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Abstract. Generative adversarial networks (GAN)-based approaches
have been extensively investigated whereas GAN-inspired regression (i.e.,
numeric prediction) has rarely been studied in image and video process-
ing domains. The lack of sufficient labeled data in many real-world cases
poses great challenges to regression methods, which generally require
sufficient labeled samples for their training. In this regard, we propose a
unified framework that combines a robust autoencoder and a generative
convolutional neural network (GCNN)-based regression model to address
the regression problem. Our model is able to generate high-quality arti-
ficial samples via augmenting the size of a small number of training
samples for better training effects. Extensive experiments are conducted
on two real-world datasets and the results show that our proposed model
consistently outperforms a set of advanced techniques under various eval-
uation metrics.

1 Introduction

Classification and regression are two main types of machine learning applica-
tions. While previous research mostly focuses on classification tasks, regression
has received less attention. Although a regression task can generally be converted
into a multi-classification task by approximating continuous variables using dis-
crete classes, regression can provide more meaningful and accurate insights in
many real-world problems such as house price prediction [13], stock price fore-
casting [12], crime rate inference [10], and movie box prediction [9]. Some com-
monly used regression methods include parametric and semi-parametric spatial
hedonic models, state frequency memory (SFM) recurrent network [3], (kernel-
based) regression models [2], and Hodrick Prescott filter and regression hybrid
models.

Different from the above work, we aim to propose a unified framework to solve
general regression problems instead of targeting a specific topic. Our framework
integrates three parts together: feature preprocessing, feature transformation,
and numeric prediction model. Feature preprocessing is responsible for convert-
ing the raw meta-data into a unified feature format. The feature transformation
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part applies a robust auto-encoder to eliminate outliers and noise and to extract
high quality, non-linear latent features from the original feature. In addition, we
alleviate the problem of small training samples by generating artificial samples
based on a generative convolutional neural network (GCNN), a new variant of
generative adversarial networks (GAN) [8] that we propose specially for regres-
sion tasks.

Recently, generative adversarial networks (GAN) has attracted a lot of atten-
tion for its capability of generating photorealistic images or videos that help
visualize new interior/industrial designs, daily commodities or items for scenes
in computer games. The basic GAN is implemented by a system of two neural
networks contesting with each other in a zero-sum game framework. Many vari-
ants of GAN have been proposed since its invention. For example, Radford et
al. [14] propose a deep convolutional generative adversarial network (DCGANs)
that regards parts of the generator and discriminator networks as feature extrac-
tors in CNN. Liu et al. [6] propose a coupled generative adversarial network
(CoGAN) for learning a joint distribution of multi-domain images. While most
of the previous investigations about GAN focus on solving the classification or
image generation problems, our model aims to utilize the generator for data-
augmentation in regression tasks with a small number of training samples.

We make the following contributions in this paper:

– We propose a unified framework that combines feature transformation and
numeric prediction for general regression tasks. To the best of our knowledge,
our work is the first to address the regression problem using the idea of GAN
in a data-augmented manner.

– We design a generative convolutional neural network based regression model
to solve the continuous numeric prediction problem with small labeled sam-
ples. Our model is able to effectively augment the available number of training
data by generating high-quality artificial samples.

– We conduct comprehensive experiments on two real-world datasets and
demonstrate that our proposed method consistently outperforms several non-
deep learning and deep learning methods.

2 A Unified Framework

We propose a unified framework that consists of three main parts: feature extrac-
tion, feature transformation and a generative convolutional neural network. The
architecture of our model is shown in Fig. 1, where the meta-data is fed into our
model first, then the original features are extracted and transformed via robust
autoencoder. After that, the artificial samples are produced from the artificial
feature generator (G1) and artificial label generator (G2). And finally, both the
artificial samples and real samples are fed into discriminator for training. We
will describe the details in the following subsections.
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Fig. 1. Overall framework

2.1 Feature Preprocessing

We use two datasets to evaluate our model: IMDB dataset and American Com-
munity Crime dataset. We extract two types of features from meta-data from
the datasets: the intrinsic attributes of each movie and the community proper-
ties such as population distribution and law enforcement distribution. To reduce
the influence of missing values and noises in the extracted features on the final
performance of the model, we first process it before feeding it into the predic-
tion model. Our first step is to fill up the missing feature values by replacing
the ‘Null’ values with the median value of all samples. As the value of different
features can differ in wide range, we convert them into a unique range 0–1 by
feature normalization. Now, we get a complete feature vector of all the samples
where each feature value falls within 0–1.

2.2 Feature Transformation

We use a robust autoencoder network, which is a variant of the normal autoen-
coder proposed by Zhou et al. [7], to transform features and to discover high qual-
ity, non-linear features while eliminating outliers and noise to clean the training
data. The robust autoencoder differs from normal autoencoders in adding a filter
layer into its network. The filter layer is used to cull out the anomalous parts of
the data that are difficult to reconstruct so as to represent the remaining por-
tion of the data by the low-dimensional hidden layer with a small reconstruction
error. First, it splits the input data X into two parts X = LD + S, where LD

represents the part of the input data that is well represented by the hidden layer
of the auto-encoder and S contains the noise and outliers which are difficult to
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reconstruct. By removing the noise and outliers from X, the auto-encoder can
recover the remaining LD more accurately. The loss function for a given input X
can be either the l1 norm or l2,1 norm of S balanced against the reconstruction
error of LD. In a data-driven manner, we choose the l2,1 norm in this paper. The
overall process of the robust auto-encoder is shown in Eq. 1, where Eθ denotes
the encoding process of auto-encoder, Dθ denotes the decoding process of auto-
encoder, and λ tunes the weight between reconstruction error of LD and sparsity
of S.

min
θ

||LD − Dθ(Eθ(LD))||2 + λ||S||2,1

s.t. X − LD − S = 0 (1)

In particular, l2,1 norm is defined in Eq. 2, where S ∈ Rm×n.

||S||2,1 =
n∑

j=1

||Sj ||2 =
n∑

j=1

(
m∑

i=1

|Sij |2)1/2 (2)

The objective of Eq. 1 is optimized by LD and S, which are trained indepen-
dently through iterations in a similar procedure as that described in [7]. The
optimization of LD is similar to the optimization of a traditional autoencoder
while the minimization of the l2,1 norm of S is a complicated proximal problem
[7]. We present a modified minimization process of ||S||2,1 in Algorithm 1. This
algorithm differs from [7] in that we set the value of S[i, j] as a random value
within the range [−ej , ej ] instead of setting it zero when the ej is less than λ.
By doing so, we can prevent the over-optimizing problem of ||S||2,1 and its influ-
ence on the autoencoder performance. Processed by the robust autoencoder, the
original feature is transformed into an M-dimensional feature vector.

Algorithm 1. Random Proximal Method
Input: S ∈ Rmxn, λ

for j in 1 to n do

ej = (
∑m

i=1 |S[i, j]|2)1/2
if ej > λ then

for i in 1 to m do
S[i, j] = S[i, j] − λ

S[i,j]
ej

end for
else

for i in 1 to m do
S[i, j] = Random[−ej , ej ]

end for
end if

end for
Output: S

2.3 Generative Convolutional Neural Network Based Regression
Model

In recent years, deep learning has been proven to achieve promising perfor-
mance in various domains such as twitter classification [5], rating prediction
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[1] and brain disease diagnosis [4], etc. However, the requirement for a large
amount of training data prevents deep learning networks from being applied
into many real problems. In this regard, we propose a generative convolutional
neural networks based regression model inspired by the generative adversarial
network (GAN) [8]. Instead of contesting between generator and discriminator in
GAN, our model utilizes a generator to generate artificial samples and combine
them with real samples to co-train the entire network to solve the limited train-
ing samples problem. As shown in Fig. 1, our regression model consists of three
components: artificial feature generator (G1), artificial label generator (G2) and
discriminator (D).

Artificial Feature Generator G1. The artificial feature generator G1 works
as follows. Firstly, we initialize Nseed seed vectors with Lseed length where
each vector point is generated randomly from the range of (0, 1). Then, the seed
vectors are fed into the two fully-connection layers (the neurons in each layer
are N1 and M). We apply Leaky Relu activation function on the dot product
results generated from each layer.

Via the two fully connected layers, the random seed vector will be trans-
formed into an M-dimensional artificial feature vector (with the same length as
the real transformed feature vector from the robust auto-encoder).

Artificial Label Generator G2. We design an artificial label generator G2
to assign labels for the artificial features generated from G1. As the artificial
feature vector and real transformed feature vector share the same dimension, we
apply the weighted K nearest neighbors regression to label the artificial samples
using the real training samples. The distance between artificial samples and real
samples are calculated as their Euclidean distance, as described in Eq. 3, where
Dij denotes the distance between ith artificial sample and jth real sample, M
denotes the length of feature, Fik denotes kth feature value of ith artificial sample,
and Fjk denotes kth feature value of jth real sample.

Dij =
M∑

k=1

(Fik − Fjk)2

M
(3)

Then, we apply weighted knn regression to calculate the labels for artificial
samples as follows:

Ati =

∑K
j=1 Dij ∗ Lj
∑K

j=1 Dij

(4)

where Ati denotes the generated label of the ith artificial feature; K denotes the
top K nearest neighbors to the ith artificial feature; Dij denotes the distance
between ith artificial sample and jth nearest real sample; Lj denotes the label
value of jth nearest real sample
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Discriminator. The discriminator is a one-dimensional convolutional neural
network (1DCNN) based regression network where the artificial samples feed in.
It consists of four layers: one convolutional layer, one max pooling layer, and
two fully-connected layers. The convolutional layer in discriminator takes a set
of Fn independent filters and slides them over the whole feature vector. Along
the way, the dot product is taken between the filters and chunks of the input
features. Filters are used to generate the feature vectors in each filter length. The
same padding is chosen for the convolutional layer in order to keep the same size
of output as input. In this way, the feature vector is projected into a stack of
feature maps (vector maps in our work). Followed by the convolutional layer, we
add one max-pooling layer. The convolved and max-pooled feature vectors will
be unfolded and fed into two fully-connected layers (the neurons in each layer
are N2 and 1) applied for the high-level reasoning. Finally, the initial feature
vector is transformed and projected into one-dimensional value via the second
fully connected layer. The one-dimensional value generated from the final layer
is the predictive label. The objective of our model is to predict the label as
a continuous value instead of a class, so the commonly used cross entropy loss
function should be modified. As there are two types of samples (artificial samples
and real samples) in our model, we define two loss functions used in our model
L1 and L2, where L1 represents the mean square rrror of artificial generated
samples, and L2 represents the mean square error of real samples. Additionally,
a multiplying factor μ(0-1) is used in L1 to tune the weight between two loss
functions.

Network Training. In our model, only feature generator (G1) and discrimina-
tor should be trained. The feature generator G1 and discriminator are trained
via back-propagation based on the Adam optimizer. As we have two loss func-
tions (L1 and L2) from real samples and artificial samples, the discriminator is
trained iteratively by them to achieve a satisfactory prediction performance. In
comparison, the feature generator G1 is trained only with artificial samples (L1).
The G1 generator evolves subsequently following the discriminator using L1 and
updates its parameters via back-propagation to produce highly realistic artificial
features. It is notable that the evolution of generator G1 will also improve the
training effect of the discriminator.

By optimizing the two loss functions, feature generator G1 learns how to
generate high-quality artificial features similar to the real samples, and the dis-
criminator learns to predict the final labels accurately.

3 Experiment

3.1 Dataset

Dataset. We choose two datasets to evaluate our model. One is the IMDB
dataset1, where movie attributes and plot information are obtained from the
1 https://www.kaggle.com/tmdb/tmdb-movie-metadata.

https://www.kaggle.com/tmdb/tmdb-movie-metadata
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IMDB dataset in Kaggle and the IMDB website, respectively. We keep among
all movies 1, 471 US movies released after 2003 to ensure each has some plot
descriptions and the history ratings and box office of directors and actors. Each
movie record contains attributes including facebook likes of directors and cast,
genres, country, MPAA rating2, release date, budgets of the movie, box office
records of directors and actors and plot latent topics. All the historical features
of samples in our dataset are only extracted from the previous movies whose
release dates are earlier than the samples. By doing so, we can avoid using any
‘future information’ in our dataset. The movies are then divided into two part:
training samples (1219 movies released between 2003–2013) and testing samples
(252 movies released after 2013).

The second dataset is the American community crime rate dataset3. This
dataset contains various attributes of each community such as the percent of the
population considered urban, the median family income, per capita number of
police officers, etc. These attributes are used to predict the per capita violent
crime for each community. Among the total 1994 samples, we use 1000 as training
samples and keep the remaining 994 as testing samples.

Table 1. Mean absolute error of each approach on IMDB and Community Crime
datasets under different percentage of training samples; MAE = Mean Absolute Error

Datasets IMDB Community crime

Experimental methods MAE (50%) MAE (75%) MAE (100%) MAE (50%) MAE (75%) MAE (100%)

RF Regressor 0.914 0.88 0.87 0.104 0.099 0.095

Gradientboosting 0.89 0.872 0.87 0.109 0.103 0.10

Adaboosting 0.921 0.91 0.9 0.1369 0.133 0.121

Xgboosting 0.945 0.937 0.935 0.109 0.105 0.103

SVR 0.882 0.865 0.86 0.126 0.125 0.123

Kernel-1 [9] 0.86 0.841 0.83 0.121 0.117 0.111

Hypergrah Regression [11] 0.86 0.83 0.822 0.110 0.101 0.098

Deep Belief Network 0.78 0.77 0.76 0.112 0.105 0.103

MLP 0.801 0.765 0.751 0.101 0.097 0.095

1DCNN 0.812 0.763 0.744 0.096 0.095 0.091

1DCNN-SVR [2] 0.788 0.754 0.738 0.101 0.096 0.093

Ours 0.712 0.701 0.68 0.093 0.090 0.089

3.2 Comparison Methods

We set the default settings of our model as following: M = 55, Nseed = 500,
Lseed = 200, K = 8, μ = 1.0 for IMDB; M = 90, Nseed = 200, Lseed =
60, K = 5, μ = 0.9 for Crime. We also tune the optimal parameters of each
comparison method respectively for the two datasets for a fair comparison.
2 https://en.wikipedia.org/wiki/Motion Picture Association of America film rating

system\#MPAA film ratings.
3 https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime.

https://en.wikipedia.org/wiki/Motion_Picture_Association_of_America_film_rating_system\#MPAA_film_ratings
https://en.wikipedia.org/wiki/Motion_Picture_Association_of_America_film_rating_system\#MPAA_film_ratings
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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Table 2. Hit ratio of each approach on IMDB and Community Crime datasets under
different threshold θ (3%, 5%, 8%, 10%, 15%);

Datasets IMDB Community crime

Experimental methods 3% 5% 8% 10% 15% 3% 5% 8% 10% 15%

RF Regressor 0.18 0.27 0.416 0.535 0.738 0.034 0.062 0.095 0.129 0.181

Gradientboosting 0.19 0.29 0.452 0.523 0.742 0.04 0.063 0.090 0.115 0.183

Adaboosting 0.11 0.23 0.388 0.46 0.66 0.031 0.043 0.071 0.089 0.135

Xgboosting 0.16 0.277 0.42 0.53 0.789 0.026 0.054 0.088 0.111 0.176

SVR 0.18 0.29 0.468 0.567 0.785 0.033 0.056 0.075 0.09 0.141

Kernel-1 [9] 0.16 0.26 0.44 0.531 0.747 0.025 0.041 0.070 0.078 0.138

Hypergrah Regression [11] 0.179 0.288 0.463 0.555 0.779 0.032 0.049 0.084 0.092 0.151

Deep Belief Network 0.177 0.30 0.471 0.588 0.788 0.031 0.057 0.098 0.130 0.166

MLP 0.183 0.285 0.489 0.544 0.781 0.044 0.058 0.101 0.141 0.183

1DCNN 0.202 0.293 0.468 0.561 0.787 0.050 0.07 0.111 0.148 0.20

1DCNN-SVR 0.202 0.30 0.471 0.565 0.791 0.048 0.065 0.107 0.144 0.194

Ours 0.22 0.332 0.508 0.611 0.821 0.068 0.084 0.141 0.177 0.235

– Random Forest Regressor (RF) with 200 estimators (IMDB); 20 estimators
(Crime).

– Gradientboosting (Gra) with 30 estimators (IMDB); 25 estimators (Crime).
– Adaboosting (Ada) with base estimator as the decision tree regressor, 50 esti-

mators (IMDB); 50 estimators (Crime)
– Xgboosting (Xg)with 100 estimators (IMDB); 30 estimators (Crime).
– Support Vector Regressor (SVR) with penalty parameter as 0.8 (IMDB);

penalty parameter as 1.0 (Crime).
– Kernel-1 Regression method is a kernel-based approach with an improved

version of KNN regression [9]. In our paper, we utilize the recommended
parameter settings in the paper for both two datasets.

– Hypergraph Regression is a regression version of the hypergraph classifica-
tion [11]. We define a hyperedge by each sample and its K nearest neighbors
to form a hypergraph. The weight of each hyperedge is calculated using the
mean similarities of pairs in this hyperedge. The predicted label of ith sample
is calculated using the weighted average ratings of the samples belonging to
the same hyperedge with ith sample. We set K as 10 and 8 for IMDB and
Crime;

– Multiple Layer Perceptron (MLP) with three layers (100, 300, 1 neurons in
each layer) (IMDB); with three layers (200, 350, 1 neurons in each layer)
(Crime).

– Deep Belief Network Regression A deep belief regression network is proposed
where deep belief network is placed at the bottom for unsupervised feature
learning with a linear regression layer at the top of supervised prediction. We
set three hidden layers (110, 200, 330 neurons in each layer) (IMDB); with
three hidden layers (110, 300, 200 neurons in each layer) (Crime)

– One Dimensional Convolutional Neural Network (1DCNN) with one convo-
lutional layer (5 filters), one max pooling layer and two fully connected layer
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(300 and 1) for IMDB; one convolutional layer (4 filters), one max pooling
layer and two fully connected layer (250, 1) for Crime.

– One Dimensional Convolutional Neural Network with Support Vector Regres-
sor (1DCNN-SVR) is the regression version of 1DCNN which utilizes the
support vector regressor to replace the output layer of 1DCNN. The param-
eters are set same as the 1DCNN with support vector regressor.

Fig. 2. Mean absolute value (MAE) comparison between our model and discriminator
(excluding the artificial generator G1, G2) in training process for IMDB (a) and crime
(b)

Fig. 3. Mean absolute value (MAE) comparison between our original model and our
model (excluding the robust autoencoder) in training process for IMDB (a) and crime
(b)

3.3 Comparison Results

Since the aim of our model is to accurately predict labels of new samples in the
regression problem, we apply different percentages (50%, 75%, 100%) of training
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data to train all the models, predict the rating values of testing samples for both
the two datasets and evaluate the performance of different approaches by the
mean absolute error (MAE). The holdout results (shown in Table 1) show our
model achieves the best performance for both the two datasets with MAE (0.712,
0.701, 0.68) and MAE (0.093, 0.090, 0.089), under 50%, 75% and 100% training
samples. 1DCNN-SVR performs the best among the all the compared methods
in the IMDB task while the 1DCNN achieves the best performance in Crime
task. Compared to the other models, our model achieves a 9.6%, 7.02%, 7.85%
improvement in the IMDB task and 6.9%, 6.25% and 4.3% in the Crime task,
respectively.

Besides the mean absolute error (MAE), we define a new measure for the
comparison. We first calculate the absolute percentage error APE of each testing
sample. Then we set a threshold θ and count number of the testing samples with
a smaller APE than θ. We call it ‘hit number’ and calculate the ratio (called
‘hit ratio’) between ‘hit number’ and the total number of testing samples. We
show the ‘hit ratio’ of all the approaches under five different θ values (3%, 5%,
8%, 10%, 15%) for both two datasets. The results (shown in Table 2) show our
model achieves an average improvement of 3.26% and 2.94% in IMDB and Crime,
respectively.

4 Ablation Study

In addition, we carry out the ablation study to examine the effectiveness of the
components in our model. We conduct comparative experiments by excluding
artificial generator and robust autoencoder from our model on two tasks dur-
ing training process. The MAE of training processes is shown in Figs. 2 and 3,
respectively. We can observe that the two components indeed improve the train-
ing process by influencing the final MAE performance, while artificial generator
has more impact on the performance (approximately 7.6% and 3.4% improve-
ment in IMDB and Crime respectively) than robust autoencoder (approximately
4.3% and 3.1% improvement in IMDB and Crime respectively).

5 Conclusions

In this paper, we propose an integrated model for general regression tasks. Our
model leverages a robust auto-encoder in combination with a generative convolu-
tional neural network for feature transformation and numeric prediction. Owing
to artificial sample generator (G1, G2), our model is capable of handling the
numeric prediction tasks with a small size of training samples, which are orig-
inally insufficient for traditional deep learning methods. Extensive experiments
on two real-world datasets have shown the superior performances of our model
over a series of existing advanced techniques.
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