arXiv:1809.02681v1 [cs.CV] 7 Sep 2018

Open Set Adversarial Examples

Zhedong Zheng!, Liang Zheng?, Zhilan Hu?, Yi Yang!
LCALI, University of Technology Sydney
2 Australian National University ® Huawei Technologies

{zdzhengl2, liangzheng06,yee.i.yang}@gmail.com ,

Abstract

Adversarial examples in recent works target at closed set
recognition systems, in which the training and testing classes
are identical. In real-world scenarios, however, the testing
classes may have limited, if any, overlap with the training
classes, a problem named open set recognition. To our
knowledge, the community does not have a specific design
of adversarial examples targeting at this practical setting.
Arguably, the new setting compromises traditional closed set
attack methods in two aspects. First, closed set attack meth-
ods are based on classification and target at classification as
well, but the open set problem suggests a different task, i.e.,
retrieval. It is undesirable that the generation mechanism of
closed set recognition is different from the aim of open set
recognition. Second, given that the query image is usually
of an unseen class, predicting its category from the training
classes is not reasonable, which leads to an inferior adver-
sarial gradient. In this work, we view open set recognition
as a retrieval task and propose a new approach, Opposite-
Direction Feature Attack (ODFA), to generate adversarial
examples / queries. When using an attacked example as
query, we aim that the true matches be ranked as low as
possible. In addressing the two limitations of closed set
attack methods, ODFA directly works on the features for
retrieval. The idea is to push away the feature of the adver-
sarial query in the opposite direction of the original feature.
Albeit simple, ODFA leads to a larger drop in Recall@K
and mAP than the close-set attack methods on two open set
recognition datasets, i.e., Market-1501 and CUB-200-2011.
We also demonstrate that the attack performance of ODFA is
not evidently superior to the state-of-the-art methods under
closed set recognition (Cifar-10), suggesting its specificity
for open set problems.

1. Introduction

Most existing methods on generating adversarial exam-
ples focus on the closed set setting, where the source and tar-
get domains share exactly the same classes [30, (7} 13} 18}, 14]].
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However, in a more realistic scenario, we also face open set
problems where the target has limited overlap or even no
overlap with the source [15, |1} 5]]. This new setting suggests
a retrieval procedure for the target domain. Given a query
image of an arbitrary class and a large database of images,
we compute the similarity between the query and database
images and rank the images according to their similarity
to the query. Under this context, we consider the task of
generating adversarial examples out of the query images to
fool the retrieval system.

When considering open set recognition, existing closed
set attack methods encounter two problems. First, closed
set methods attack class predictions to generate adversarial
examples, but this strategy is inconsistent with the testing
procedure of open set recognition, a retrieval problem (Fig.
[[[b)). In fact, open set recognition and closed set recognition
are different during testing. The latter is by nature a clas-
sification problem, because the testing images fall into the
training classes. The former, however, is more of a retrieval
problem, in which given a query of an unseen class, we aim
to retrieve its relevant images from the testing set. Therefore,
attacking on the classification layer does not directly affect
the retrieval task, which relies on the intermediate deep fea-
tures. Second, closed set methods attack on the classification
prediction, which usually does not contain the query class
in the open set problem (Fig. [T{a)). Given a query image of
an unseen class, the traditional attack methods may lead to
inferior adversarial gradient, which compromises the attack
effectiveness.

Given the potential problems of closed set approaches,
this work focuses on generating adversarial examples tai-
lored for open set recognition, which is viewed as a retrieval
problem. To this end, we propose to attack query images.
For a successful adversarial attack on a query, we aim that all
the true matches be ranked as low as possible in the obtained
rank list. To our knowledge, no well-founded method has
been proposed for attacking open set recognition systems,
and we fill this gap in this work. Under this new setting,
an alternative solution to attacking the query image consists
in attacking the database (candidate image pool). However,
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Figure 1. Comparison between closed set and open set recognition. (a) Problem definition. Closed set recognition, or image classification,
usually indicates the same classes in the source and target set. For open set recognition, the target set has very few or even no overlapping
classes with the source. (b) Existing closed set attack method employs classification adversaries, which is consistent with its target testing
procedure, but is inconsistent with the testing procedure under open set recognition. Due to their different testing modes, close set attack

methods are compromised at the open-set problem.

the database can be of large scale with millions of images.
Attacking a large number of database images is very time-
consuming. So in this paper we focus on crafting adversarial
query images. Without knowledge of the database, we report
that adversarial queries alone are sufficient to fool the open
set system and that the cost of generating an adversarial
query is relatively cheap.

Under the open set context, we propose a new ap-
proach for adversarial example generation, named Opposite-
Direction Feature Attack (ODFA). ODFA works on the fea-
ture level, which is based on the target domain testing pro-
cedure, i.e., similarity computation between the query and
database images using their respective features. Our key
idea is to explicitly push away the feature of the adversar-
ial example from its original feature. Specifically, we first
define the opposite-direction feature, which, as its name im-
plies, points at the opposite direction from the feature of the
original query. During adversarial attack, We then enforce
the query feature to move towards the opposite-direction
feature. Due to the revised direction the feature vector of the
adversarial query, the similarity between the database true
matches and adversarial query can be very low. Therefore
when using the adversarial query, the retrieval model is prone
to treat all the true matches as outliers.

In experiment, we show that the proposed ODFA method
leads to a large accuracy drop on two open set recognition
/ retrieval datasets, i.e., Market-1501 and CUB-200-2011.
Under various levels of image perturbation, ODFA outper-
forms state-of-the-art closed set attack methods such as fast-
gradient sign method [7]], basic iterative method [[13]] and
iterative least-likely class method [13]]. Moreover, when we
adopt ODFA to closed set recognition systems like Cifar-10,
its attack effect does not show clear superiority to the same
set of methods [7, [13]. This indicates that the specificity
of our method on open set problems. Additionally, we ob-
serve that ODFA has good transferability under the open
set scenario. That is, the adversarial queries crafted for one

retrieval model remain adversarial for another model in the
open set scenario. This observation is consistent with previ-
ous findings under the closed set settings [30} 23\ [17}(19].

2. Related Work

Open Set Recognition. Open set recognition is a chal-
lenging task initially proposed in face recognition task [[15]],
where test faces have limited overlap IDs with the training
faces. It demands a robust system with good generalizabil-
ity. In this work, we view the open set recognition as a
retrieval task. In some early works [[14} 16, 15, 2]], the inter-
mediate semantic representation is usually learned from the
source dataset and applied to the target dataset. Recently
the progress in this field has been due to two factors: the
availability of large-scale source set and the learned represen-
tation using the deep neural network. Most state-of-the-art
methods apply Convolutional Neural Network (CNN) to ex-
tract the visual feature and rank the images according to
the feature similarity [24, 31}, 37]. Despite the impressive
performance, no prior works have explored the robustness
of the open set system. In this paper, we do not intend to
achieve the state-of-the-art accuracy. We train the baseline
CNN on several datasets, which yields competitive results
and then attack these models with adversarial queries.

Adversarial Sample. Szegedy et al. [30]] first show that
the adversarial images, while looking pretty much the same
with the original ones, can mislead the CNN model to clas-
sify them into a specific class. It raises the security problem
of the current state-of-the-art models [26, 4] and also pro-
vides us more insights of the CNN mechanism [7]. Given an
input image, gradient-based methods need to know the gra-
dient of the applied model. One of the earliest works is the
fast-gradient sign method [7]], which generates adversarial
examples in one step. Some works extend [7] to iteratively
updating the adversarial images with small step sizes, i.e.,
basic iterative method [13]], deep fool [18] and momentum



iterative method [3]]. Compared with the fast-gradient sign
method, the perturbation generated with iterative methods is
smaller. The visual quality of adversarial samples is close
to the original images. On the other hand, another line of
methods relies on searching the input space. Jacobian-based
saliency map attack greedily modifies the input instance [23]].
In [20], Narodytska et al. further shows that single pixel
perturbation, which may be out of the valid image range, can
successfully lead to misclassification on small-scale images.
They also extend the method to large-scale images by local
greedy searching.

The closest inspiring work is the iterative least-likely
class method [13]], which makes the classification model
output interesting mistakes, e.g., classifying an image of the
class vehicle into the class cat. They achieve this effect by
constraining to increase the predicted probability of the least-
likely class. This work adopts a similar spirit. In order to
fool the retrieval model into assigning the true matches with
possibly low ranks, we constrain to increase the similarity
of the query feature vector with a vector of an opposite
direction in the feature space. Here we emphasize that our
work is different from [13] in two aspects. First, Kurakin
et al. [13] focus on closed set recognition and rely on class
predictions to obtain the least-likely class. In the open set
setting, the classification model faces images from unseen
classes. The inaccurate class prediction may compromise
the iterative least-likely class method. In this respect, the
proposed method directly works on the intermediate feature
level and alleviates this problem. Second, Kurakin er al.
[13]] increase the probability of the least-likely class but do
not decrease the probability of the most-likely class. So
the true match images / classes may be still in the top-K
prediction. In comparison, our method explicitly constrains
to decrease the similarity of the adversarial image and its
original image in the feature space, so that the similarity
between the adversarial image and original true-matches
also drops. The model is prone to rank all the true-matches
out of the top-K.

3. Methodology
3.1. Notations

We use X to denote the original query image. We extract
its visual feature fx = F(X), where F(-) denotes some
nonlinear function, such as CNN, which maps an image
to a feature vector. For some retrieval models [37, 28], a
classifier C' is trained which maps a feature f to a class
probability vector p = C(fx). p is a K-dim score vec-
tor, where K denotes the number of classes in the source
set A. For two images X,, and X,,, we denote their co-
sine similarity as D(X,,, X,,) = Hfif:llz X Hffg:llz , where
[| - ||2 is the L2-norm, and D(X,,, X,,) € [—1,1]. More-
over, We denote the objective function and the gradient as

J(X) and VJ(X), respectively. In order to keep each pixel
of the adversarial sample X’ within a valid value range,
we follow the practice in [13]. Specifically, we clip the
pixels whose values fall out of the valid range, and re-
move the distortions which are larger a hyper-parameter
e Clipy {X'} = min{255, X + ¢, max{0, X — ¢, X'}}.
Since a large € will make the perturbation perceptible to the
human, we set the € € {2,4, 8,12, 16} in this work.

3.2. Victim Model

In this section, we introduce the victim model to be at-
tacked by the proposed ODFA method. Given an annotated
source dataset A, the victim model is trained to learn a map-
ping function from raw data to the semantic space. Samples
with similar content will be mapped closely. The learned
model with good generalization is able to project an unseen
query to the neighborhood of the true match images in the
feature space. We assume that the adversaries have access
to the victim model’s parameters and architecture. In this
work, we deploy the widely used CNN model based on the
cross-entropy loss as the victim model for retrieval [37}28]].
The model aims to predict a training sample into one of the
pre-defined classes. During testing, given an image (either
query or database image), we extract the intermediate feature
f from the CNN model, which, in ResNet-50 [8]], denotes
the 2,048-dim Pool5 output. In this victim model, a linear
classifier is used to predict the class probability: p = W f+0,
where W and b are learned parameters.

3.3. Adoption of Classification Attack in Open Set
Recognition

Previous works in adversarial example generation usually
attack the class prediction layer [7, [13]. In this manner,
when the input image is changed, the activation of the fully-
connected (FC) layer is also implicitly impacted. Although
these methods do not directly attack the retrieval problem, we
can still use the impacted intermediate features for retrieval.
Therefore, in the open set scenario, we adopt these existing
methods to generate the adversarial queries for retrieval.

Specifically, for the fast-gradient sign method [7] and
basic iterative method [13], we deploy the label pre-
dicted by the baseline model as the pseudo label 4,4, =
arg max, {p(y|X)}. To attack the model, the objective is
to decrease the probability p(Ymaz) so that the adversarial
query X' is classified into the pseudo class. The objective is
written as,

argXIInin J(X") = log(p(Ymaz))- (1)
For the iterative least-likely class method [13]], we calculate
the least-likely class Y, = argmin, { p(y|X )} The at-
tack objective is to increase the probability p(ymin) so that
the input is classified as the least-likely class. The objective



is,

aranllax J(X") = 10g(p(Ymin))- ()
To generate adversarial samples, the weight of the model
is fixed and we only update the input. For the fast-gradient
sign method, X’ = X + esign(V.J(X)). For the iter-
ative methods, i.e., basic iterative method and iterative
least-likely class method, we initial X* with X: X(’) = X,
and then update the adversarial samples N times: X} =
X + asign(VJ(Xy_,)), where « is a relatively small
hyper-parameter. Following [13]], we set @« = 1 and the
number of the iterations N = min(e + 4,1.25 x €). The
clip function Clipx {X'} is also added to keep pixels of
the adversarial query in valid range.

Discussion. How comes that closed set attack methods
work for retrieval? The retrieval system needs a projec-
tion function, mapping images to their feature space, which
should be highly relevant to the semantics of the images.
Closed set attack methods make changes to the class pre-
diction p of the query. According to the prediction function
p = W f + b (note that W and b is fixed), the intermediate
feature f is also changed. Therefore, using the closed set
methods, the similarity between the adversarial example and
the original image is implicitly decreases in the feature space.
So the similarity between the adversarial example and its
true matches is also implicitly decreased.

What are the disadvantages of the classification attack
for retrieval? There are two main disadvantages. First, the
source set A and the query set () usually do not contain
the same set of classes. The predefined training classes in
A cannot well represent the semantics of the unseen query
in Q. So the most likely label may not really be the most-
likely one, and the least-likely label may not really be the
least-likely one, either. Second, the above-mentioned three
classification attack methods [[13}[7] work on the prediction
score and do not explicitly change the visual feature. So they
are limited in their adversarial performance on the retrieval
system.

3.4. Opposite-Direction Feature Attack

To overcome the above disadvantages of the closed set
attack methods, we propose a new method named opposite-
direction feature attack (ODFA), which directly works on
the intermediate feature without requiring to attack class pre-
dictions. Specifically, given a query image X, the retrieval
model extracts the original feature fx. We assume that the
similarity score D(X, X ;) between query X and its true
match X, is relatively high. To attack the retrieval model,
our target is to minimize the similarity score D(X’, X,;)
between the adversarial query X’ and its true match image
Xg¢. To achieve this goal, we define the loss objective as,

fx fx
i

argmin J(X') =
X x|

). 3)

This loss function aims to push the feature fx/ of the ad-
versarial image to the opposite side of the original query
feature fx. We name — fx as the opposite-direction fea-

’ _Ixr i — X
ture. When J(X') — 0, T Will be close to — 5,

D(X,X') — —1. The similarity score between the adver-
sarial query and the true match images is,
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Because D(X, X ;) is relatively high, we can deduce that
D(X', X4:) is low. To generate an adversarial query X', we
adopt an iterative method to update X': X = X, X}, =
X + asign(VJ(X}_;). The clip function is also added to
keep pixels in the adversarial sample within valid range.
Discussion. We provide a 2D geometric interpretation to
illustrate the difference of the gradient direction between the
proposed method and previous ones (Fig. [2). The classifi-
cation attacks use the class prediction p = W f + b, where
W is the learned weight and b is the bias term. The weight
W = {W1,Wa,...,Wgk} contains K weights for the K
classes. We use W, 4. to denote the weight of most-likely
class ymq and Wiy, to denote the weight of the least-likely
class y,in. For the fast-gradient sign method and the basic
iterative method, the gradient on feature f equals to,

oJ(X' oJ (X’
( ) - _W'maa; X # (5)
Ofx Op(Ymaz)
Note that B‘Z‘(]y(:;i) is a positive constant. So the direction

of the gradient is the direction of —W,,,. For the iterative
least-likely class method, the gradient equals to,
oJ(X") aJ(X")

- min X 37 -
an’ ap(ymin)

The gradient has the same direction with W,,;,,. For the
unseen images of new classes, i.e., query images, —W,, 4
and W,,,;,, are not accurate to describe the adversary of the
original query, so the adversarial attack effect is limited. In
this paper, instead of using class predictions, we directly
attack the feature. According to the Eq. [3] the gradient of
the proposed method is written as,

2J(X") Ixr N fx )
Ofx: fxrllz I fxll2”

where fx is the feature of the original query image. In Fig.
@] (c), we draw the gradient direction of the first iteration.

. . L 8J(XY) _ 4 fx
In the first iteration, fx; = fx. oy 4fo||z' Our

method leads the feature to the opposite direction of the
original feature, so the similarity of true matches drops more
quickly.

(6)

=-2x(

)
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Figure 2. Geometric interpretation of (a) the fast-gradient sign method [[7] and the basic iterative method [13], (b) the iterative least-likely
class method [13]], and (c) the proposed ODFA. The red arrows represent the direction of the gradient on the original feature f. W, a2z
denotes the weight of most-likely class yya. and Wi, denotes the weight of the least-likely class ¥mqn. The proposed method does not
rely on the classification prediction scores and deploys a straightforward opposite gradient direction in attacking the retrieval features.

3.5. Implementation Details of the Victim Model

The victim model is trained by stochastic gradient descent
(SGD) with momentum fixed to 0.9 for weight update. For
image retrieval, we follow the practice in [28L/10L38] to fine-
tune the ResNet-50 [8] pre-trained on ImageNet [25]] as the
baseline model. During training, the pedestrian images in
Market-1501 are resized to 256 x 128. It is a strong baseline,
which even can arrive higher accuracy than the reported
results in some CVPR’18 papers [35 9]. The images in
CUB-200-2011 are first resized with its shorter side = 256,
and we then apply a 256 x 256 random crop to the images.
We adopt a mini-batch size of 32 for training the two datasets.
The learning rate is 0.01 for the first 40 epochs and decay to
0.001 for the last 20 epochs. For image classification, our
implementation employs the ResNet with 20 layers for the
Cifar-10 dataset [8]]. The size of the input image is 32 x 32
and we employ horizontal flipping for data augmentation.
The training policy follows the practice in [8,138]]. Our source
code will be available online. The implementation is based
on Pytorch package.

4. Experiment
4.1. Datasets

Market-1501 is a large-scale pedestrian retrieval dataset
[36]. This type of retrieval task is also known as person
re-identification (re-ID), which aims at spotting a person of
interest in other cameras. The author collects images under
the six different cameras in a university campus. There are
32,668 detected images of 1,501 identities in total. Follow-
ing the standard train / test split, we use 12,936 images of 751
identities as the source set and the rest 19,732 images of an-

other 750 identities as the target set. There is no overlapping
class (identity) between the source and target sets.

CUB-200-2011 consists of 11,788 images of 200 bird
species, which focuses on fine-grained recognition [32]]. Fol-
lowing [27], we use the CUB-200-2011 dataset for fine-
grained image retrieval. The first 100 classes (5,864 images)
are used as source set and we evaluate the model on the rest
100 classes (5,924 images).

Cifar-10 is a widely-used image recognition dataset, con-
taining 60,000 images with the size 32 x 32 of 10 classes
[12]. There are 50,000 training images and 10,000 test im-
ages. We conduct the closed set recognition evaluation on
this dataset.

Evaluation Metric With the limited image perturbation,
we compare the methods by the drop of the accuracy. The
lower accuracy is the better. For open set recognition, we use
two evaluation metrics, i.e., Recall@K and mean average
precision (mAP). Recall @K is the probability that the right
match appears in the top K of the rank list. Given a ranking
list, the average precision (AP) calculates the space under
the recall-precision curve. mAP is the mean of the average
precision of all queries. For closed set recognition, we use
the Top-1 and Top-5 accuracy. Top-K is the probability that
the right class appears in the top-K predicted classes.

4.2, Effectiveness of ODFA in Open Set Recognition
/ Retrieval

We first demonstrate the superior attack performance of
ODFA in open set recognition / retrieval. Recall@1, Re-
call@10 and mAP on Market-1501 using clean and adver-
sarial queries are summarized in Fig. [3] The victim model
using clean queries arrives at Recall@1 = 88.56% and mAP
= 70.28%, which is consistent with the numbers reported
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Figure 3. Recall@1 (%), Recall@10 (%) and mAP (%) of the victim model on Market-1501 under the attack by different methods and
different €. “Clean” denotes the result obtained by using the original query without any attack. The victim model using clean queries arrives

at Recall@1 = 88.56%, Recall@10 = 97.03% and mAP = 70.28%.
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Figure 4. Recall@1 (%), Recall@10 (%) and mAP (%) of the victim model on CUB-200-2011 under the attack by different methods and
different €. “Clean” denotes the result by inputting the original query without any attack. The victim model using clean queries arrives at

Recall@1 = 44.53%, Recall@10 = 82.24% and mAP = 19.51%.

in [37, 138]]. As mentioned, the closed set attack method
changes the semantic prediction, which implicitly changes
the retrieval features. When e = 8, the adversarial images
generated by the three closed set attacks lead to more than
50% rank-1 error. When € = 16, the iterative least-likely
class method even yields a Recall@1 = 4.87%. Nevertheless,
these methods are not very effective to move true matches
out of the top-10 rank. Although Recall@ 10 continues to
decrease with when increasing e, the best method, i.e., the it-
erative least-likely class method, only achieves a Recall@10
of 14.31%. In comparison, the proposed ODFA achieves a
lower Recall@1 and Recall@10 when € = 8. This can be at-
tributed to the opposite gradient direction attack mechanism.
Since the distance between the feature of the adversarial
query and that of the original query is much larger, the true
matches, which are close to the original query, are thus
far from the adversarial query in the feature space. As we
increase the € to 16, the victim model yields Recall@1 =
0.62%, Recall@10=2.88%, mAP = 0.72%, which is lower
than all the closed set attack methods.

As shown in previous works [30} 23} 21, 22} [17} [19], the
adversarial images can be transferred to other models under
closed set recognition, because the models learn a similar de-
cision boundary. In this work, we also conduct an experiment
to test the transferability of the open set adversarial queries.
We train a stronger victim model with DenseNet-121 [[11]
for person retrieval, which arrives at Recall@1 = 89.96%
and mAP = 73.39% using “clean” images. The adversarial
queries are independently generated by another ResNet-50
model (¢ = 16). The experiment shows that adversarial
samples also compromise the performance of DenseNet-121:
Recall@1 = 10.24% and mAP = 7.88%. The Recall@10
accuracy drop from 97.48% to 25.71%.

We visualize the retrieval results with the original and
adversarial queries in Table[T} Since we employ an iterative
policy with small steps, the adversarial queries generated by
our method are visually close to the original query. In these
examples, the ranking results obtained by the original queries
are good. However, when using the adversarial queries, the
top-10 ranked images are all false matches with a different
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Table 1. Visual examples of the original queries and the adversarial queries generated by our method. Two original queries and their top-10
retrieval results are shown in the first and third row. The retrieval results by two adversarial queries (¢ = 16) are shown in the second and

fourth row.

appearance with the adversarial query. The adversarial query
successfully makes the victim model produce high ranks
to the false match images. For the query person in yellow
(second row), the adversarial query retrieves persons with
light-colored shorts. For the query in red (fourth row), the
adversarial query retrieves not only pedestrians in purple but
also some background distractors.

The experiment on fine-grained image retrieval indicates
similar observation (Fig. E) First, due to the subtle differ-
ences among the fine-grained classes, the baseline vicitm
model does not arrive a relatively high performance: Re-
call@1 =44.53%, Recall@10 = 82.24% and mAP = 19.51%
using clean queries. Using ODFA, the retrieval accuracy is
made even worse. When ¢ = 16, we arrive at Recall@1
=1.81%, Recall@10 = 8.76% and mAP = 1.72%. Second,
compared with the three closed set methods, our method
achieves larger accuracy drop. Since there are no overlap-
ping bird classes in the source and target sets, the impact of
the classification attack is limited. When ¢ = 16, the best
closed set method, i.e., fast-gradient sign method arrives at
Recall@1=8.74%, Recall@10 = 31.79% and mAP = 4.88%.
This accuracy drop is smaller than the drop of the proposed
method.

4.3. Performance of ODFA in Closed Set Recogni-
tion

After confirming its attack performance in open set recog-
nition, we further test ODFA in closed set recognition. Re-
sults are shown in Fig. [5] We can observe that our attack
does not achieve the largest drop of top-1 accuracy when
€ is small. This can be explained by the adversarial tar-
get. The iterative least-likely class method aims to make the
model mis-classify the adversarial example into the least-

likely class. In comparison, our method does not increase
the probability of a specific class. Although the confidence
score of the correct class decreases, there are no competi-
tors to replace the correct top-1 class which already has a
high confidence score. Nevertheless, as for top-5 misclas-
sification, the proposed method converges to a lower point
than other methods. Since the value of the bias term b for 10
classes is close, we ignore the impact of b. When our method
converges, the original top-1 prediction p = W f become
the lowest probability p’ = —W f. So the correct class is
moved out of the top-5 classes quickly. When ¢ = 16, the
adversarial images generated by our method compromise the
top-5 accuracy from 99.76% to 0.76%. The attacked top-1
accuracy 0.06% is also competitive to the result of iterative
least-likely class method 0.03%. In summary, the proposed
ODFA method reports competitive performance and is not
evidently superior to the competing methods as the case in
open set recognition.

4.4. Attack against the state-of-the-art models

Furthermore, we evaluated our method on some state-of-
the-art models, which arrive higher accuracy in the origi-
nal benchmark. We observe that the open-set recognition
model with good generalizability is not robust as we ex-
pected. Specifically, for person retrieval (open set recogni-
tion), we attack a recent ECCV’18 model [29]. We follow
the open-source implement inlﬂ On Market-1501, we arrive
Recall@1 = 92.70%, mAP = 77.14% using clean queries
for the victim model. As shown in Fig. |§ka,b), Recall@1
and mAP drops to 34.00% and 21.52% respectively by the
proposed ODFA. Fast-gradient sign method also arrive a rel-

Uhttps://github.com/layumi/Person_reID_baseline_pytorch
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Figure 6. Performance of attacking state-of-the-art models. (a) and (b): Recall@1 (%) and mAP(%) on Market-1501 when attacking the
victim model [29]. (c) and (d): Top-1 and Top-5 accuracy (%) on Cifar-10 when attacking WideResNet-28 [34]. We show that our attacking

method is still effective.

atively low accuracy 37.11% and 24.40%, but is still smaller
than the accuracy drop of the proposed method.

For image classification (close set recognition), we apply
a state-of-the-art model WideResNet-28 [34]]. In our re-
implementation, we arrive Top-1 accuracy 96.14% and Top-
5 accuracy 99.91% using clean queries, respectively. As
shown in Fig. |§kc,d), we have consistent observations with
the baseline victim models, i.e., competitive top-1 accuracy
drop and largest top-5 accuracy drop. Our method arrives
Top-1 accuracy 0.34% and Top-5 accuracy 1.29%.

5. Conclusion

In this paper, we 1) consider a new setting for adversarial
attack, i.e., open set recognition, and 2) propose a new attack
method named Opposite-Direction Feature Attack (ODFA).
The attack works on the intermediate feature instead of on the
class prediction. The proposed method uses the opposite gra-
dient direction to attack the retrieval feature, which directly
compromises the ranking result. On two image retrieval
datasets, i.e., Market-1501 and CUB-200-2011, compared
with the state-of-the-art closed set methods, ODFA leads to
a larger drop in ranking accuracy with limited image pertur-
bation. For closed set recognition, the attack performance

of ODFA does not clearly surpass its competitors, indicating
its specificity in open set problems. In the future, we will
investigate into applying the proposed attack to the shallow
layers and study its effect on other tasks, such as semantic
segmentation and object detection 33} [16].
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A. Appendix

In the appendix, we attach the detailed accuracy of Fig. [3
Fig. @ and Fig. [B|in Table 2], Table[3]and Table] respectively.
The quantitative result of Fig. [6]is in Table. [5|and Table[6]



€e=2 e=4 e=28 e=12 e =16
Methods Recall@1 mAP |[Recall@1 mAP [Recall@1 mAP |Recall@1 mAP |[Recall@1 mAP
Fast-Gradient 81.83 62.33166.98 47.26|38.75 25.16|19.39 12.538.49 5.74
Basic Iterative 81.06 61.76|61.19 43.02(28.12 18.60|16.27 11.09/10.87 7.77
Least-likely Class |83.94 63.93(69.63 49.17(29.90 17.93|11.73 6.83 |4.87 3.09
Ours 82.54 63.93|53.59 38.24|11.02 7.84 |2.64 2.03 |0.68 0.72

Table 2. Retrieval results on Market-1501. The baseline achieve a competitive performance Recall@1=88.56%, mAP=70.28%. We attack
the model by different methods. Low is better.

€e=2 e=4 e=28 e =12 e =16
Methods Recall@1 mAP ‘Recall@l mAP ‘Recall@l mAP‘Recall@l mAP‘Recall@l mAP
Fast-Gradient 38.42 16.62|30.93 13.06|20.93 9.03 [13.50 6.56 |8.74 4.88
Basic Iterative 37.61 16.44|26.49 12.36]13.50 7.57 1991 6.19 |8.88 5.57
Least-likely Class |41.64 17.34|34.35 14.07|18.48 7.82 [12.74 5.75 19.60 4.78
Ours 39.26 17.28(26.18 11.96(7.95 4.77 |2.97 2.51 |1.81 1.72

Table 3. Retrieval results on CUB-200-2011. The baseline achieve a competitive performance Recall@ 1=44.53%, mAP=19.51%. We attack
the model by different methods. Low is better.

€e=2 e=14 e=38 e=12 e=16
Methods Top-1 Top-5 ‘ Top-1 Top-5 ‘ Top-1 Top-5 ‘ Top-1 Top-5 ‘ Top-1 Top-5
Fast-Gradient 31.60 89.58 | 23.94 81.65 | 20.16 75.18 | 17.09 71.33 | 1495 67.55
Basic Iterative 1550 81.93 | 498 52.14 | 474 29.00 | 474 2380 | 474 21.47
Least-likely Class | 43.87 92.73 | 841  80.20 | 0.13  57.24 | 0.03  50.85 | 0.03  45.58
Ours 57.00 88.07 | 27.58 5355|181 12.62 | 0.19 2.01 |0.06 0.76

Table 4. Classification results on Cifar-10
model by different methods. Low is better.

. The baseline achieve a competitive performance Top-1=93.14%, Top-5=99.76%. We attack the

e=2 e=4 e=28 e =12 e =16
Methods Recall@1 mAP |Recall@1 mAP |Recall@1 mAP |Recall@1 mAP |Recall@1 mAP
Fast-Gradient 88.12 67.86|84.17 63.59|73.16 51.98(56.59 38.00(37.11 24.40
Basic Iterative 88.03 67.97|85.30 64.90|79.57 58.63|76.22 54.95|73.04 52.07
Least-likely Class |88.09 68.18|86.67 66.07|81.77 59.96|77.20 54.61|72.51 50.21
Ours 88.09 68.05|82.33 61.25|60.57 40.95|44.00 28.42(34.00 21.52

Table 5. Retrieval results on Market-1501. The ECCV 18 model achieve a competitive performance Recall@1=92.70%, mAP=77.14%. We
attack the model by different methods. Low is better.

€e=2 e=1414 €e=38 e=12 e=16
Methods Top-1 Top-5 | Top-1 Top-5 | Top-1 Top-5 | Top-1 Top-5 | Top-1 Top-5
Fast-Gradient 63.49 9498 | 5553 91.19 | 47.24 86.87 | 40.18 82.58 | 31.86 78.04
Basic Iterative 46.53 92.19 | 946 71.21 | 2.83 43.88 | 2.71 4093 | 2.71 39.12
Least-likely Class | 64.80 96.45 | 38.55 88.11 | 5.03 4228 | 0.58 19.54 | 0.09 16.25
Ours 69.08 94.84 | 2229 5252|526 1293 | 1.38 4.09 |034 1.29

Table 6. Classification results on Cifar-10. The WideResNet-28 achieve a competitive performance Top-1=96.14%, Top-5=99.91%. We
attack the model by different methods. Low is better.
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