Scoring Rubric

Inspiration (33%)

CRITERIA DEFINITION: To score INSPIRATION, the team draws from local community issues or resources. Determine that the team conveys sincerity and interest in the topic drawing on personal experiences.

EXEMPLARY
- Team clearly communicates a proposed solution to preserve, protect, or repair biodiversity AND meets all of the following criteria:
 - Connects with a local issue in the students’ community
 - Provides rationale for threat/issue selection grounded in personal experience or relationship to stakeholders
 - Proposes a unique and/or creative solution

ON-POINT
- Team clearly communicates a proposed solution to preserve, protect, or repair biodiversity AND meets 2 of the following criteria:
 - Connects with a local issue in the students’ community
 - Provides rationale for threat/issue selection grounded in personal experience or relationship to stakeholders
 - Proposes a unique and/or creative solution

EMERGING
- Team is somewhat clear and addresses biodiversity AND meets at least 1 of the following criteria:
 - Connects with a local issue in the students’ community
 - Provides rationale for threat/issue selection grounded in personal experience or relationship to stakeholders
 - Proposes a unique and/or creative solution

NEEDS DEVELOPMENT
- Does not meet the minimum criteria to qualify as “emerging.”

Scientific Rigor (33%)

CRITERIA DEFINITION: To score SCIENTIFIC RIGOR, evaluate the use of evidence and/or scientific research to select the target issue and review to ensure the action plan adheres to the scientific method and/or incorporates the engineering design process.

EXEMPLARY
- Meets all of the following criteria:
 - The problem identified is supported by research statistics (either gathered by the team, from a mentor, or publicly available but clearly referenced)
 - Student(s) communicate step-by-step how they used one of the following processes to develop their proposed solution: a) The Scientific Method or b) The Engineering Design process
 - Clearly demonstrates how student(s) will measure success through data collection

ON-POINT
- Meets 2 of the following criteria:
 - The problem identified is supported by research statistics (either gathered by the team, from a mentor, or publicly available but clearly referenced)
 - Student(s) communicated how they used one of the following processes to develop their proposed solution: a) The Scientific Method or b) The Engineering Design process
 - Clearly demonstrates how student(s) will measure success through data collection

EMERGING
- Meets 1 of the following criteria:
 - The problem identified is supported by research statistics (either gathered by the team, from a mentor, or publicly available but clearly referenced)
 - Student(s) clearly communicated how they used one of the following processes to develop their proposed solution: a) The Scientific Method or b) The Engineering Design process
 - Clearly demonstrates how student(s) will measure success through data collection

NEEDS DEVELOPMENT
- Does not meet the minimum criteria to qualify as “emerging.”

Feasibility (34%)

CRITERIA DEFINITION: To score FEASIBILITY, evaluate the students’ understanding of how realistic or “doable” their solution is. Teams should address the resources required and the complexity of their solution giving consideration to timeline, costs, cultural, and social responses, and scalability.

EXEMPLARY
- Team has demonstrated clear communication and consideration of 3 or more of the following:
 - Time required to develop a “proof of concept” or full implementation
 - Materials needed to develop a “proof of concept” or full implementation
 - Costs associated with developing a “proof of concept” or full implementation
 - Plan for implementing their solution in the community
 - Long-term scalability of their proposed solution

ON-POINT
- Team has demonstrated clear communication and consideration of 2 of the following:
 - Time required to develop a “proof of concept” or full implementation
 - Materials needed to develop a “proof of concept” or full implementation
 - Costs associated with developing a “proof of concept” or full implementation
 - Plan for implementing their solution in the community
 - Long-term scalability of their proposed solution

EMERGING
- Team has demonstrated clear communication and consideration of 1 of the following:
 - Time required to develop a “proof of concept” or full implementation
 - Materials needed to develop a “proof of concept” or full implementation
 - Costs associated with developing a “proof of concept” or full implementation
 - Plan for implementing their solution in the community
 - Long-term scalability of their proposed solution

NEEDS DEVELOPMENT
- Does not meet the minimum criteria to qualify as “emerging.”