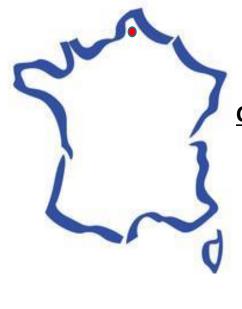


CEDaCI

How to Implement Sustainable Circular Economy in the Data Centre Industry


www.weloop.org www.nweurope.eu/cedaci

Carolina SZABLEWSKI Naeem ADIBI WeLOOP c.szablewski@weloop.org WeLOOP n.adibi@weloop.org

@cedaci_project

https://www.linkedin.com/company/cedacicircular-economy-for-the-data-center-industry/

www.weloop.org <u>Contact: info@weloop.org</u> 03 21 13 51 88-9

LCM, Circular Economy and sustainability **strategy**.

Eco-design to implement sustainability. **Key Performance Indicators** for progress.

Sustainability metrics based on Life Cycle Approaches.

Awareness raising and training to support sustainability implementation.

Support communication based on sustainability performances.

Université de Lille

Our expertise and multi-sectorial experience

Ne

Plastics

MEL

MÉTROPOLE

UROPÉENNE DE LILLE

Interreg North-West Europe **CEDaCI**

Others (textile, paints, etc)

What are data centers?

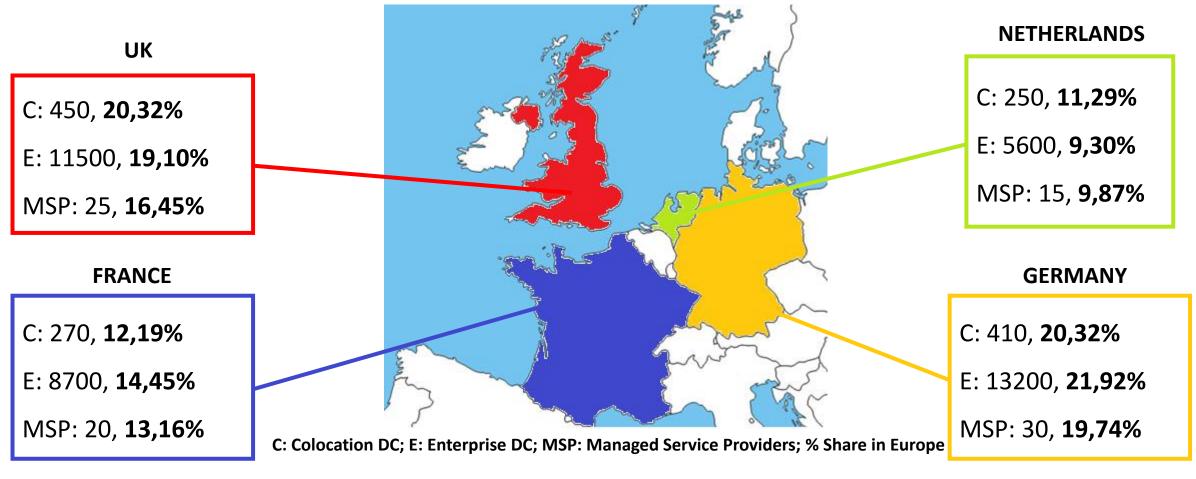
~ 8.6 million data centres globally

~ 63,000 in EU - 66% in UK, France, Germany & Netherlands

Predicted growth – 300% by 2025 / 500% by 2030

DC industry - emphasis on 24/7 operation & uninterrupted performance reducing operational energy consumption

Embodied impact -building life 60 years 15% -from building and facilities / 85% -from IT equipment 20 million servers etc = 0.56 million tonnes materials



Data Centres in NWE

Source: Dodd, N., et al. (2018). Development of the EU Green Public Procurement (GPP) Criteria for Data Centres and Server Rooms Draft third criteria proposals

k Greent

operational[®] Intelligence

aliter

London

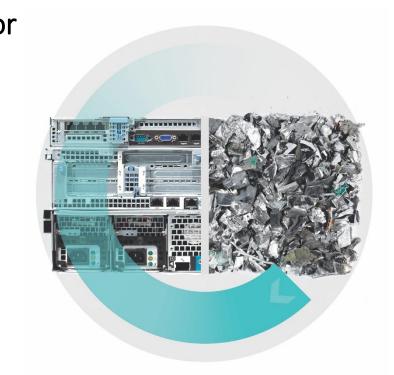
Jniversitv

South Bank

Extending product life – refurbishing

Wuppertal

Institut


• Base CE in NWE Europe to grow business

- Create stable and secure materials supply chain for DC sector
- ✓ reduce sectoral waste and environmental impact by ...
- Increasing recycling / reclamation of CRM
- Improving design for disassembly/ manufacturing

Project steps

Situational Analysis and Network Building

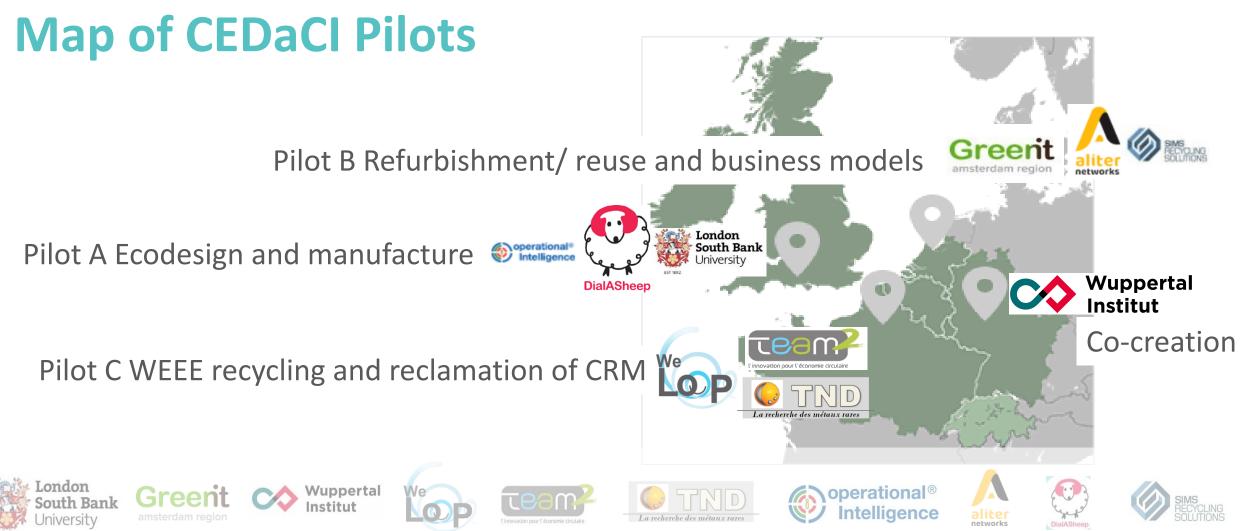
Q

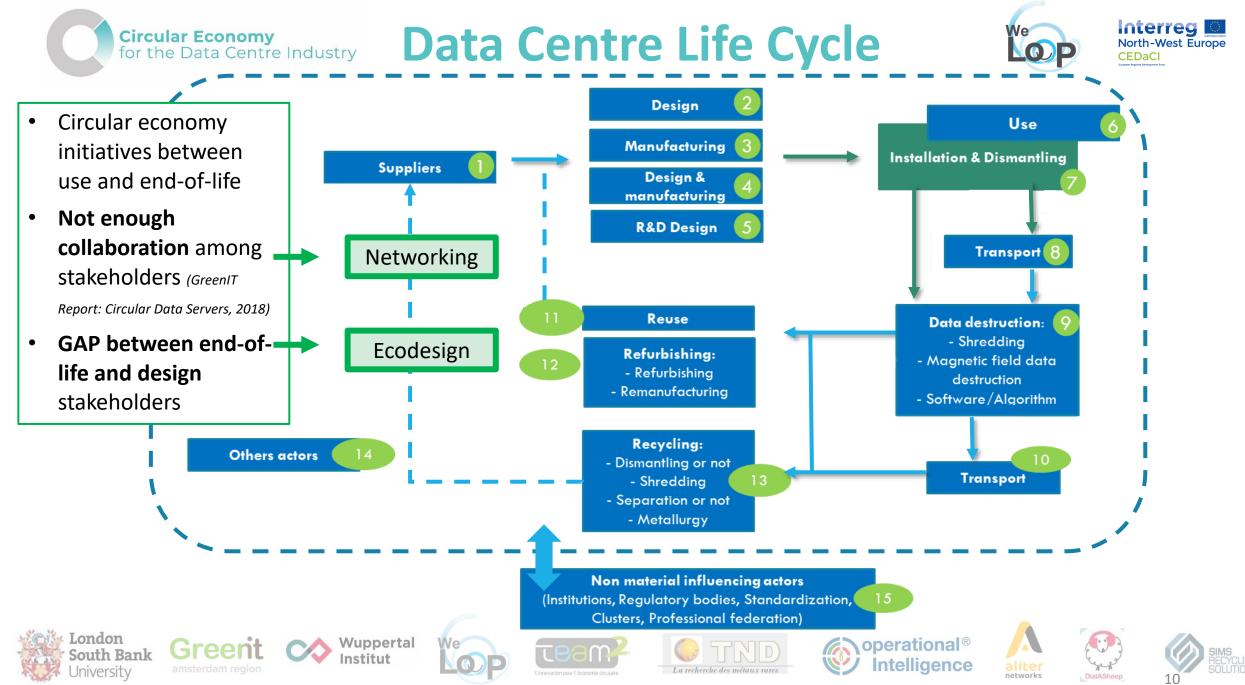
EcoDesign / Design for Circular Economy prototype products and Guidelines

冥

Co-creation activities, Tool Development and Testing and EcoDesign Guideline Finalisation

Improved **Recycling** methods and process for increased recycling and reclamation of CRM


Refurbishment business and Decision Making models



Communication / Long Term strategy

Circular Economy for the Data Centre Industry

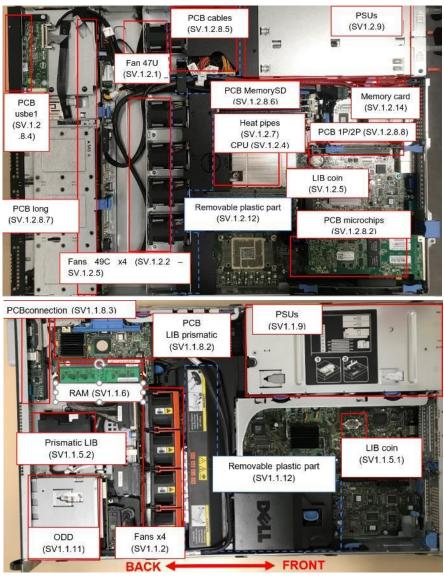
Batteries, storage equipment and network equipment need replacement every 3-5 years and servers every 3-8...

...and often earlier!

 Technology changes through the time

	Data centre equipment	Lifespan (years)
	Uninterruptible power supply (UPS)	20
Power generation	Transformers	20
	Switch gear	20
	Backup generators	20
	Power distribution units (PDUs)	20
	Batteries	3-5
	Power cables	20
	Servers	3-8
	Storage equipment	3-5
IT	Network equipment (switches, routers, etc.)	3-5
	Chassis	20
	Network cables	20
	Chillers	20
	Computer room air conditioning units (CRACs)	20
	Direct expansion air handler	20
Cooling system	Pumps	20
	Cooling towers	20
	Heat exchange systems	20
	Reservoir storages for collecting rain water	20
Socurity system	Fire-suppression system	20
Security system	Video-cameras	20
Building structure		20

JRC. (2015). Environmental Footprint and Material Efficiency Support for product policy, analysis of matighting cipht step life the store of enterprise servers


Circular Economy for the Data Centre Industry Critical Raw Materials

Critical Raw Materials (CRMs) (European Commission, 2020)

Antimony	Fluorspar	LREEs	Phosphorus	
Baryte	Gallium	Magnesium	Scandium	
Beryllium	Germanium	Natural graphite	Silicon metal	
Bismuth	Hafnium	Natural rubber	Tantalum	
Borate	Helium	Niobium	Tungsten	
Cobalt	HREEs	PGMs	Vanadium	
Coking coal	Indium	Phosphate rock	Bauxite	
Lithium	Titanium	Strontium		

Equipment	Component	CRM				
Power generation	Lithium Ion Batteries	Со				
		Dy				
	HDD	Nd				
Storago		Pr				
Storage		Tb				
equipment		Si				
	SSD	(CRM found				
		in PCB)				
		PGM				
Servers,		Sb				
storage		Si				
equipment	DCD	Ga				
(SSD),	PCB	Та				
Vetwork		Ge				
equipment		Со				
lqaipinent		Mg				
		Sb				
		Ве				
Servers	Connectors	Со				
		12 Pd				
		Si				

Recycling of CRM

Economically non-viable (yet) for all the CRM

- Very small concentrations of CRM in products
- Composition of equipment is unknown
- Destruction of data (Data sanitation) and it's influence on recycling
- Electronic products are complex: costly dismantling operations of the components (PCBs, drives, capacitors, etc.) and separation of materials
- Complex processes are required (high CAPEX)
- Volatile prices of CRM

CRM Recovery, 2014

Improve the design

- Research & Development in recycling
- Extend lifetime by reusing and refurbishing

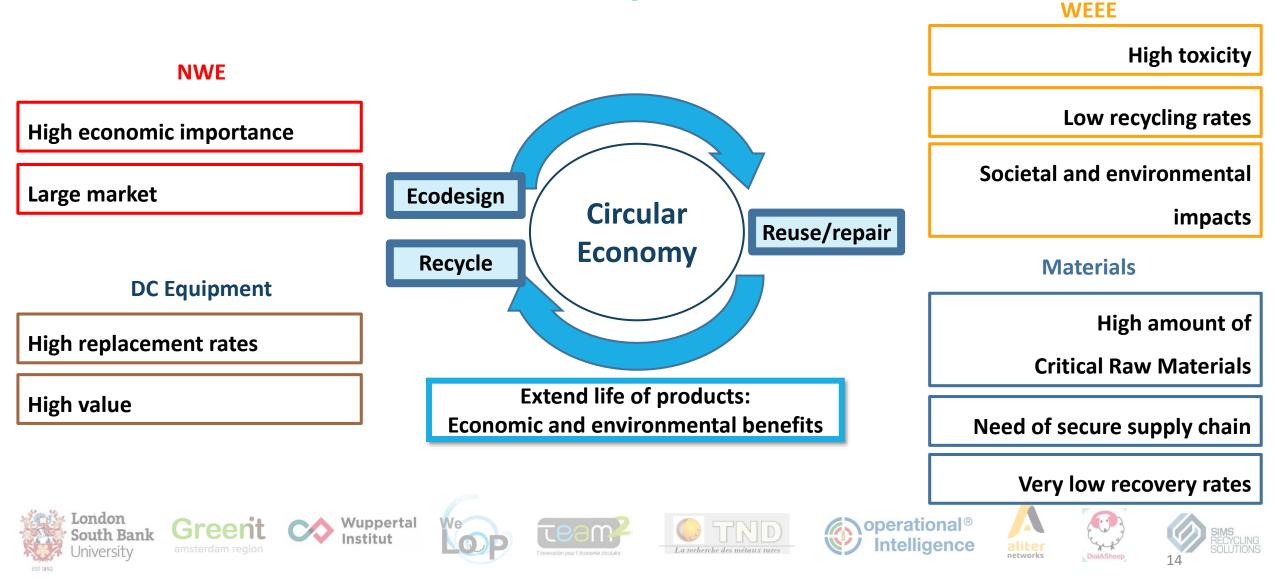
Ta

Interreg

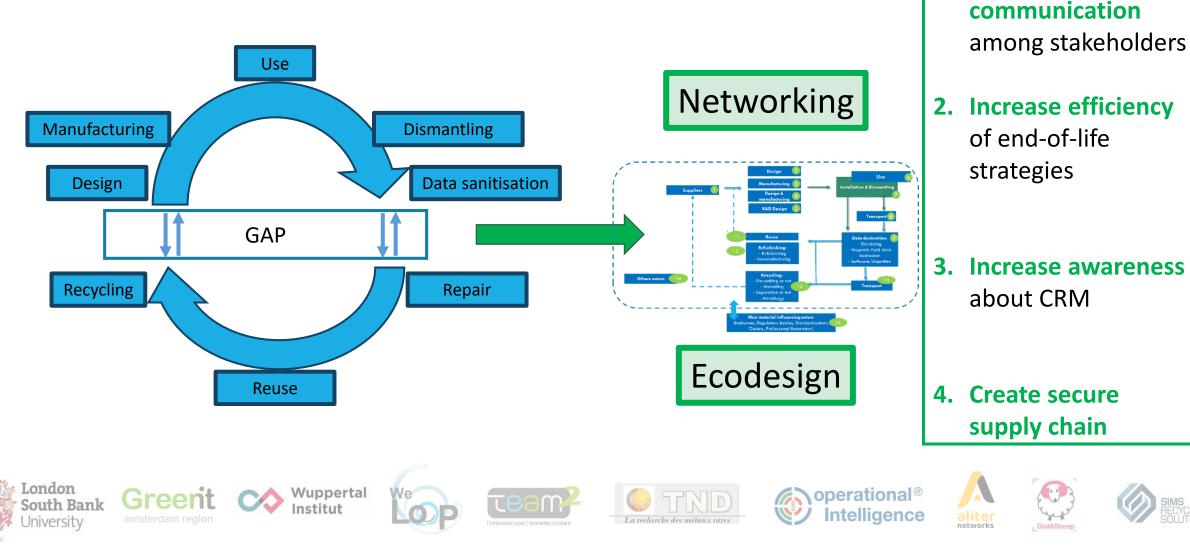
CEDaC

Nd

Au


North-West Europe

Circular Economy in Data Centre



Perspectives

1. Improve

Situational Analysis and Network Building

Inventory of stakeholders/case studies/BM

Greent South Bank

Wuppertal Institut

operational® Intelligence

CPU

RAM

CRM in Data Centres

PCBs

Sn 0,0001 0,0005 0,1323 0,0179 0,0008 0,0011 0,0052 0,0049 0,0030 0,0266 0,0566 0,0012 0,2502 Sr 0,0000 0,0000 0,0027 0,0011 0,0000 0,0006 0,0001 0,00000 0,0000 0,0000		••••														
Equipment ID ··· <t< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	_															
Metals wt % (sever = 100%) Aq 0,0000 0,0001 0,0028 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0001 0,0002 0,0000 0,0	Equipment ID	11	1.1	.1.1.8.	.1.1.8	1.1.	1.1	.1.1.8.	11	1.1	.1.1	.1.1.	.1.1.	SV.1.1		
Aq 0,000 0,001 0,0028 0,004 0,000 0,000 0,000 0,0009 0,0088 0,0000 0,0001 0,0051 Au 0,0007 0,0006 0,0014 0,0002 0,0001 0,0000 0,0001 0,0000 0,0001 0,0001 0,0001 Ba 0,0007 0,0006 0,0014 0,0002 0,0011 0,0044 0,0000 0,0001 0,0000 0,0001 0,0001 Co 0,0004 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,00000 0,0000 0,0000	Total mass (kg)													19,6720864		
Au 0,000 0,001 0,004 0,002 0,000 0,	Metals						wt % (ser	ver = 10	0%)					wt %		
Ba 0,0007 0,0006 0,0304 0,0018 0,0002 0,0014 0,0146 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0001 0,0002 0,0001 0,0002 0,0001 0,0002 0,0001 0,0002 0,0001 0,0002 0,0001	Ag	0,0000	0,0001	0,0028	0,0004	0,0001	0,0000	0,0000	0,0000	0,0000	0,0009	0,0008	0,0000	0,0051		
Co 0,0000	Au	0,0000	0,0001	0,0004	0,0002	0,0000	0,0000	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0010		
In 0,0004 0,0000	Ba	0,0007	0,0006	0,0304	0,0018	0,0002	0,0011	0,0044	0,0060	0,0020	0,0041	0,0146	0,0002	0,0662		1
Li 0,00000 0,0000 0,0000 <td>Co</td> <td>0,0000</td> <td>0,0000</td> <td>0,0000</td> <td>0,0000</td> <td>0,0000</td> <td>0,0000</td> <td>0,0000</td> <td>0,0001</td> <td>0,0000</td> <td>0,0003</td> <td>0,0006</td> <td>0,0000</td> <td>0,0011</td> <td></td> <td>Low</td>	Co	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0006	0,0000	0,0011		Low
Mg 0,0001 0,0007 0,0022 0,0001 0,0001 0,0012 0,0002 0,0052 0,0147 0,0003 0,0035 0,0035 0,0035 0,0035 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0012 0,0002 0,0052 0,0147 0,0003 0,0003 0,0013 0,0001 0,0003 0,0013 0,0001 0,0000 0,0035 0,0035 0,0014 0,0001 0,0012 0,0013 0,0000 0,0000 0,0035 0,0035 0,0013 0,0013 0,0000 0,0000 0,0036 0,0035 0,0036 0,0035 0,0038 0,0036 0,0035 0,0036 0,013 0,0000 0,0000 0,0000 0,0030 0,0036 0,0011 0,0035 0,0030 0,0000 0,0000 0,0000 0,0000 0,0030 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,00000 0,00000 <td></td> <td>0,0004</td> <td>0,0000</td> <td>0,0004</td> <td></td> <td>criticality</td>		0,0004	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0004		criticality
Sb 0,000 0,0000 0,0005 0,0004 0,0000 0,0003 0,0012 0,0000 0,0003 0,0001 0,0001 0,0000 0,0003 0,0011 0,0052 0,0011 0,0005 0,0011 0,0003 0,0012 0,0004 0,0003 0,0011 0,0002 0,0011 0,0000 0,0011 0,0005 0,0011 0,0003 0,0012 0,0003 0,0010 0,0000 0,0000 0,0003 0,0001 0,00000 0,00000 0,0000 <td>Li</td> <td>0,0000</td> <td></td> <td>High criticality</td>	Li	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000		High criticality
Sn 0,0001 0,0005 0,1323 0,0179 0,0008 0,0011 0,0052 0,0049 0,0030 0,0266 0,0566 0,0012 0,2502 Sr 0,0000 0,0000 0,0027 0,0001 0,0000 0,0002 0,00000 0,0000 0,0000	Mg	0,0001	0,0001	0,0107	0,0022	0,0001	0,0001	0,0004	0,0012	0,0002	0,0052	0,0147	0,0003	0,0352]
Sn 0,0001 0,0005 0,1323 0,0179 0,0008 0,0011 0,0052 0,0049 0,0030 0,0266 0,0566 0,0012 0,2502 Sr 0,0000 0,0002 0,0011 0,0000 0,0003 0,0006 0,0011 0,00000 0,0000 0,0000	Sb	0,0000	0,0000	0,0005	0,0004	0,0000	0,0003	0,0012	0,0000	0,0013	0,0000	0,0000	0,0000	0,0038		Very high criticality
Ta 0,000 0,0139 0,0073 0,0000 0,0000 0,0022 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0024 Ti 0,0002 0,0153 0,0028 0,0005 0,0013 0,0027 0,0005 0,0021 0,0005 0,0001 0,0329	Sn	0,0001	0,0005	0,1323	0,0179	0,0008	0,0011	0,0052	0,0049	0,0030	0,0266	0,0566	0,0012	0,2502		, ,
Ti 0,0002 0,0002 0,0153 0,0028 0,0006 0,0013 0,0027 0,0005 0,0021 0,0065 0,0001 0,0329	Sr	0,0000	0,0000	0,0027	0,0001	0,0000	0,0000	0,0003	0,0006	0,0001	0,0000	0,0000	0,0000	0,0039		
	Ta	0,0000	0,0000	0,0139	0,0073	0,0000	0,0000	0,0000	0,0022	0,0000	0,0000	0,0000	0,0000	0,0234	1	
₩ 0,0003 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	Ti	0,0002	0,0002	0,0153	0,0028	0,0006	0,0005	0,0013	0,0027	0,0005	0,0021	0,0065	0,0001	0,0329	1	
	W	0,0003	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0009	0,0000	0,0000	0,0000	0,0003	1	

W

EST 1892

Circular Data Centre Compass (CDCC) Increasing collaboration and communication to drive sustainability in the data industry

Dell PowerEdge R320 Dell PowerEdge R320 -Select a server Select a server CEDaCI 2012 China 6 2012 Manufacturer Country UK iNet Group iNet Group D Home Provider Country Provider Company **Provider Country** Provider Company 10480 10480 A CDCC -Heat Pipe Server Forum Partners 648*433*43 News di Events Intel® Xeon® L5630 ٥ SSD ٥ Intel® Xeon® L5630 ۰ SSD 1 Publications PC3L-10600R \$ Qualcomm NC362i \$ PC3L-10600R \$ Qualcomm NC362i × Sign out **Y** in

About CDCC

China

648*433*43

\$

Manufacturer Country

Heat Pipe

Battery

Co-financed by the European Regional Development Fund, the CEDaCI Project is developing the circularity solutions to decrease the environmental impact of the IT equipment used by the Data Centre Industry.

The Circular Data Centre Compass is designed to guide the Data Centre Industry (DCI) to choose more circular options during the procurement, refurbishment and the disposal of servers and to assess the environmental, social and economic impacts.

How CDCC works

Co-financed by the European Regional Development Fund, the CEDaCI Project is developing the circularity solutions to decrease the environmental impact of the IT equipment used by the Data Centre Industry.

The Circular Data Centre Compass is designed to guide the Data Centre Industry (DCI) to choose more circular options during the procurement, refurbishment and the disposal of servers and to assess the environmental, social and economic impacts.

Our Partners

SURF SARA

18

Thank you for listening – any questions?

Application via Online Survey: https://fr.surveymonkey.com/r/CEDaCI

- Dr. Naeem ADIBI <u>n.adibi@weloop.org</u>
- Dr. Carolina SZABLEWSKI <u>c.szablewski@weloop.org</u>

@cedaci_project

https://www.linkedin.com/company/c edaci-circular-economy-for-the-datacenter-industry/

www.weloop.org www.cedaci.org

London

Jniversitv

South Bank

Circular Economy for the Data Centre Industry

Waste Electrical and Electronic **Equipment (WEEE)**

- Toxic materials: need special treatment
- WEEE Directive 2012/19/EU
 - Obligation to dismantle hazardous components
 - Printed Circuit Boards Batteries ٠
 - Ready for: Reuse
 - External cables

- Refurbish Recycling
- Capacitors with PCBs
- Objectives:
- Reduce amount of waste (Reuse, Refurbish)
- Avoid landfilling ٠

Institut

- Proper treatment, managing toxic materials
- Avoid illegal exports to less developed countries ٠ (Asia, Africa)

Source image: stephenleahy.net

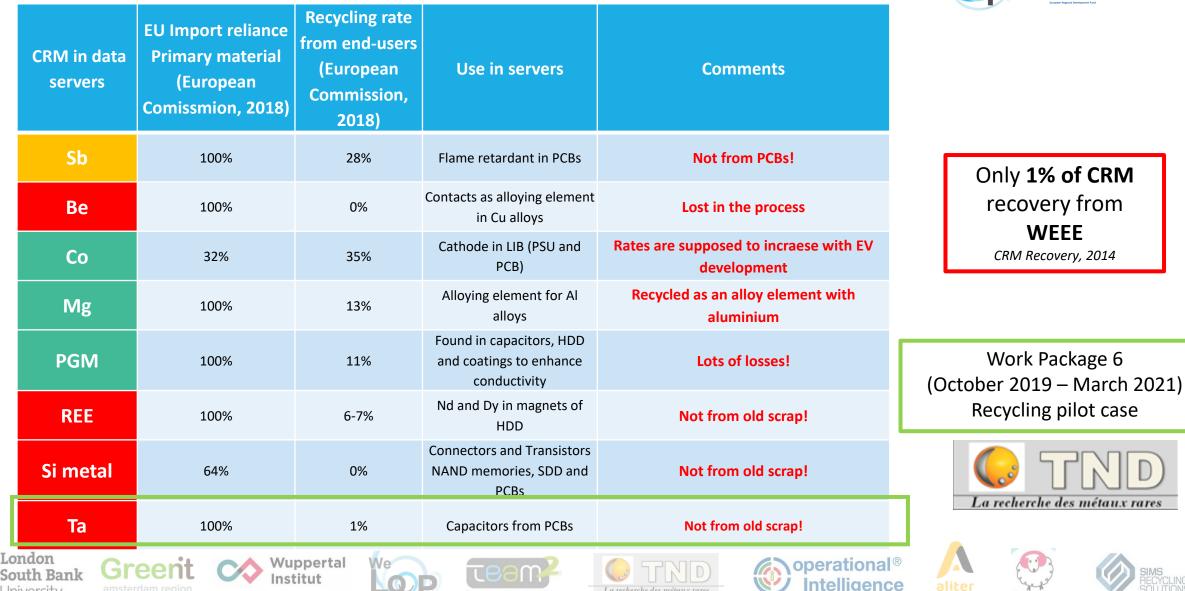
- Human health impacts
- **Environmental Impacts**
- Losses of resources (Economic impact)

Interreg

CEDaC

North-West Europe

Circular Economy for the Data Centre Industry DC Equipment recycling


		<u>High recovery</u>	
Component with CRM	Industrial recycling process	Co Platinum Group metals	Low recycling rates: low collection, lost in the process
Lithium Ion Batteries	Yes	Precious metals Iron	
HDD	No	Aluminium Plastics (incineration) Copper	Materials with best recovery rates from electronic products
SSD	No	Lead	
PCB	Yes	Very low recovery Ta Rare Earths	 Not economically viable processes
Connectors	Yes	Be Ge Ga	Small concentrationsLost in the recycling process
CEDaCI project. We CEDaCI project. We Greent University amsterdam region	🔺 Wuppertal 🛛 🖉	Si Con pour l'économie derutaire La recherche des métaux rares	operational® Intelligence aliter networks DialASheep 21

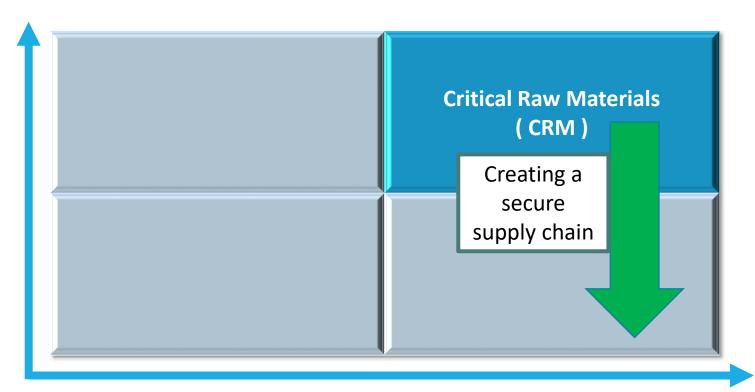
Circular Economy for the Data Centre Industry

CRM recycling

networks

University

CRM in Europe



Supply Risk

- Import reliance
- **Geopolitical** situation of providers

Green

- Number of countries (providers)
- Recycling rate
- Substitution index

Economic importance

• Link to **industry supply chains**

• Environmental applications

Modern technology

Wuppertal

Institut

 $http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_fr$

London

Jniversity

South Bank