
Apache Spark based Distributed Self-Organizing Map
Algorithm for Sensor Data Analysis

Madhura Jayaratne, Damminda Alahakoon,

Daswin De Silva
Research Centre for Data Analytics and Cognition

La Trobe University
Victoria, Australia.

Xinghuo Yu

School of Engineering
RMIT University

Victoria, Australia.

Abstract—The proliferation of Internets of Things (IoT)
technologies in both industrial and non-industrial settings has led
to the accumulation of Big Data sets. Analysis of these high-
volume, high-velocity datasets require advanced processing
techniques that incorporate parallel and distributed
computations. In this paper, we present a novel distributed self-
adaptive neural-network algorithm, the Distributed Growing
Self-Organizing Map (DGSOM) algorithm to address the
growing need for unsupervised machine learning of Big Data sets
on distributed computing environments. The algorithm was
tested on a Big Data set of sensor recordings of human activity
collected from wearable devices, 2.8 million records. Results
indicate that the distributed algorithm significantly reduces
execution time compared to its serial counterpart. Moreover, the
self-adaptive nature and controlled growth of the algorithm
demonstrates data-driven structure adaptation and multi-
granular pattern analysis. Overall, the proposed algorithm
addresses the need for pattern discovery and visualization from
Big Data sets generated by IoT devices which are increasingly
commonplace in industrial scenarios.

Keywords—Growing Self-Organizing Maps, Resilient
Distributed Dataset, Unsupervised Machine Learning, Internet of
Things, Industrial IoT, Big Data analysis.

I. INTRODUCTION
Throughout the history of computing, researchers have

attempted to draw inspiration from the human brain to improve
computing to perform tasks that are effortless for humans.
Cognitive computing refers to hardware and/or software that
are strongly motivated by the working mechanisms of human
brain [1]. In terms of software, this has led to the development
of various machine learning and memory algorithms. Cognitive
algorithms implement learning using Hebbian theory [2] on the
adaptation of neurons in the brain during learning.

Artificial neural networks (ANN) are one such class of
algorithms that draws inspiration from human nervous system
and tries to model neurons and their interactions through
synapses. Recurrent neural networks (RNN) are a class of
ANN with connections between neurons forming a directed
cycle. This facilitates internal memory in the network which is
essential for task requiring temporal behavior such as speech
recognition and language modeling [3]. RNNs are inspired by
the fact that the neocortex is saturated with feedback
connections. For example, between the neocortex and
thalamus, connections going backward exceed the connections

going forward by almost a factor of ten [4]. More recent
developments such as the rise of Deep Neural Networks
(DNN) have shown promising results in tasks such as image
and speech recognition [5], [6]. While ANNs with a single
hidden layer is a gross simplification of the neuronal activity in
human brain, DNNs provide a better representation, however,
at the expense of having to learn thousands of parameter values
[7]. To date, ANNs are one of the most popular choices for
classification and regression tasks in a vast array of fields such
as manufacturing, automated driving, medical diagnosis,
financial fraud detection, data mining etc.

Another class of ANNs uses competitive learning, a variant
of Hebbian learning, in which neurons compete to respond to a
subset of the input data in the winner-takes-all form. Vector
quantization and Self-Organizing Maps (SOM) are the most
popular cognitive computing algorithms that use competitive
learning. SOMs are a very popular choice for dimensionality
reduction, exploratory data analysis, and data clustering. SOM
algorithm preserves the neighborhood relationships when
adjusting the weights of its two-dimensional map to provide a
non-linear projection of the higher dimensional data onto the
two-dimensional map.

The recent Big Data phenomenon, driven by disruptive
technological, social and economical forces, the amount of data
available for analysis has grown exponentially. This is
especially true in industrial settings where Industry 4.0 has
ushered Industrial IoT (IIoT) systems generating large datasets.
Serial algorithms that were being used in cognitive computing
can no longer address Big Data problems. This has led to
parallelization of cognitive computing algorithms to be able to
run on distributed computing platforms which allows
computing to be distributed over a number of computing
resources, so the results are generated in acceptable time.

A major drawback of SOM algorithm is its time
complexity. This makes SOMs unsuitable for processing large
datasets in their current form. As the Big Data phenomenon
ushers extremely large datasets, the SOM algorithm needs to be
adapted to use distributed computing to be relevant in the Big
Data era.

In this paper, we present a novel distributed algorithm to
expand GSOM, a dynamic variant of the SOM algorithm. The
GSOM algorithm has been successfully applied to numerous
fields including engineering [8]–[11], text [12]–[14], biology
[15]–[17]. The algorithm uses data parallelism to train GSOMs

on subsets of data and finally merge them together to form the
single two-dimensional map. We adapt the algorithm for the
distributed computing paradigm Resilient Distributed Datasets
(RDD). RDDs are immutable, fault-tolerant distributed dataset
divided into logical partitions and can be created by
deterministic operations on either data or other RDDs.
Computations on these partitions may be carried out on
different nodes in the cluster. We implement the algorithm for
Apache Spark, the widely-used implementation of RDD.

We utilize the proposed Distributed GSOM algorithm to
process a Big Data set of motion sensor data to analyze human
activities. The choice of human activity sensor dataset is due to
prevalence of IoT technology, the increased use of IoT systems
consisting wearable devices and their numerous applications in
industrial settings. Data from human worn sensors have been
used for training car assembly line workers with sensor data
being used for task tracking [18]. Moreover, activity
recognition in industrial settings has been proposed for
proactive instruction systems which track the completion of an
activity and display the instructions for the next [19]. Quality
control is another major use case of activity monitoring which
verifies that the workers are correctly performing each
procedure and tracks whether all the procedures have been
completed [18], [19]. Industrial health and safety monitoring
systems have also been proposed to monitor vibrations, sudden
accelerations and generate necessary alerts [20].

The remainder of the paper is organized as follows. Section
II presents a detailed background on SOM, GSOM, and the
split and merge GSOM algorithm while Section III proposes
the novel Distributed GSOM algorithm on Apache Spark.
Human activity analysis using the proposed algorithm and
results are presented in Section IV Finally, the paper concludes
with the discussion of results and future enhancements.

II. BACKGROUND

A. Self-Organizing Maps
The Self-Organizing Map (SOM) [21] algorithm is an

artificial neural network algorithm which generates a non-
linear mapping from higher dimensional input space to a lower
(usually 2) dimensional output space. Trained using an
unsupervised learning algorithm, SOMs facilitate
dimensionality reduction while preserving the topological
properties of the input space. Due to this topology preserving
nature, SOMs are a popular candidate for exploratory analytics
tasks.

B. Growing Self-Organizing Maps
The main disadvantage of SOM is its requirement to

specify the size of the map in advance. This may not be
possible as knowledge of the underlying structure of data may
not be available, especially for exploratory analytics tasks.
Suboptimal choice of map sizes may lead to under or over
representation of data on the map leading to poor topology
preservation.

A dynamic variant of the SOM named Growing Self-
Organizing Map (GSOM) has been proposed in [22] to address
the above issue. The map is initialized with just 4 neurons

organized in a 2×2 lattice and neurons are dynamically added
as required. The algorithm consists of two phases and in the
growing phase, input vectors are presented over a number of
iterations and nodes are added to the map when the
accumulated quantization error of a boundary node exceeds the
growing threshold, GT. GT, as described in (1), is calculated
based on the number of dimensions, D, and spread factor, SF,
which controls the spread of the map.

 GT = -D × ln(SF) (1)

In the case of a non-boundary node, the error is spread
among neighboring neurons when the threshold is exceeded.
The weight vector of the newly added neuron is initialized to
match those of the neighbors. The smoothing phase is used to
calibrate any existing quantization errors. Similar to the
growing phase, inputs are presented and weights are adjusted,
with no new neuron addition.

C. Split and Merge GSOM Algorithm
A major drawback of SOM algorithm and its variants is

time complexity. This makes SOMs unsuitable for Big Data
applications in their current form. In [23], [24] a parallel
version of GSOM algorithm which utilizes data parallelism and
horizontal data splitting is proposed. Workings of the algorithm
are outlined in Algorithm 1. Various strategies have been
proposed for data partitioning, including random partitioning,
class based partitioning and high-level clustering based
partitioning. Once GSOMs are trained on data partitions an
additional step is proposed to remove the redundant neurons
among map. These redundant neurons may be present as the
GSOMs are trained independently without any coordination
among them. The main advantage of the proposed algorithm is
that it preserves the final map of the whole dataset, the
hallmark feature of the SOMs. Sammon’s projection is used to
generate the final map using the intermediate SOMs.
Sammon’s projection is based upon point mapping of higher
dimensional vectors to lower dimensional space such that the
inherent structure of the data is preserved. The algorithm does
so by minimizing Sammon’s stress E in (2), over a number of
iterations.

(2)

where, d*i,j and di,j are the distances between corresponding
pairs of vectors in the higher and lower dimensional spaces.

Algorithm 1. Split and merge GSOM algorithm

1 Split dataset into partitions
2 Train a GSOM on each partition in parallel
3 Remove redundant neurons across partitions
4 Perform Sammon’s projection on neurons in trained

GSOMs

III. DISTRIBUTED GSOM ALGORITHM
In this paper, we present a distributed GSOM algorithm

which is based on the framework of the split and merge GSOM
algorithm outlined in Section II. We also implement the

Distributed GSOM algorithm using the Apache Spark
distributed processing platform.

One of the issues of training separate GSOMs on partitions
of data is that it leads to redundant neurons among maps as
training on partitions of data happen without any coordination.
The redundant neurons are undesirable as they lead to
redundancies in the final map and increased time for merging
GSOMs with Sammon’s projection. An algorithm to identify
and remove such redundant neurons has been proposed in [24].
However, the redundancy removal process requires all the
GSOMs to be present to identify redundancies among them
leading to serial execution. We identify that redundant neuron
removal can be performed in a parallel manner. This is
achieved by removing redundancies among subsets of map
simultaneously by applying the reduce operation of functional
programming. The reduce operation takes two objects of the
same type and outputs an object of the same type. Here, the
reduce operation will consume two maps at a time to output a
single map with redundancies removed.

A. Distributed GSOM on Apache Spark
We propose an Apache Spark based Distributed GSOM

algorithm in this section. Apache Spark [25] is well-established
open-source distributed computing framework. It implements
Resilient Distributed Dataset (RDD) [26], a read-only, fault-
tolerant, logically partitioned dataset distributed over a cluster
of computers. Apache Spark supports fault-tolerance by
keeping the lineage of operations, so it can regenerate RDDs in
case of a fault. Apache Spark has seen huge levels of adoption
since its first release in 2014, especially for data-intensive
processing tasks. One major reason for this success is that
Apache Spark does not require intermediate results to be
written to slower HDFS for sharing among computing tasks
opposed to Apache Hadoop. Apache Spark is increasingly used
in a number of industrial applications including intelligent fault
diagnosis of high-speed trains [27], predictive analytics of
power system applications [28], IIoT framework for soil-less
food production [29] due to the above reasons.

The algorithm uses a number of data transformation
operations defined on RDDs such as map, reduceByKey,
treeReduce etc. The map operation applies a provided
function for each record while reduceByKey operation
aggregates all the records for a particular key by applying a
provided function, with both the operations resulting in new
RDDs. On the other hand, treeReduce reduces the elements
of the RDD using the supplied commutative and associative
binary operator resulting in a single object of the same type of
the input RDDs. Apache Spark supports treeReduce
operation, which reduces the elements of the RDD in a multi-
level tree pattern. Contrary to reduce operation where the
driver node spends linear time on the number of partitions
which can become a bottleneck when there are many partitions
and the data from each partition is big, treeReduce uses a
binary tree to speed up reductions [30]. This makes Apache
Spark ideal to implement the distributed redundant neuron
removal.

The Distributed GSOM algorithm on Apache Spark starts
by reading the data file from the HDFS with the parameters

specifying the minimum number of partitions to be the number
of computing cores in the cluster. This operation returns an
RDD of lines, l L, with each line relating to a record in the
data file. The RDD is then subjected to two map operations of
which the first parse lines to return an RDD of records, d D.

 map (f : L D) (3)

The second map operation assigns a random integer, i I,
in the range of [1, P] where P is the number of desired
partitions, to each record in the RDD. This step is used to
perform the random partitioning of the dataset and results in an
RDD of key-value pairs. We propose to set P to the number of
computing cores in the cluster.

 map (f : D I×K) (4)

The next operation reduceByKey collects all the records
assigned with the same integer. Similarly, the number of
computing cores in the cluster is used as the minimum number
of partitions. The random partitioning is followed by a map
operation which trains GSOMs on each data partition
simultaneously.

 reduceByKey (f : (I×K, I×K) I×K) (5)

 map (f : I×K M) (6)

The next operation treeReduce is used for the redundant
neuron removal. As outlined earlier, the proposed distributed
redundancy removal mechanism does not require all the maps
to be collected on a single machine and removes redundancies
among subsets of maps simultaneously. The function provided
to the treeReduce operation receives two GSOMs at a time,
removes redundant neurons in the two maps using the
redundancy reduction algorithm and outputs the other neurons.
This operation generates a local list of neurons and finally,
these neurons are merged using Sammon’s projection to obtain
the single map for the whole dataset.

 treeReduce (f : M, M M) (7)

IV. EXPERIMENTS AND RESULTS

A. The Dataset
We used PAMAP2 Physical Activity Monitoring Data Set

[31] for experimentation and demonstration of the DGSOM
algorithm. The dataset consists of sensor readings captured
from 9 subjects engaged in 12 different physical activities
(such as walking, cycling, vacuum cleaning, etc.). Each subject
is wearing a heart rate monitor and 3 Inertial Measurement
Units (IMU), over the wrist on the dominant arm, on the chest,
and on the dominant side's ankle. Each IMU captures
temperature (in °C), 3D-acceleration data (in ms-2) (with two
scales: ±16g and ±6g resolutions), 3D-gyroscope data (in
rad/s), 3D-magnertomerter data (in μT) and orientation. The
IMUs capture data with a sampling frequency of 100Hz while
the heart rate monitor uses a lower sampling frequency of
~9Hz.

The dataset contains 2,872,533 records and 52 attributes.
The dataset was preprocessed to remove records with missing
values resulting from loss of wireless connectivity as well as

records pertaining to transient activities coded with class ‘0’.
We discarded 3D-acceleration data with the scale of ±6g
resolution as the readings seem to get saturated sometimes due
to high impacts caused by certain movements (e.g. during
running) with acceleration over 6g. Further, we removed
orientation data as it was indicated to be invalid for this data
collection. Moreover, heart rate values were interpolated to
compensate for the low sampling frequency of the heart rate
monitor compared to IMUs. The metadata of the dataset
contains resting heart rate for each participant and based on that
we calculated the average heart rate increase for each activity,
as shown in Table 1. We can see that the activities include a
mix of low-intensity activities such as lying, sitting, standing,
etc., moderated intensity activities such as walking, Nordic
walking, cycling, etc. and high-intensity activities such as
running and rope jumping.

We engineered additional features to improve the accuracy
based on [32] by calculating from the triaxial signals the
Euclidean magnitude and time derivatives (jerk, da/dt and
angular acceleration, dw/dt). The complete set of features
includes, for each IMU, temperature, triaxial acceleration,
acceleration magnitude, triaxial acceleration jerk, acceleration
jerk magnitude, triaxial angular speed, angular speed

magnitude, triaxial angular acceleration, angular acceleration
magnitude, and triaxial magnetism.

TABLE 1 AVERAGE HEART RATE INCREASE

Activity HR increase (bps) Intensity
Lying 9.02

Low
Sitting 13.21
Standing 22.42
Ironing 24.34
Vacuum cleaning 37.69
Walking 46.46

Moderate
Nordic walking 58.21
Cycling 58.85
Descending stairs 62.94
Ascending stairs 63.01
Running 81.62 High Rope jumping 90.16

B. Test Environment and Configurations
Our experiments were conducted on a commercial cloud

platform supporting Apache Spark and employed 8 virtual
machines each with 8 virtual cores of 2.3 GHz clock speed.
Apache Spark version 2.0.2 was used for the algorithm
implementation.

Fig. 1 Merged GSOM map generated by Distributed GSOM algorithm

To compare the execution times of the distributed and the
serial version of GSOM, we implemented the serial version of
GSOM and ran the algorithm on a single machine with a
similar hardware specification. Total elapsed time which
includes both the CPU and non-CPU time was chosen as the
primary metric to compare performance between the
distributed and the serial version of GSOM.

The parameters of GSOM algorithm were set as follows:
spread factor, SF = 0.1, initial learning rate, α0 = 0.3 and initial
neighborhood radius, N0 = 4. We employed 100 growing
iterations and 100 smoothing iterations in GSOM calculations.
The number of data partitions, P was set at 64 since the
computing cluster contained 64 virtual computing cores.

C. Results
The comparison of performance between Distributed

GSOM algorithm on Apache Spark and the serial version of
GSOM in terms of total elapsed time yielded significant
results. The total elapsed time of the distributed version was
737s while its serial counterpart took 247,045s to execute. This
is a 335.02-fold or 2 orders of magnitude improvement in the
execution time.

 A representative GSOM map generated by the merging
process of Distributed GSOM algorithm is shown in Fig. 1.
The nodes have been colored based on the data points mapped
to them and we can clearly see clusters of nodes that have the
same activity mapping. Moreover, similar activities have been
mapped to close-by nodes and different activities have been
mapped to nodes distant to each other. Plotting only the nodes
that have low-intensity activities such as lying, sitting,
standing, ironing, vacuum cleaning and high-intensity
activities such as running and rope-jumping mapped to them in
Fig. 2 shows that the nodes of two groups of activities are
clearly separated by section AB. High-intensity activities show

a greater spread while low-intensity activities are mapped more
closely.

Moderate intensity activities such as walking, ascending-
stairs, descending-stairs, Nordic walking, and cycling have
been mapped to nodes in between the nodes mapped with low-
intensity and high-intensity activities. Moreover, cycling and
Nordic walking have been mapped to three separate clusters of
nodes, the first cluster lying closer to high-intensity nodes, the
second cluster lying closer to low-intensity nodes and the third
cluster sitting on top of section AB which separates low and
high-intensity activities. Manually inspecting the records
mapped to each cluster shows that records are in fact different
to each other and may pertain to different modes/sub-activities
of the activity.

One of the main advantages of GSOM algorithm is multi-
granular analysis using maps of varying resolution. This is
facilitated by the spread factor parameter and by selecting a
higher value for the parameter, the analyst can obtain a map
with a higher resolution. Usually, such analysis is performed on
an area of interest in the original map for finer cluster analysis.
We identified 3 regions of the original map for fine-grained
analysis, Regions A, B and C as marked on Fig. 1. Regions B
and C were chosen as they had nodes mapped with multiple
activities densely packed in them. While clusters could be
clearly seen in both regions, the dense packing warranted
further analysis at a higher resolution. In contrast, region A is
sparsely packed with nodes mapped with high-intensity
activities, running and rope jumping. These nodes are mostly
intermingled. Hence, it was decided to perform a fine-grained
analysis on the cluster to evaluate if the activities form their
own cluster at a higher resolution.

We performed fine-granular analysis on the Region C
marked on Fig. 1 using a higher spread factor, SF = 0.3. The
clusters of activities can be seen more clearly in the spread-out
map as shown in Fig. 3. The GSOM has a clearly separated

Fig. 2 Low-intensity and high-intensity activities clearly separated

Fig. 3 Finer claster analysis of records mapped to Region C in Fig. 1, SF = 0.3

region, Sub-Region A, which has all the records pertaining to
lying mapped. Moreover, clusters of activities are organized in
a logical order of activity intensity. The least intense activity,
lying is mapped to the right most side of the map and moving
towards left from the right edge increases the intensity of the
activity mapped from lying to sitting to standing to ironing to
vacuum cleaning. The bounding box of Region C included a
small number of nodes mapped with moderately intense
activities. However, these records have not formed clear
clusters, rather have distributed with the higher spread factor.
However, these are clearly separated from the nodes mapped
with low intensive activities.

We undertook a similar fine-grained analysis of Region B
with SF = 0.3 since the region was densely packed with nodes
and the resulting map is presented in Fig. 5. The higher spread
factor seems to have separated the clusters of nodes more
clearly. Starting from the top right corner of the map and
moving towards the bottom left corner, we can identify
successive clusters of nodes mapped with sitting, standing,
ironing and vacuum cleaning. Compared to the cluttered nature
of Region B, these clusters are an improvement in the
representation. Moreover, a distinct cluster of cycling can be
identified towards the bottom right of the map. Although not
distinctive as cycling, Nordic walking is mapped towards the
bottom of the map. However, other moderate intense activities
seem to have spread with each other and occupy the left half of
the map. It would be an interesting exercise to analyze this
region, marked as Sub-Region B, with an even higher spread
factor.

Fig. 4 shows the sub-cluster analysis of the Region A of the
original map. The records mapped to Region A were mostly
high-intensity activities such as running and rope-jumping. The
fine-grained analysis with SF = 0.3, has better separated these
two activities with rope-jumping to the left of the map and

running to the right of the map. The third activity included in
the data mapped to Region A is cycling and this is mapped to a
very distinctive cluster of its own in the top center of the map.

V. DISCUSSION AND CONCLUSION
This paper proposed a new algorithm to address the

growing need for scalability in cognitive computing algorithms
for unlabeled Big Data sets, generated by IIoT systems in data–
intensive environments. The proposed distributed GSOM
algorithm is based on the RDD paradigm and implemented
using the Apache Spark platform. Using a large sensor dataset
on human activity containing more than 2.8 million records, we
demonstrated reduced execution time leading to actionable
insights from unlabeled data. Moreover, we carried out a multi-
granular analysis of the dataset. The spread factor parameter of
the algorithm facilitates fine-granular analysis of an area of
interest of the original map at a higher resolution. This analysis
showed that classes are better separated with a higher spread
factor.

We engineered a number of features from the raw sensor
readings. However, all features were point-based and did not
take temporality of human activities into consideration.
Inclusion of temporality may better represent human activities.
For example [32], sampled the time-based features with a
fixed-width sliding window of 2.56 seconds with 50% overlap
between them. Hence, encoding temporality into features
deserves further investigation.

A GSOM-based analysis is not limited to visual exploration
of data. Trained GSOM can be used to classify human
activities based on the winning node. Such classification may
facilitate proactive instructions, interactive training for
employees, quality control based on verification of procedures
performed etc. as identified in the literature review. Moreover,

Fig. 5 Finer claster analysis of records mapped to Region B in Fig.1, SF = 0.3 Fig. 4 Finer claster analysis of records mapped to Region A in Fig.1, SF = 0.3

anomaly detection algorithms based on SOMs [33] could be
used for monitoring and ensuring the safety of workers in
industrial environments. The scalability of using RDD and
Apache Spark, reduced execution time, unsupervised machine
learning, topology preservation and multi-granular analysis of
the Distributed GSOM algorithm amply demonstrate increased
value for addressing Big Data problems in the cognitive
computing era.

ACKNOWLEDGMENT
This work was supported by an Australian Government

Research Training Program Scholarship. Authors would also
like to acknowledge the financial and in-kind support from the
Data to Decisions Cooperative Research Centre (D2D CRC) as
part of their analytics and decision support program.

REFERENCES
[1] J. Kelly III and S. Hamm, Smart Machines: IBM’s Watson and the

Era of Cognitive Computing. Columbia University Press, 2013.
[2] D. O. Hebb, The Organization of Behavior. Wiley, 1949.
[3] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,

‘Recurrent neural network based language model.’, in Interspeech,
2010, vol. 2, p. 3.

[4] J. Hawkins and S. Blakeslee, On Intelligence. Macmillan, 2007.
[5] Q. V. Le, ‘Building high-level features using large scale unsupervised

learning’, in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2013, pp. 8595–8598.

[6] F. Seide, G. Li, and D. Yu, ‘Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks.’, in Interspeech,
2011, pp. 437–440.

[7] Y. Bengio, A. Courville, and I. Goodfellow, ‘Deep Learning’, 2016.
[8] D. D. Silva, X. Yu, D. Alahakoon, and G. Holmes, ‘A Data Mining

Framework for Electricity Consumption Analysis From Meter Data’,
IEEE Trans. Ind. Inform., vol. 7, no. 3, pp. 399–407, Aug. 2011.

[9] S. M. Guru, A. Hsu, S. Halgamuge, and S. Fernando, ‘An Extended
Growing Self-Organizing Map for Selection of Clusters in Sensor
Networks’, Int. J. Distrib. Sens. Netw., vol. 1, no. 2, pp. 227–243, Apr.
2005.

[10] D. D. Silva, X. Yu, D. Alahakoon, and G. Holmes, ‘Incremental
pattern characterization learning and forecasting for electricity
consumption using smart meters’, in 2011 IEEE International
Symposium on Industrial Electronics, 2011, pp. 807–812.

[11] D. D. Silva, X. Yu, D. Alahakoon, and G. Holmes, ‘Semi-supervised
classification of characterized patterns for demand forecasting using
smart electricity meters’, in 2011 International Conference on
Electrical Machines and Systems, 2011, pp. 1–6.

[12] N. Nathawitharana, D. Alahakoon, and S. Matharage, ‘Improving the
Decision Value of Hierarchical Text Clustering Using Term Overlap
Detection’, Australas. J. Inf. Syst., vol. 19, no. 0, Sep. 2015.

[13] U. Gunasinghe and D. Alahakoon, ‘The adaptive suffix tree: A space
efficient sequence learning algorithm’, in The 2013 International Joint
Conference on Neural Networks (IJCNN), 2013, pp. 1–8.

[14] S. Matharage, H. Ganegedara, and D. Alahakoon, ‘A scalable and
dynamic self-organizing map for clustering large volumes of text
data’, in The 2013 International Joint Conference on Neural Networks
(IJCNN), 2013, pp. 1–8.

[15] U. Gunasinghe, D. Alahakoon, and S. Bedingfield, ‘Extraction of high
quality k-words for alignment-free sequence comparison’, J. Theor.
Biol., vol. 358, pp. 31–51, Oct. 2014.

[16] A. L. Hsu, S.-L. Tang, and S. K. Halgamuge, ‘An unsupervised
hierarchical dynamic self-organizing approach to cancer class
discovery and marker gene identification in microarray data’,
Bioinformatics, vol. 19, no. 16, pp. 2131–2140, Nov. 2003.

[17] C. Ck, H. Al, T. Sl, and H. Sk, ‘Using growing self-organising maps
to improve the binning process in environmental whole-genome
shotgun sequencing.’, J. Biomed. Biotechnol., vol. 2008, pp. 513701–
513701, Dec. 2007.

[18] P. Lukowicz, A. Timm-Giel, M. Lawo, and O. Herzog,
‘WearIT@work: Toward Real-World Industrial Wearable
Computing’, IEEE Pervasive Comput., vol. 6, no. 4, pp. 8–13, Oct.
2007.

[19] H. Koskimaki, V. Huikari, P. Siirtola, P. Laurinen, and J. Roning,
‘Activity recognition using a wrist-worn inertial measurement unit: A
case study for industrial assembly lines’, in 2009 17th Mediterranean
Conference on Control and Automation, 2009, pp. 401–405.

[20] G. Kortuem et al., ‘Sensor Networks or Smart Artifacts? An
Exploration of Organizational Issues of an Industrial Health and
Safety Monitoring System’, in UbiComp 2007: Ubiquitous
Computing, 2007, pp. 465–482.

[21] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer
Verlag, 1995.

[22] D. Alahakoon, S. Halgamuge, and B. Srinivasan, ‘Dynamic self-
organizing maps with controlled growth for knowledge discovery’,
IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 601–614, May 2000.

[23] H. Ganegedara and D. Alahakoon, ‘Scalable Data Clustering: A
Sammon’s Projection Based Technique for Merging GSOMs’, in
Neural Information Processing, B.-L. Lu, L. Zhang, and J. Kwok,
Eds. Springer Berlin Heidelberg, 2011, pp. 193–202.

[24] H. Ganegedara and D. Alahakoon, ‘Redundancy reduction in self-
organising map merging for scalable data clustering’, in The 2012
International Joint Conference on Neural Networks (IJCNN), 2012,
pp. 1–8.

[25] ‘Apache Spark’. [Online]. Available: https://spark.apache.org/.
[Accessed: 19-Apr-2017].

[26] M. Zaharia et al., ‘Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing’, in Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation, Berkeley, CA, USA, 2012, pp. 2–2.

[27] h Hu, B. Tang, X. j Gong, W. Wei, and H. Wang, ‘Intelligent fault
diagnosis of the high-speed train with big data based on deep neural
networks’, IEEE Trans. Ind. Inform., vol. PP, no. 99, pp. 1–1, 2017.

[28] J. Zheng and A. Dagnino, ‘An initial study of predictive machine
learning analytics on large volumes of historical data for power
system applications’, in 2014 IEEE International Conference on Big
Data (Big Data), 2014, pp. 952–959.

[29] P. C. P. D. Silva and P. C. A. D. Silva, ‘Ipanera: An Industry 4.0
based architecture for distributed soil-less food production systems’,
in 2016 Manufacturing Industrial Engineering Symposium (MIES),
2016, pp. 1–5.

[30] ‘[SPARK-2174][MLLIB] treeReduce and treeAggregate by mengxr ·
Pull Request #1110 · apache/spark’, GitHub. [Online]. Available:
https://github.com/apache/spark/pull/1110. [Accessed: 17-Apr-2017].

[31] A. Reiss and D. Stricker, ‘Introducing a New Benchmarked Dataset
for Activity Monitoring’, in 2012 16th International Symposium on
Wearable Computers, 2012, pp. 108–109.

[32] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, R. Ortiz, and J. Luis,
‘A public domain dataset for human activity recognition using
smartphones’, presented at the Proceedings of the 21th International
European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2013, pp. 437–442.

[33] M. Ramadas, S. Ostermann, and B. Tjaden, ‘Detecting Anomalous
Network Traffic with Self-organizing Maps’, in Recent Advances in
Intrusion Detection, 2003, pp. 36–54.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

