Tables 1A and 2A). Using their
classification scheme, the Nalad Khad section has
a ‘C’classification with a critical angle of 10.55°,
and the Kangra section has a ‘B’ classification
with a critical angle of 8.45°.

Both measured stratigraphic sections are with-
in one dip panel on a major fold structure. How-
ever, for the Nalad Khad section it was possible to
collect samples from a correlated stratigraphic
level on the other side of the fold axis of the
Sarkaghat anticline. Thus, it was possible to per-
form the fold test on an isolated observation (Mc-
Fadden, 1990). The in situ Nalad Khad data fail
the fold test at the 95% confidence level, whereas
the unfolded data pass the fold test at the same
confidence level (Table 1B). For the Kangra sec-
tion, all paleomagnetic sites were located on a sin-
gle dip panel. The correlation test of McFadden
(1990) was applied to these data (Table 2B). Re-
sults of this statistical test are indeterminate for
normal polarity limbs, although the value of the
test statistic,ξ2, is less for unfolded than in situ
data. However, results from the reverse polarity
limbs suggest that the magnetization was acquired
before folding occurred. Taken together, these re-
sults, as well as the presence of both normal and
reverse sites grouped in magnetozones, suggest
that the magnetic vectors measured represent dep-
ositional remanence rather than an overprint.

Virtual geomagnetic poles (VGPs) and 95%
confidence intervals (α95) for the paleolatitude
were calculated for site means of the class I and
II data. The VGP latitude allows magnetozones
and a magnetic polarity stratigraphy to be estab-
lished for each section. The α95value is a further
measure of the uncertainty in site polarity. The
magnetic polarity stratigraphies can then be cor-
related with the global magnetic polarity time
scale (MPTS). This study uses the MPTS of
Cande and Kent (1995), and recorrelates preex-
isting magnetic polarity stratigraphies where
older time scales have been used.

Several rigorous discussions of the uncertain-
ties involved in using magnetostratigraphic stud-
ies for absolute age determinations have been
published (Johnson and McGee, 1983; Talling
and Burbank, 1993; Burbank, 1996). Johnson and
McGee (1983) recommended a sample density of
20–25 sites/m.y. within Neogene strata to have a
high likelihood of including all of the recorded re-

versals with a few sites in each. Even though large
portions of the measured sections were dominated
by conglomerates, an adequate sample density
was maintained, with ~25 sites/m.y. at Kangra
and 35 sites/m.y. at Nalad Khad (Figs. 4A

and 7A). Resampling of single site reversals was
undertaken wherever possible to reinforce polar-
ity determinations and minimize the risk of sam-
pling errors or lightning strikes affecting the mag-
netic polarity stratigraphy; the Kangra section
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contains no single site reversals and the Nalad
Khad section contains one. The data quality of
both the Himachal Pradesh magnetic polarity
stratigraphies is excellent, and gives us confidence
in the correlations chosen and in the interpreta-
tions of stratigraphic and sedimentologic data we
present based on this time control.

The key to correlation for many of the mag-
netic polarity stratigraphies established within
the Siwalik foreland to the MPTS (Cande and
Kent, 1995) is the presence of a long normal po-
larity interval in each section that coincides with
the thick Nagri Formation sandstone in Pakistan
and to the Nahan Sandstone in northwest India
(G. D. Johnson et al., 1982; N. M. Johnson
et al., 1982, 1985; Meigs et al., 1995). This in-
terval has been correlated with chron 5n.2n
(10.949–9.92 Ma; Cande and Kent, 1995) on
the basis of faunal assemblages and fission-
track ages from ash horizons (G. D. Johnson
et al., 1982).

In the Kangra section, 500 paleomagnetic
samples were collected at 113 sites, which on
measurement yielded 97 class I sites (86%), 16
class II sites, and no class III sites (Fig. 4A).
This defines a local magnetic polarity stratigra-
phy with 17 reversals, 18 magnetozones, and no
single site reversals (Fig. 4A). Magnetozone N2
is a long normal polarity magnetozone that
includes the base of the Nahan lithofacies and
has been correlated with chron 5n.2n (Fig. 4A).
The remaining magnetozones have been cor-
related to the MPTS with the assumption that
most chrons will have been detected due to the
high sample density; hence the Kangra section
spans 11.3 to 6.9 Ma. The slightly lower sample
density near the top of the section leads to some
uncertainty in the correlation, which could yield
variations of 0.1–0.2 m.y. in the age of the top of
the section. Magnetozone N7 of the Kangra

magnetic polarity stratigraphy has been corre-
lated with a cryptochron immediately above the
top of chron 4An (8.699 Ma), which is described
in the MPTS of Cande and Kent (1992); this
cryptochron also occurs in the Haritalyangar

magnetic polarity stratigraphy (see the recorre-
lation of Meigs et al., 1995). Magnetozone N5
of the Kangra magnetic polarity stratigraphy is
a short normal polarity magnetozone (2 class I
sites at a height of 1340 m) that is not repre-
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Figure 8. (A) Stratigraphic sections and local magnetic polarity stratigraphies (MPSs) for the Jawalamukhi and Haritalyangar sections, after
Meigs et al. (1995) and Johnson et al. (1983), respectively. Both MPSs have been recorrelated to the global magnetic polarity time scale (MPTS)
of Cande and Kent (1995). These recorrelations produce similar sediment accumulation rates in all four sections within the reentrant, as well as
bring fauna at Haritalyangar (Johnson et al., 1983) into concurrence with similar fauna in Pakistan (e.g., Tauxe, 1979). Note that the vertical scales
are different for the Jawalamukhi and Haritalyangar sections, but that the global magnetic polarity time scale used in the correlations has the
same vertical scale. For the Jawalamukhi section, lithofacies are: L.S.—Lower Siwalik, similar to Chinji lithofacies; M1—Middle Siwalik, here
interpreted as the Nahan Sandstone; C—Middle Siwalik conglomerate; M2—sandstone of Middle Siwalik age but interpreted as unrelated to
the Nahan Sandstone; U.S.—Upper Siwalik (“Boulder Conglomerate”). For the Haritalyangar section, lithofacies are: L.S.—Lower Siwalik, sim-
ilar to Chinji lithofacies; M.S.—Middle Siwalik, here interpreted as the Nahan Sandstone; L.A.—“Lower Alternations” of Johnson et al. (1983);
U.A.—“Upper Alternations” of Johnson et al. (1983); U.S.—Upper Siwalik (“Boulder Conglomerate”). (B) Correlation of the Himachal Pradesh
local magnetic polarity stratigraphies with the global magnetic polarity time scale (MPTS; Cande and Kent, 1995). The vertical scale is strati-
graphic thickness, so that nonparallelism of time lines (shown in gray) represents varying sediment accumulation rates between sections. The
thick horizontal time line is the top of chron 5n.2n (9.92 Ma), and is used as a datum for the magnetic sections. Note that the Kangra, Jawala-
mukhi, and Haritalyangar sections are along strike from each other, whereas the Nalad Khad section is located in a more proximal position in the
foreland (Fig. 2). The magnetozones denoted by a black diamond in the Kangra and Haritalyangar MPSs (N7 and N6, respectively) have been
correlated with a cryptochron immediately above the top of chron 4An (8.699 Ma) described in Cande and Kent (1992). The magnetozones de-
noted by a white diamond in the Kangra and Haritalyangar MPSs (N5 and N4, respectively) have been correlated with a very short cryptochron,
which does not appear in the MPTS but has been described in several magnetic sections in Pakistan (Tauxe, 1979; Tauxe and Opdyke, 1982).
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Figure 9. Zijderveld plots of vertical plane (open circles) and horizontal plane projections
(filled circles) from representative thermally demagnetized samples, and plots of relative inten-
sity (filled diamonds) and magnetic susceptibility (open diamonds) vs. temperature. The square
data points on the Zijderveld plots represent initial measurements. The scale for the Zijderveld
plots is A/m. Relative intensity is calculated as initial sample intensity/sample intensity for that
temperature step. Both relative intensity and magnetic susceptibility are dimensionless. (A) The
site mean direction indicates normal polarity for sample KAN021A (north declination, down in-
clination), with progressive removal of an overprint at temperatures from 100 to 300 °C. (B)
Sample NAL019A shows a reverse polarity (south declination, up inclination) and a low-tem-
perature overprint, which is removed by 100 °C. (C) Sample NAL043B is a weak sample that
shows a normal polarity at temperatures up to 300 °C, with random inclinations and declina-
tions at higher temperatures. The increasing intensity and magnetic susceptibility above 300 °C
suggest the growth of new minerals and obliteration of the original magnetic vector. Measure-
ments from temperature steps higher than 300 °C were discarded from the calculation of the po-
larity of this sample, and are shown joined with a dashed line and shaded gray.



sented in any recent global magnetic polarity
time scale. However, several other magneto-
stratigraphic studies in the Himalayan foreland
have identified this short normal polarity inter-
val at about 9.2 Ma (Tauxe, 1979; Tauxe and
Opdyke, 1982). It seems likely that this short
normal interval represents either a regional or
global event of very short duration, which has
been fortuitously preserved in some Siwalik
sections due to relatively high sediment accu-
mulation rates.

We collected 600 paleomagnetic samples at
129 sites in the Nalad Khad section, which on
measurement yielded 110 class I sites (85%), 18
class II sites, and 1 class III site (Fig. 7A). This
defines a magnetic polarity stratigraphy with
15 reversals, 16 magnetozones, and one single
site reversal. Magnetozone N3 is a long normal
polarity interval that coincides with the Nahan
Sandstone lithofacies and has been correlated
with chron 5n.2n (10.949–9.92 Ma; Cande and
Kent, 1995); on this basis the section spans
11.8 Ma to 8.3 Ma (Fig. 7A). An alternative cor-
relation is possible for the Nalad Khad section,
with the long normal magnetozone correlated to
chron 4n.2n (7.65–8.072 Ma; Cande and Kent,
1995), and the section spanning 8.4 Ma to
6.5 Ma. This alternative has been rejected be-
cause,in comparison to the other sections in the
reentrant, it gives unrealistically high sediment
accumulation rates (a threefold increase in rate
over a distance of 30 km, and rates 50% higher
than recorded anywhere else in the foreland)
and requires a retrogradation of hinterland-
sourced facies at the same time that analogous
facies were prograding everywhere else.

At Jawalamukhi, the study of Meigs et al.
(1995) defined a magnetic polarity stratigraphy
with 27 reversals, 28 magnetozones, and one sin-
gle site reversal (Fig. 8); of the 134 sites, 70%
yielded class I data. Magnetozone N5 is a long
normal polarity interval that coincides with depo-
sition of the Nahan Sandstone at Jawalamukhi

and has been correlated with chron 5n (Burbank,
1996). Correlation with the MPTS (Cande and
Kent, 1995) dates the section as spanning 12.3 Ma
to 4.7 Ma (Fig. 8; Meigs et al., 1995).

The upper 1200 m of the section at Haritalyan-
gar were sampled for magnetostratigraphy by
Johnson et al. (1983); samples in the lower 400 m
of the section were collected by R. A. Beck (de-
scribed in Meigs et al., 1995). A total of 91 pale-
omagnetic sites through the Haritalyangar sec-
tion define a magnetic polarity stratigraphy with
14 reversals, 15 magnetozones, and 3 single site
reversals (Johnson et al., 1983; Burbank, 1996;
Fig. 8). Our preferred correlation with the MPTS
dates the section as spanning 10.5 Ma to 7.6 Ma
(Meigs et al., 1995; Burbank et al., 1996; Fig. 8).
This represents a recorrelation of the original
Haritalyangar magnetic polarity stratigraphy, and
implies that the top of the measured section dates
from about 7.6 Ma (Meigs et al., 1995; Burbank,
1996) rather than about 5 Ma, as originally sug-
gested by Johnson et al. (1983). A recorrelation
of the original data was undertaken for three rea-
sons: (1) newer MPTSs have a more detailed re-
versal structure during late Miocene time, chang-
ing the most likely correlation (Cande and Kent,
1992, 1995); (2) recorrelation of the Haritalyan-
gar section produces sediment accumulation
rates that are similar to those along strike at
Jawalamukhi and Kangra (Fig. 8); and (3) recor-
relation brings the Haritalyangar fauna into con-
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TABLE 1A. NALAD KHAD SECTION REVERSAL TEST

Unfolded limbs i Declination Inclination Ni Ri ki

Normal polarity 1 005.7° 25.2° 15 14.58 33.58
Reverse polarity (inverted) 2 000.1° 33.7° 10 9.71 30.94
Notes: The number of limbs (sensu McFadden, 1990) for each polarity, i, is given by Ni. Ri is the length of the

vector sum of unit vectors for each polarity, and ki is the estimate of the distribution precision, κi, defined as 
ki = (Ni –1)/(Ni –Ri). See McFadden and McElhinny (1990) for details. Hence, k1/k2 = 1.09 and F0.05(15,10) = 2.85.
Since F0.05(15,10) > 1.09, a common κ can be assumed, and the reversal test with several observations per 
polarity and a common precision can be performed (McFadden and McElhinny, 1990). Thus, N = N1 + N2 = 25, and
the relevant angles are γ0 = 9.80° and γc = 10.55°, where γ0 is the observed angle between the two mean 
directions and γc is the critical angle between the two mean directions at which the null hypothesis of a common
mean direction would be rejected with 95% confidence. Since γ0 < γc and 10° ≤ γc ≤ 20°, the data pass the 
reversal test at the 95% confidence level, with a ‘C’ classification.

TABLE 1B. NALAD KHAD SECTION FOLD TEST

Limbs N µN* FT † RN γ0 Prob(γ > γ0)

In situ 14 019.8, 20.8 292.7, 74.9 13.61 51.38° 0.000236
Unfolded 14 358.7, 33.7 018.6, 32.3 13.62 16.64° 0.279
Notes: The number of limbs (sensu McFadden, 1990) is given by N, µN is the mean vector of limbs with normal

sites within one dip panel, and FT is the unit vector for the isolated observation on the second limb. RN is the
length of the vector sum of the N unit vectors, and γ0 is the observed angle between µN and FT. The final column
is the probability of obtaining an angle greater than γ0, and is a test of whether the isolated observation is 
discordant with the other observations (McFadden, 1990). Thus, the in situ data fail the fold test at the 95% 
confidence level, whereas the unfolded data pass the fold test at the 95% confidence level.

*The values given for µN are the declination and inclination, in degrees, respectively.
†The values given for FT are the declination and inclination, in degrees, respectively.

TABLE 2A. KANGRA SECTION REVERSAL TEST

Unfolded limbs i Declination Inclination Ni Ri ki

Normal polarity 1 015.6° 29.6° 23 22.48 42.23
Reverse polarity (inverted) 2 021.1° 28.9° 18 17.20 21.13

Notes: The number of limbs (sensu McFadden, 1990) for each polarity, i, is given by Ni. Ri is the length of the
vector sum of unit vectors for each polarity, and ki is the estimate of the distribution precision, κi, defined as 
ki = (Ni –1)/(Ni –Ri). See McFadden and McElhinny (1990) for details.

Hence, k1/k2 = 2.00 and F0.05(23,18) = 2.16. Since F0.05(23,18) > 2.00, a common κ can be assumed and the
reversal test with several observations per polarity and a common precision can be performed (McFadden and
McElhinny, 1990).

Thus, N = N1 + N2 = 41, and the relevant angles are γ0 = 4.79° and γc = 8.45°, where γ0 is the observed angle
between the two mean directions, and γc is the critical angle between the two mean directions at which the null 
hypothesis of a common mean direction would be rejected with 95% confidence.

Since γ0 < γc and 5° ≤ γc ≤ 10° , the data pass the reversal test at the 95% confidence level, with a ‘B’
classification.

TABLE 2B. KANGRA SECTION FOLD TEST

Polarity Limbs N µ* ξ2
† Critical value of ξ§

Normal In situ 23 000.5°, 48.6° 4.939 5.583
Normal Unfolded 23 015.6°, 29.6° 3.909 5.583
Reverse In situ 18 190.1°, –47.9° 5.608 4.940
Reverse Unfolded 18 201.0°, –30.3° 1.751 4.940
Notes: The number of limbs (sensu McFadden, 1990) is given by N, and µ is the unit mean vector for the 

relevant normal or reverse set of limbs.
For the normal polarity limbs, the calculated values of ξ2 for both in situ and unfolded data are less than the 

critical value at the 95% confidence limit. Thus, the timing of acquisition of magnetization is indeterminate from the
normal polarity data. For the reverse polarity limbs, the in situ ξ2 exceeds the critical value at the 95% confidence
limit, whereas the unfolded ξ2 is less than the critical value. Hence, the reverse polarity data suggest that the 
magnetization was acquired before the folding occurred (McFadden, 1990).

*The values given for µ are the declination and inclination, respectively.
†The test statistic ξ2 was used, since all limbs are on the same dip panel, and hence have dip directions within

the same quadrant (see McFadden, 1990).
§The critical value of ξ at the 95% confidence limit is calculated as 1.645√(N/2). For more details, see 

McFadden (1990).



currence with similar fauna in Pakistan rather
than being 1–2 m.y. younger (Barry et al., 1982;
Opdyke et al., 1979).

Magnetozone N6 is a single site reversal with
normal polarity (Fig. 8). As at Kangra, this has
been correlated with a cryptochron immediately
above the top of chron 4An (8.699 Ma) de-
scribed in the MPTS of Cande and Kent (1992).
Magnetozone N4 of the Haritalyangar magnetic
polarity stratigraphy is a short normal polarity
magnetozone at about 9.2 Ma (2 class I sites at
970–980 m). We interpret this as the same very
short normal polarity event as described at Kan-
gra (magnetozone N5) and at several other sec-
tions in the Himalayan foreland (Tauxe, 1979;
Tauxe and Opdyke, 1982).

DISCUSSION AND SYNTHESIS

Synthesis of data from the Himachal Pradesh
reentrant and the remainder of the Siwalik fore-
land allows us to address several key problems
concerning the evolution of both the Himalayan
foreland and terrestrial foreland basins in general.
In particular, the importance of hinterland tecton-
ism and climate change in initiating and control-
ling gravel progradation into forelands is poorly
understood (Heller and Paola, 1989, 1992; Paola
et al., 1992; Burbank et al., 1988; DeCelles et al.,
1987; DeCelles, 1994). Moreover, the role of
three-dimensional variations in local to regional
scale subsidence in localizing depositional sys-
tems has been little studied (Visser and Johnson,
1978; Burbank et al., 1988; Stern et al., 1992;
Whiting and Thomas, 1994). The sedimentary
rocks that most clearly record the interplay be-
tween tectonism, subsidence, and sediment sup-
ply are commonly deposited in the proximal fore-
land adjacent to the deforming hinterland. With
continued shortening, such proximal deposits are
usually overthrust or eroded. When such rocks are
preserved and exposed within reentrants, such as
in Himachal Pradesh, they can permit valuable in-
sights into facets of basin evolution that are typi-
cally obscured in more distal settings.

Evolution of Depositional Systems

Prior to ca. 11.5 Ma, the sedimentary rocks in
Himachal Pradesh were dominated by thick se-
quences of overbank deposits with occasional
channel sandstones having southeasterly pale-
ocurrent directions (Fig. 5). This facies is similar
to the Lower Siwalik Chinji lithofacies in Pakistan
and is thought to represent deposits of either the
paleo–Indus river or a similar axial fluvial system
(N. M. Johnson et al., 1982; Willis, 1993b; Bur-
bank et al., 1996). The overlying Nahan litho-
facies represents an abrupt coarsening upward
(Fig. 5) and a change to fluvial systems with a

much increased discharge compared to the Chinji
Formation (Willis, 1993a). This transition is
roughly coeval across the entire northwest Hima-
layan foreland, and the Nahan and Nagri lithofa-
cies are thought to represent the sediments of
southeast-flowing axial rivers, probably the paleo-
Indus (Burbank, 1996; N. M. Johnson et al., 1982;
Johnson et al., 1983; Willis, 1993a). Within the
reentrant, sedimentary rocks deposited since
11 Ma document the encroachment on the axial
river system of a large southwestward-flowing
transverse river system (Figs. 5, 11, and 12).
Paleocurrent directions suggest that the paleo-
Indus was progressively deflected westward by
the prograding gravel front, which was confined
to a narrow belt ~40 km wide (Figs. 5, 11, and
12). Southwest of the prograding gravel front,
small rivers developed with catchments entirely
within the foreland (Fig. 12). In the interval from

10 to 7 Ma, major lithofacies boundaries vary in
age by as much as 2–3 m.y. across distances of
only 20–30 km (Figs. 11 and 12). Progradation
rates for the conglomerate facies are similar to
those reported for Pliocene conglomerates in the
Jhelum reentrant (3 cm/yr; Raynolds and John-
son, 1985). By ca. 7.2 Ma, any facies variability
was obliterated by widespread deposition of the
typical Upper Siwalik “Boulder Conglomerate”
lithofacies throughout the reentrant. The age of
this widespread blanket of conglomerate (>7 Ma)
is much older than either the late Pliocene gravels
in the Jhelum reentrant or the formerly assumed
Pleistocene age for “Boulder Conglomerate” in
the foreland (Raynolds and Johnson, 1985; Bur-
bank et al., 1988; Johnson et al., 1988). The age
discrepancy may be partly due to the preservation
of more proximal sedimentary rocks within the
reentrant than elsewhere. In any case, in the con-
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Figure 10. Equal-area projections of in situ and bedding-corrected class I data for the Kangra
and Nalad Khad sections. Closed circles are samples that show a positive inclination; open cir-
cles are samples that show a negative inclination. Mean directions of normal and reverse popu-
lations are indicated by shaded boxes encircled by their respective α95confidence intervals. The
data pass the reversal test and fail the fold test at a 95% confidence interval. Mean declinations
and inclinations for the total class I bedding-corrected data for each section (calculated using
the normal samples and projecting the reverse samples through the origin) are 014.3°, 31.3° for
the Kangra section and 002.4°, 29.8° for the Nalad Khad section. Note that the Kangra section
shows an apparent clockwise vertical axis rotation and that the Nalad Khad section shows no
apparent rotation.



text of the entire foreland, conglomerate influx is
highly diachronous, varying by nearly 7 m.y. be-
tween Nalad Khad and the Jhelum reentrant.

Gravel Progradation and Sediment 
Accumulation

The conglomerates that have been dated in
Himachal Pradesh (10 Ma at Nalad Khad and
8.7 Ma at Jawalamukhi) are several million years
older than the oldest dated extensive conglomer-
ates found outside of the bounds of the reentrant
(4–5 Ma; Burbank and Raynolds, 1988). These
conglomerates all contain significant proportions
of pink quartzite (Fig. 5). An identical quartzite,
the Deoban Quartzite, is exposed today in the
hanging wall of the Main Boundary thrust (e.g.,
near Bilaspur), but not elsewhere within the hin-
terland (Fig. 2). The abrupt appearance of these
clasts in the foreland strata suggests that the
Deoban source area was first exposed in the hang-
ing wall of the Main Boundary thrust prior to
ca. 11 Ma. Three hypotheses may be suggested to
account for the Miocene appearance and progra-
dation of such extensive hinterland-sourced con-
glomerates. (1) Climate change increased the dis-
charge and sediment flux of transverse rivers,

causing gravel progradation. (2) Gradual hinter-
land erosion without major tectonism led to a de-
crease in subsidence rates within the foreland and
allowed the gravels to prograde post-tectonically.
(3) Initiation of the Main Boundary thrust led to
significant erosional relief developing above it,
and gravels prograded into the foreland syntec-
tonically. In order to evaluate these hypotheses, it
is necessary to look at any changes in subsidence
rates during this time interval within the reentrant
and across the foreland.

At long time scales, sediment-accumulation
rates (Fig. 13) may be taken as a proxy for subsi-
dence rates in large, externally drained alluvial
foreland basins where sediment supply rates are
high (Burbank and Beck, 1989). Compacted
rather than decompacted accumulation rates are
used because differential compaction rates are
poorly documented in terrestrial basins. More-
over, undeformed clastic dikes, undissolved clast
contacts in conglomerates, and evidence for early
cementation (Tauxe and Badgley, 1988) suggest
little or no compaction. Beginning at around 11.5
to 11 Ma, an accumulation rate increase is seen in
sections across the entire Himalayan foreland
from Pakistan to Nepal (Meigs et al., 1995; Bur-
bank, 1996). An increase of 35%–75% in accu-

mulation rate is common for sections within the
Pakistani foreland, although sections within the
Himachal Pradesh reentrant show much smaller
increases of 10%–25% from 0.4–0.5 km/m.y. to
0.5–0.6 km/m.y. (Fig. 13). This may be a reflec-
tion of the contrast in flexural rigidities between
the Indian and Pakistani foreland, with the rigid-
ity estimated in Pakistan (~0.4× 1024Nm; Duroy
et al., 1989) about an order of magnitude lower
than that in India (~0.7× 1025 Nm; Molnar,
1988). The increase in accumulation rates ob-
served corresponds to an increase in subsidence
rate and may be produced either by increasing the
thrust load by ~50%, without a change in load lo-
cus, or by shifting loading to a more basinward
position (Turcotte and Schubert, 1982). This lat-
ter alternative can be achieved by initiating a ma-
jor new system of basement-involved thrusts.
Meigs et al. (1995) suggested that this accelera-
tion in subsidence was caused by middle-late
Miocene initiation of the Main Boundary thrust
(hypothesis 3). The transition from Chinji to Na-
gri lithofacies in Pakistan and from the Kasauli
Formation (equivalent to the Chinji Formation) to
the Nahan Sandstone in northwest India also oc-
curred between 11.5 and 10.4 Ma (Burbank,
1996; N. M. Johnson et al., 1982; Johnson et al.,
1983), and implies an increased paleodischarge
(Willis, 1993a) of the axial river system
(Figs. 4A, 5, 7A, and 11). In the Potwar Plateau
region, this lithofacies and discharge change is
accompanied by a threefold increase in the abun-
dance of blue-green hornblende derived from the
Kohistan terrane in northern Pakistan (Tahirkheli,
1979; Cerveny et al., 1989; Mulder, 1991). Ap-
atite fission-track ages from the hanging wall of
the Main Boundary thrust in northwest Pakistan
are interpreted to suggest bedrock thrusting, up-
lift, and erosion commencing ca. 11 Ma (Meigs
et al., 1995) and constitute further independent
evidence for the initiation of the Main Boundary
thrust at this time over a large portion of the west-
ern Himalaya.

Key controls on the limits of gravel prograda-
tion also come from drill holes that penetrate
through the Siwalik section within the Himachal
Pradesh reentrant. Beginning with holes that are
located along the trend of the gravel front, but
~35 km more basinward of the Jawalamukhi
thrust and in all more distal holes, there is no sig-
nificant gravel in the Miocene and Pliocene Si-
walik strata (Raiverman et al., 1983). If the gravel
progradation rates that we have documented in
the proximal foreland had been sustained for sev-
eral million more years, we would expect the ap-
pearance of gravels in these more distal drill
holes by Pliocene time. Their absence suggests
that the gravel front either stalled or retrograded
as the balance between loading, sediment supply,
and gravel fraction changed through time. One
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Figure 11. Temporal and spatial variability of the Nahan Sandstone and conglomerate lithofa-
cies within the Himachal Pradesh reentrant. The figure shows two fence diagrams where the ver-
tical axis is age (Ma). The magnetic sections measured are shown by the following abbreviations
(and see Fig. 2): H—Haritalyangar, J—Jawalamukhi, K—Kangra, NK—Nalad Khad. The thick
black vertical lines beneath each section name show the temporal range of the measured sections
(e.g., the Kangra section spans 11.3 Ma to 6.9 Ma). The spatial and temporal distribution of the
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leoflow directions for the time line on which they are positioned, and for the section to which they
are adjacent. Paleoflow direction arrows use the same data and symbols as in Figure 5. Note the
orientation of the north arrow: Its top is toward the southwest. Note the progradation of the Mid-
dle Siwalik conglomerate shown on the fence portion between Nalad Khad and Jawalamukhi, and
also the abrupt boundary of the Middle Siwalik conglomerate between Jawalamukhi and Kangra.



potential mechanism to achieve this is by shifting
the locus of deformation and the production of
both topographic relief and gravel production to
a more distal position. Such a possibility is sup-
ported by recent studies farther east in Nepal,

which indicate a major reactivation of the Main
Central thrust in late Miocene–early Pliocene
time (Macfarlane, 1993; Harrison et al., 1998).

Several studies have discussed the effects of
thrust belt reentrants on patterns of sedimentation

(Visser and Johnson, 1978; Burbank et al., 1988;
Whiting and Thomas, 1994; Lawton et al., 1994).
Theoretically, an irregular load on an elastic plate
will produce a complex three-dimensional subsi-
dence pattern, in which local differences in subsi-
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Figure 12. Depositional synthesis for the
late Miocene Himachal Pradesh reentrant.
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flow directions for the following five time pe-
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dence are determined by the planform wavelength
and amplitude of the load in comparison to the
flexural rigidity of the lower plate (Timoshenko,
1940; Stern et al., 1992; Wessel, 1996). For an
arcuate thrust load on a homogenous lower plate,
an axis of relatively increased subsidence may co-
incide with the axis of the reentrant. The magni-
tude of lateral subsidence variation will decrease
as the wavelength of the reentrant diminishes with
respect to flexural rigidity. There is a striking asso-
ciation between Miocene facies distributions and
the axis of the modern Himachal Pradesh reen-
trant, with the extensive upper-late Miocene con-
glomerates clearly confined to a zone about 40 km
wide at Jawalamukhi (Figs. 2 and 12). Although
increased axial subsidence within the bounds of
reentrants has been reported elsewhere (Whiting
and Thomas, 1994; Raynolds and Johnson, 1985;
Burbank et al., 1988), all four sections in Hi-
machal Pradesh show very similar accumulation
rates (Fig. 13), providing no evidence for en-
hanced axial subsidence. Thus, the reason for the
axial conglomeratic distribution remains obscure.

If the evidence for Main Boundary thrust initi-
ation ca. 11.5 Ma is accepted, then gravel progra-
dation in Himachal Pradesh was syntectonic. Al-
though no exact progradation rate can be
measured in the Himachal Pradesh reentrant be-
cause the Jawalamukhi section is not directly
downstream from the Nalad Khad section, pro-

jection of lithofacies data on to a transect parallel
to the paleocurrent directions suggests a progra-
dation rate of 2–3 cm/yr (Fig. 11). The total dis-
placement along the Main Boundary thrust is un-
constrained, but is likely to have been tens of
kilometers (Srivastava and Mitra, 1994; Harrison
et al., 1998). Thus, within 1–2 m.y. from the time
of initiation of the Main Boundary thrust, an ex-
tensive gravel front had prograded tens of kilo-
meters away from the active thrust front.

Gravel progradation has also been docu-
mented in Pliocene sedimentary rocks within the
Jhelum reentrant, where a progradation rate of
3 cm/yr has been determined (Raynolds, 1980;
Raynolds and Johnson, 1985; Burbank et al.,
1988). Although there are similarities between
the rates and geometry of gravel progradation in
the Jhelum reentrant and the Himachal Pradesh
reentrant, there are also major differences. The
Jhelum sites are >60 km from the Main Bound-
ary thrust and may have been in the medial part
of the foreland when the conglomerate was de-
posited. Gravel progradation in the Jhelum reen-
trant is documented between 3 and 1 Ma (Bur-
bank et al., 1988); if the Main Boundary thrust
began motion at 11.5–11 Ma, then the Jhelum
reentrant conglomerate postdates the initiation of
thrusting by 8 m.y. Moreover, gravel prograda-
tion in the Jhelum reentrant is suggested to have
occurred during a time of decreasing subsidence

(Burbank et al., 1988; Heller and Paola, 1992).
In foreland basins, gravel progradation is com-

monly controlled by the ratio of subsidence to
sediment supply and by the fraction of gravel in
the sediment. For a fixed sediment supply and
gravel fraction, the increase in accommodation
space caused by thrust-induced subsidence will
confine syntectonic conglomerates close to the
mountain front (Heller et al., 1988; Paola et al.,
1992; DeCelles et al., 1987; DeCelles, 1994).
Long-lived syntectonic gravel progradation, in
spite of accelerated subsidence, may occur if there
is a sufficient increase in either the sediment flux
or the fraction of gravel carried by rivers entering
the foreland (Paola et al., 1992). For any given
load, the flexural rigidity of the underlying plate
determines the spatial distribution of subsidence,
such that a broader, shallower deflection will
characterize a more rigid plate. Thus a homo-
geneous thrust load that generates a constant sed-
iment supply and gravel fraction along its length
will produce spatially variable gravel prograda-
tion or retrogradation that reflects differences in
the flexural rigidity. We predict that during thrust
loading, the increase in sediment supply or gravel
fraction necessary to increase the rate of gravel
progradation in the proximal part of the basin
would be larger for the less rigid Jhelum reentrant
than for Himachal Pradesh. Thus, along-strike
variations in flexural rigidity, in addition to
changes in climate, source-area size, erodibility,
and rock strength, will combine to modulate
gravel progradation into foreland basins.

SUMMARY

Structural reentrants can provide windows into
proximal parts of foreland basins that are com-
monly not exposed. In the northwest Indian fore-
land, much of the medial part of the Miocene
foreland has been overthrust. However, within
the Himachal Pradesh reentrant, both the medial
foreland and parts of the proximal foreland are
exposed, giving key insights to the history of the
Himalaya (Fig. 2).

The boundaries between major Siwalik lithofa-
cies in Pakistan are commonly not time transgres-
sive. Although similar lithofacies are present in
Himachal Pradesh, their boundaries display ex-
tensive temporal and spatial variability (Figs. 5,
11, and 12). Magnetostratigraphic time control
has played a critical role in understanding this
variability and its relationship to hinterland evolu-
tion: In the absence of such control, the extensive
Middle Siwalik conglomerates at Jawalamukhi
and Nalad Khad were previously assigned to the
Upper Siwalik “Boulder Conglomerate” of Qua-
ternary age.

The 10 Ma conglomerates at Nalad Khad are
the oldest extensive conglomerates that have
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Figure 13. Sediment-accumulation curves for the Himachal Pradesh magnetic sections. The
inset shows sediment-accumulation rates (in km/m.y.; equivalent to mm/yr) between chron
boundaries identified in all four sections. The global magnetic polarity time scale of Cande and
Kent (1995) was used for the correlation and calculation of sediment-accumulation rates. H—
Haritalyangar, J—Jawalamukhi, NK—Nalad Khad, K—Kangra. The asterisk in the inset de-
notes minimum values of accumulation rate due to nonexposure of chron boundaries. The fol-
lowing upper (younger) boundaries were used to calculate rates younger than 8.7 Ma (and
generally correspond to the stratigraphically highest chron boundary within any section): (A)
7.65 Ma, (B) 6.935 Ma, (C) 8.225 Ma, and (D) 6.935 Ma. An alternative correlation, less pre-
ferred by us, is also possible in the upper portion of the Jawalamukhi section (Meigs et al., 1995),
which gives a sediment accumulation rate of 0.63 km/Ma from 8.7–6.935 Ma.



been dated in the Siwalik foreland. They contain
a significant proportion of clasts of rock types
found today only in the hanging wall of the Main
Boundary thrust (Deoban Quartzite). Together
with sediment-accumulation curves and previ-
ously published sandstone heavy mineral compo-
sitions and hinterland fission-track dating, these
data suggest a change in the position of the hin-
terland load due to creation of a major new thrust
system ca. 11.5 Ma: the Main Boundary thrust
(Meigs et al., 1995; Burbank et al., 1996). The
Middle Siwalik conglomerates at Nalad Khad
and Jawalamukhi are notable not only for their
age, but also for their thickness (hundreds of me-
ters) and their confinement to a facies belt with
relatively abrupt lateral boundaries.

The close association of the axis of the mod-
ern-day reentrant and the confined belt of mid-
dle-late Miocene conglomerates suggests that
there may have been some focusing of the trans-
verse fluvial system by the reentrant in Miocene
time (Fig. 12). In contrast to the Jhelum reentrant
(Raynolds and Johnson, 1985; Burbank et al.,
1988), sediment-accumulation curves in the
Himachal Pradesh reentrant show no increased
subsidence along the axis of the prograding
gravel front (Fig. 13). The influence of the geom-
etry and topography of reentrants in producing
subtle changes in subsidence that apparently fo-
cus facies at large distances is still poorly con-
strained and understood, although such focusing
is suggested by the conglomerate outcrop pat-
terns in Himachal Pradesh. We suggest that the
flux of sediment into the Himalayan foreland is
always sufficiently high to fill available sediment
accommodation space. Under such conditions,
gravel progradation may arise from an increase in
the fraction of gravel, an increase in the total sed-
iment flux with no change in grain-size distribu-
tion, or reduced rates of subsidence. In Himachal
Pradesh, progradation is coeval with a subsi-
dence-rate increase, rather than a decrease, so
that the last mechanism for progradation can be
discounted. A localized increase in the fraction of
gravel entering the foreland is interpreted to have
resulted from a basinward jump of the deforma-
tion front that occurred as the Main Boundary
thrust was initiated. The uplifted resistant rocks
of the Main Boundary thrust hanging wall be-
came the source of an increased gravel fraction
that sustained long-lived progradation across the
proximal foreland.
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