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Abstract—The proliferation of Internets of Things (IoT) 
technologies in both industrial and non-industrial settings has led 
to the accumulation of Big Data sets. Analysis of these high-
volume, high-velocity datasets require advanced processing 
techniques that incorporate parallel and distributed 
computations. In this paper, we present a novel distributed self-
adaptive neural-network algorithm, the Distributed Growing 
Self-Organizing Map (DGSOM) algorithm to address the 
growing need for unsupervised machine learning of Big Data sets 
on distributed computing environments. The algorithm was 
tested on a Big Data set of sensor recordings of human activity 
collected from wearable devices, 2.8 million records. Results 
indicate that the distributed algorithm significantly reduces 
execution time compared to its serial counterpart. Moreover, the 
self-adaptive nature and controlled growth of the algorithm 
demonstrates data-driven structure adaptation and multi-
granular pattern analysis. Overall, the proposed algorithm 
addresses the need for pattern discovery and visualization from 
Big Data sets generated by IoT devices which are increasingly 
commonplace in industrial scenarios. 

Keywords—Growing Self-Organizing Maps, Resilient 
Distributed Dataset, Unsupervised Machine Learning, Internet of 
Things, Industrial IoT, Big Data analysis.  

I.  INTRODUCTION 
Throughout the history of computing, researchers have 

attempted to draw inspiration from the human brain to improve 
computing to perform tasks that are effortless for humans. 
Cognitive computing refers to hardware and/or software that 
are strongly motivated by the working mechanisms of human 
brain [1]. In terms of software, this has led to the development 
of various machine learning and memory algorithms. Cognitive 
algorithms implement learning using Hebbian theory [2] on the 
adaptation of neurons in the brain during learning. 

Artificial neural networks (ANN) are one such class of 
algorithms that draws inspiration from human nervous system 
and tries to model neurons and their interactions through 
synapses. Recurrent neural networks (RNN) are a class of 
ANN with connections between neurons forming a directed 
cycle. This facilitates internal memory in the network which is 
essential for task requiring temporal behavior such as speech 
recognition and language modeling [3]. RNNs are inspired by 
the fact that the neocortex is saturated with feedback 
connections. For example, between the neocortex and 
thalamus, connections going backward exceed the connections 

going forward by almost a factor of ten [4]. More recent 
developments such as the rise of Deep Neural Networks 
(DNN) have shown promising results in tasks such as image 
and speech recognition [5], [6]. While ANNs with a single 
hidden layer is a gross simplification of the neuronal activity in 
human brain, DNNs provide a better representation, however, 
at the expense of having to learn thousands of parameter values 
[7]. To date, ANNs are one of the most popular choices for 
classification and regression tasks in a vast array of fields such 
as manufacturing, automated driving, medical diagnosis, 
financial fraud detection, data mining etc. 

Another class of ANNs uses competitive learning, a variant 
of Hebbian learning, in which neurons compete to respond to a 
subset of the input data in the winner-takes-all form. Vector 
quantization and Self-Organizing Maps (SOM) are the most 
popular cognitive computing algorithms that use competitive 
learning. SOMs are a very popular choice for dimensionality 
reduction, exploratory data analysis, and data clustering. SOM 
algorithm preserves the neighborhood relationships when 
adjusting the weights of its two-dimensional map to provide a 
non-linear projection of the higher dimensional data onto the 
two-dimensional map.  

The recent Big Data phenomenon, driven by disruptive 
technological, social and economical forces, the amount of data 
available for analysis has grown exponentially. This is 
especially true in industrial settings where Industry 4.0 has 
ushered Industrial IoT (IIoT) systems generating large datasets. 
Serial algorithms that were being used in cognitive computing 
can no longer address Big Data problems. This has led to 
parallelization of cognitive computing algorithms to be able to 
run on distributed computing platforms which allows 
computing to be distributed over a number of computing 
resources, so the results are generated in acceptable time.  

A major drawback of SOM algorithm is its time 
complexity. This makes SOMs unsuitable for processing large 
datasets in their current form. As the Big Data phenomenon 
ushers extremely large datasets, the SOM algorithm needs to be 
adapted to use distributed computing to be relevant in the Big 
Data era.  

In this paper, we present a novel distributed algorithm to 
expand GSOM, a dynamic variant of the SOM algorithm. The 
GSOM algorithm has been successfully applied to numerous 
fields including engineering [8]–[11], text [12]–[14], biology 
[15]–[17]. The algorithm uses data parallelism to train GSOMs 



on subsets of data and finally merge them together to form the 
single two-dimensional map. We adapt the algorithm for the 
distributed computing paradigm Resilient Distributed Datasets 
(RDD). RDDs are immutable, fault-tolerant distributed dataset 
divided into logical partitions and can be created by 
deterministic operations on either data or other RDDs. 
Computations on these partitions may be carried out on 
different nodes in the cluster. We implement the algorithm for 
Apache Spark, the widely-used implementation of RDD. 

We utilize the proposed Distributed GSOM algorithm to 
process a Big Data set of motion sensor data to analyze human 
activities. The choice of human activity sensor dataset is due to 
prevalence of IoT technology, the increased use of IoT systems 
consisting wearable devices and their numerous applications in 
industrial settings. Data from human worn sensors have been 
used for training car assembly line workers with sensor data 
being used for task tracking [18]. Moreover, activity 
recognition in industrial settings has been proposed for 
proactive instruction systems which track the completion of an 
activity and display the instructions for the next [19]. Quality 
control is another major use case of activity monitoring which 
verifies that the workers are correctly performing each 
procedure and tracks whether all the procedures have been 
completed [18], [19]. Industrial health and safety monitoring 
systems have also been proposed to monitor vibrations, sudden 
accelerations and generate necessary alerts [20]. 

The remainder of the paper is organized as follows. Section 
II  presents a detailed background on SOM, GSOM, and the 
split and merge GSOM algorithm while Section III proposes 
the novel Distributed GSOM algorithm on Apache Spark. 
Human activity analysis using the proposed algorithm and 
results are presented in Section IV Finally, the paper concludes 
with the discussion of results and future enhancements. 

II. BACKGROUND 

A. Self-Organizing Maps 
The Self-Organizing Map (SOM) [21] algorithm is an 

artificial neural network algorithm which generates a non-
linear mapping from higher dimensional input space to a lower 
(usually 2) dimensional output space. Trained using an 
unsupervised learning algorithm, SOMs facilitate 
dimensionality reduction while preserving the topological 
properties of the input space. Due to this topology preserving 
nature, SOMs are a popular candidate for exploratory analytics 
tasks. 

B. Growing Self-Organizing Maps 
The main disadvantage of SOM is its requirement to 

specify the size of the map in advance. This may not be 
possible as knowledge of the underlying structure of data may 
not be available, especially for exploratory analytics tasks. 
Suboptimal choice of map sizes may lead to under or over 
representation of data on the map leading to poor topology 
preservation.  

A dynamic variant of the SOM named Growing Self-
Organizing Map (GSOM) has been proposed in [22] to address 
the above issue. The map is initialized with just 4 neurons 

organized in a 2×2 lattice and neurons are dynamically added 
as required. The algorithm consists of two phases and in the 
growing phase, input vectors are presented over a number of 
iterations and nodes are added to the map when the 
accumulated quantization error of a boundary node exceeds the 
growing threshold, GT. GT, as described in (1), is calculated 
based on the number of dimensions, D, and spread factor, SF, 
which controls the spread of the map. 

 GT = -D × ln(SF)  (1) 

In the case of a non-boundary node, the error is spread 
among neighboring neurons when the threshold is exceeded. 
The weight vector of the newly added neuron is initialized to 
match those of the neighbors. The smoothing phase is used to 
calibrate any existing quantization errors. Similar to the 
growing phase, inputs are presented and weights are adjusted, 
with no new neuron addition. 

C. Split and Merge GSOM Algorithm 
A major drawback of SOM algorithm and its variants is 

time complexity. This makes SOMs unsuitable for Big Data 
applications in their current form. In [23], [24] a parallel 
version of GSOM algorithm which utilizes data parallelism and 
horizontal data splitting is proposed. Workings of the algorithm 
are outlined in Algorithm 1. Various strategies have been 
proposed for data partitioning, including random partitioning, 
class based partitioning and high-level clustering based 
partitioning. Once GSOMs are trained on data partitions an 
additional step is proposed to remove the redundant neurons 
among map. These redundant neurons may be present as the 
GSOMs are trained independently without any coordination 
among them. The main advantage of the proposed algorithm is 
that it preserves the final map of the whole dataset, the 
hallmark feature of the SOMs. Sammon’s projection is used to 
generate the final map using the intermediate SOMs. 
Sammon’s projection is based upon point mapping of higher 
dimensional vectors to lower dimensional space such that the 
inherent structure of the data is preserved. The algorithm does 
so by minimizing Sammon’s stress E in (2), over a number of 
iterations. 

 
 

(2) 

where, d*i,j and di,j are the distances between corresponding 
pairs of vectors in the higher and lower dimensional spaces. 

Algorithm 1. Split and merge GSOM algorithm 

1 Split dataset into partitions 
2 Train a GSOM on each partition in parallel 
3 Remove redundant neurons across partitions 
4 Perform Sammon’s projection on neurons in trained 

GSOMs 

III. DISTRIBUTED GSOM ALGORITHM 
In this paper, we present a distributed GSOM algorithm 

which is based on the framework of the split and merge GSOM 
algorithm outlined in Section II. We also implement the 



Distributed GSOM algorithm using the Apache Spark 
distributed processing platform. 

One of the issues of training separate GSOMs on partitions 
of data is that it leads to redundant neurons among maps as 
training on partitions of data happen without any coordination. 
The redundant neurons are undesirable as they lead to 
redundancies in the final map and increased time for merging 
GSOMs with Sammon’s projection. An algorithm to identify 
and remove such redundant neurons has been proposed in [24]. 
However, the redundancy removal process requires all the 
GSOMs to be present to identify redundancies among them 
leading to serial execution. We identify that redundant neuron 
removal can be performed in a parallel manner. This is 
achieved by removing redundancies among subsets of map 
simultaneously by applying the reduce operation of functional 
programming.  The reduce operation takes two objects of the 
same type and outputs an object of the same type. Here, the 
reduce operation will consume two maps at a time to output a 
single map with redundancies removed.  

A. Distributed GSOM on Apache Spark 
We propose an Apache Spark based Distributed GSOM 

algorithm in this section. Apache Spark [25] is well-established 
open-source distributed computing framework. It implements 
Resilient Distributed Dataset (RDD) [26], a read-only, fault-
tolerant, logically partitioned dataset distributed over a cluster 
of computers. Apache Spark supports fault-tolerance by 
keeping the lineage of operations, so it can regenerate RDDs in 
case of a fault. Apache Spark has seen huge levels of adoption 
since its first release in 2014, especially for data-intensive 
processing tasks. One major reason for this success is that 
Apache Spark does not require intermediate results to be 
written to slower HDFS for sharing among computing tasks 
opposed to Apache Hadoop. Apache Spark is increasingly used 
in a number of industrial applications including intelligent fault 
diagnosis of high-speed trains [27], predictive analytics of 
power system applications [28], IIoT framework for soil-less 
food production [29] due to the above reasons. 

The algorithm uses a number of data transformation 
operations defined on RDDs such as map, reduceByKey, 
treeReduce etc. The map operation applies a provided 
function for each record while reduceByKey operation 
aggregates all the records for a particular key by applying a 
provided function, with both the operations resulting in new 
RDDs. On the other hand, treeReduce reduces the elements 
of the RDD using the supplied commutative and associative 
binary operator resulting in a single object of the same type of 
the input RDDs. Apache Spark supports treeReduce 
operation, which reduces the elements of the RDD in a multi-
level tree pattern. Contrary to reduce operation where the 
driver node spends linear time on the number of partitions 
which can become a bottleneck when there are many partitions 
and the data from each partition is big, treeReduce uses a 
binary tree to speed up reductions [30]. This makes Apache 
Spark ideal to implement the distributed redundant neuron 
removal. 

The Distributed GSOM algorithm on Apache Spark starts 
by reading the data file from the HDFS with the parameters 

specifying the minimum number of partitions to be the number 
of computing cores in the cluster. This operation returns an 
RDD of lines, l L, with each line relating to a record in the 
data file. The RDD is then subjected to two map operations of 
which the first parse lines to return an RDD of records, d  D.  

 map ( f : L  D ) (3) 

The second map operation assigns a random integer, i  I, 
in the range of [1, P] where P is the number of desired 
partitions, to each record in the RDD. This step is used to 
perform the random partitioning of the dataset and results in an 
RDD of key-value pairs. We propose to set P to the number of 
computing cores in the cluster.  

 map ( f : D  I×K ) (4) 

The next operation reduceByKey collects all the records 
assigned with the same integer. Similarly, the number of 
computing cores in the cluster is used as the minimum number 
of partitions. The random partitioning is followed by a map 
operation which trains GSOMs on each data partition 
simultaneously. 

 reduceByKey ( f : (I×K, I×K)  I×K ) (5) 

 map ( f : I×K  M ) (6) 

The next operation treeReduce is used for the redundant 
neuron removal. As outlined earlier, the proposed distributed 
redundancy removal mechanism does not require all the maps 
to be collected on a single machine and removes redundancies 
among subsets of maps simultaneously. The function provided 
to the treeReduce operation receives two GSOMs at a time, 
removes redundant neurons in the two maps using the 
redundancy reduction algorithm and outputs the other neurons. 
This operation generates a local list of neurons and finally, 
these neurons are merged using Sammon’s projection to obtain 
the single map for the whole dataset. 

 treeReduce ( f : M, M  M ) (7) 

IV. EXPERIMENTS AND RESULTS 

A. The Dataset  
We used PAMAP2 Physical Activity Monitoring Data Set 

[31] for experimentation and demonstration of the DGSOM 
algorithm. The dataset consists of sensor readings captured 
from 9 subjects engaged in 12 different physical activities 
(such as walking, cycling, vacuum cleaning, etc.). Each subject 
is wearing a heart rate monitor and 3 Inertial Measurement 
Units (IMU), over the wrist on the dominant arm, on the chest, 
and on the dominant side's ankle. Each IMU captures 
temperature (in °C), 3D-acceleration data (in ms-2) (with two 
scales: ±16g and ±6g resolutions), 3D-gyroscope data (in 
rad/s), 3D-magnertomerter data (in μT) and orientation.  The 
IMUs capture data with a sampling frequency of 100Hz while 
the heart rate monitor uses a lower sampling frequency of 
~9Hz. 

The dataset contains 2,872,533 records and 52 attributes. 
The dataset was preprocessed to remove records with missing 
values resulting from loss of wireless connectivity as well as 



records pertaining to transient activities coded with class ‘0’. 
We discarded 3D-acceleration data with the scale of ±6g 
resolution as the readings seem to get saturated sometimes due 
to high impacts caused by certain movements (e.g. during 
running) with acceleration over 6g. Further, we removed 
orientation data as it was indicated to be invalid for this data 
collection. Moreover, heart rate values were interpolated to 
compensate for the low sampling frequency of the heart rate 
monitor compared to IMUs. The metadata of the dataset 
contains resting heart rate for each participant and based on that 
we calculated the average heart rate increase for each activity, 
as shown in Table 1. We can see that the activities include a 
mix of low-intensity activities such as lying, sitting, standing, 
etc., moderated intensity activities such as walking, Nordic 
walking, cycling, etc. and high-intensity activities such as 
running and rope jumping. 

We engineered additional features to improve the accuracy 
based on [32] by calculating from the triaxial signals the 
Euclidean magnitude and time derivatives (jerk, da/dt and 
angular acceleration, dw/dt). The complete set of features 
includes, for each IMU, temperature, triaxial acceleration, 
acceleration magnitude, triaxial acceleration jerk, acceleration 
jerk magnitude, triaxial angular speed, angular speed 

magnitude, triaxial angular acceleration, angular acceleration 
magnitude, and triaxial magnetism. 

TABLE 1  AVERAGE HEART RATE INCREASE 

Activity HR increase (bps) Intensity 
Lying 9.02 

Low 
Sitting 13.21 
Standing 22.42 
Ironing 24.34 
Vacuum cleaning 37.69 
Walking 46.46 

Moderate 
Nordic walking 58.21 
Cycling 58.85 
Descending stairs 62.94 
Ascending stairs 63.01 
Running 81.62 High Rope jumping 90.16 

B. Test Environment and Configurations 
Our experiments were conducted on a commercial cloud 

platform supporting Apache Spark and employed 8 virtual 
machines each with 8 virtual cores of 2.3 GHz clock speed. 
Apache Spark version 2.0.2 was used for the algorithm 
implementation.  

Fig. 1 Merged GSOM map generated by Distributed GSOM algorithm 



To compare the execution times of the distributed and the 
serial version of GSOM, we implemented the serial version of 
GSOM and ran the algorithm on a single machine with a 
similar hardware specification. Total elapsed time which 
includes both the CPU and non-CPU time was chosen as the 
primary metric to compare performance between the 
distributed and the serial version of GSOM.  

The parameters of GSOM algorithm were set as follows: 
spread factor, SF = 0.1, initial learning rate, α0 = 0.3 and initial 
neighborhood radius, N0 = 4. We employed 100 growing 
iterations and 100 smoothing iterations in GSOM calculations. 
The number of data partitions, P was set at 64 since the 
computing cluster contained 64 virtual computing cores. 

C. Results 
The comparison of performance between Distributed 

GSOM algorithm on Apache Spark and the serial version of 
GSOM in terms of total elapsed time yielded significant 
results. The total elapsed time of the distributed version was 
737s while its serial counterpart took 247,045s to execute. This 
is a 335.02-fold or 2 orders of magnitude improvement in the 
execution time. 

 A representative GSOM map generated by the merging 
process of Distributed GSOM algorithm is shown in Fig. 1. 
The nodes have been colored based on the data points mapped 
to them and we can clearly see clusters of nodes that have the 
same activity mapping. Moreover, similar activities have been 
mapped to close-by nodes and different activities have been 
mapped to nodes distant to each other. Plotting only the nodes 
that have low-intensity activities such as lying, sitting, 
standing, ironing, vacuum cleaning and high-intensity 
activities such as running and rope-jumping mapped to them in 
Fig. 2 shows that the nodes of two groups of activities are 
clearly separated by section AB. High-intensity activities show 

a greater spread while low-intensity activities are mapped more 
closely. 

Moderate intensity activities such as walking, ascending-
stairs, descending-stairs, Nordic walking, and cycling have 
been mapped to nodes in between the nodes mapped with low-
intensity and high-intensity activities. Moreover, cycling and 
Nordic walking have been mapped to three separate clusters of 
nodes, the first cluster lying closer to high-intensity nodes, the 
second cluster lying closer to low-intensity nodes and the third 
cluster sitting on top of section AB which separates low and 
high-intensity activities. Manually inspecting the records 
mapped to each cluster shows that records are in fact different 
to each other and may pertain to different modes/sub-activities 
of the activity. 

One of the main advantages of GSOM algorithm is multi-
granular analysis using maps of varying resolution. This is 
facilitated by the spread factor parameter and by selecting a 
higher value for the parameter, the analyst can obtain a map 
with a higher resolution. Usually, such analysis is performed on 
an area of interest in the original map for finer cluster analysis.  
We identified 3 regions of the original map for fine-grained 
analysis, Regions A, B and C as marked on Fig. 1. Regions B 
and C were chosen as they had nodes mapped with multiple 
activities densely packed in them. While clusters could be 
clearly seen in both regions, the dense packing warranted 
further analysis at a higher resolution. In contrast, region A is 
sparsely packed with nodes mapped with high-intensity 
activities, running and rope jumping. These nodes are mostly 
intermingled. Hence, it was decided to perform a fine-grained 
analysis on the cluster to evaluate if the activities form their 
own cluster at a higher resolution.     

We performed fine-granular analysis on the Region C 
marked on Fig. 1 using a higher spread factor, SF = 0.3. The 
clusters of activities can be seen more clearly in the spread-out 
map as shown in Fig. 3. The GSOM has a clearly separated 

Fig. 2 Low-intensity and high-intensity activities clearly separated 

Fig. 3 Finer claster analysis of records mapped to Region C in Fig. 1, SF = 0.3 



region, Sub-Region A, which has all the records pertaining to 
lying mapped.  Moreover, clusters of activities are organized in 
a logical order of activity intensity. The least intense activity, 
lying is mapped to the right most side of the map and moving 
towards left from the right edge increases the intensity of the 
activity mapped from lying to sitting to standing to ironing to 
vacuum cleaning. The bounding box of Region C included a 
small number of nodes mapped with moderately intense 
activities. However, these records have not formed clear 
clusters, rather have distributed with the higher spread factor. 
However, these are clearly separated from the nodes mapped 
with low intensive activities. 

We undertook a similar fine-grained analysis of Region B 
with SF = 0.3 since the region was densely packed with nodes 
and the resulting map is presented in Fig. 5. The higher spread 
factor seems to have separated the clusters of nodes more 
clearly. Starting from the top right corner of the map and 
moving towards the bottom left corner, we can identify 
successive clusters of nodes mapped with sitting, standing, 
ironing and vacuum cleaning. Compared to the cluttered nature 
of Region B, these clusters are an improvement in the 
representation. Moreover, a distinct cluster of cycling can be 
identified towards the bottom right of the map. Although not 
distinctive as cycling, Nordic walking is mapped towards the 
bottom of the map. However, other moderate intense activities 
seem to have spread with each other and occupy the left half of 
the map. It would be an interesting exercise to analyze this 
region, marked as Sub-Region B, with an even higher spread 
factor. 

Fig. 4 shows the sub-cluster analysis of the Region A of the 
original map. The records mapped to Region A were mostly 
high-intensity activities such as running and rope-jumping. The 
fine-grained analysis with SF = 0.3, has better separated these 
two activities with rope-jumping to the left of the map and 

running to the right of the map. The third activity included in 
the data mapped to Region A is cycling and this is mapped to a 
very distinctive cluster of its own in the top center of the map.  

V. DISCUSSION AND CONCLUSION 
This paper proposed a new algorithm to address the 

growing need for scalability in cognitive computing algorithms 
for unlabeled Big Data sets, generated by IIoT systems in data–
intensive environments. The proposed distributed GSOM 
algorithm is based on the RDD paradigm and implemented 
using the Apache Spark platform. Using a large sensor dataset 
on human activity containing more than 2.8 million records, we 
demonstrated reduced execution time leading to actionable 
insights from unlabeled data. Moreover, we carried out a multi-
granular analysis of the dataset. The spread factor parameter of 
the algorithm facilitates fine-granular analysis of an area of 
interest of the original map at a higher resolution. This analysis 
showed that classes are better separated with a higher spread 
factor.  

We engineered a number of features from the raw sensor 
readings. However, all features were point-based and did not 
take temporality of human activities into consideration. 
Inclusion of temporality may better represent human activities. 
For example [32], sampled the time-based features with a 
fixed-width sliding window of 2.56 seconds with 50% overlap 
between them. Hence, encoding temporality into features 
deserves further investigation. 

A GSOM-based analysis is not limited to visual exploration 
of data. Trained GSOM can be used to classify human 
activities based on the winning node. Such classification may 
facilitate proactive instructions, interactive training for 
employees, quality control based on verification of procedures 
performed etc. as identified in the literature review. Moreover, 

Fig. 5 Finer claster analysis of records mapped to Region B in Fig.1, SF = 0.3 Fig. 4 Finer claster analysis of records mapped to Region A in Fig.1, SF = 0.3 



anomaly detection algorithms based on SOMs [33] could be 
used for monitoring and ensuring the safety of workers in 
industrial environments. The scalability of using RDD and 
Apache Spark, reduced execution time, unsupervised machine 
learning, topology preservation and multi-granular analysis of 
the Distributed GSOM algorithm amply demonstrate increased 
value for addressing Big Data problems in the cognitive 
computing era.  
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