Power Management Integration Center

Industry Advisory Board Meeting July 23 - 24, 2020

Extension: Fast Transient Response and Voltage Balancing for Hybrid SC Converters

Dr. Jason T. Stauth Associate Professor Dartmouth College

Hybrid/Resonant Switched Capacitor Converters

integration Center

Inductive Impedance

- → Shape the Current Waveform
- vs SC:
- Eliminate charge sharing losses
- More voltage swing on caps (better passive component utilization)
- Variable regulation

vs Buck:

- Significantly smaller inductor (10-100x) (better passive component utilization)
- Better VA product (active device utilization)

But... Major Challenges for Commercial Adoption

Flying capacitor voltage balance

Effective high-order dynamics

 Drift due to timing mismatch, parasitics, init. conditions

- Imbalance
 - → voltage stress
 - →current & voltage ripple
- Challenging during transients
- How to startup?
- Feedback regulation
 - Most common controllers subject to imbalance
 - How to achieve fast regulation and also balance flying capacitors
- Nonlinear control schemes:
 - Manage high-order systems
 - Replicate state feedback with simplified hardware implementation

1.0 µs

 $2.0 \mu s$

 $1/f_{sw}$

3.0 µs

4.0 us

-1.0 µs

 $-2.0 \mu s$

 $0.0 \mu s$

Past Work: Integrated 5V:1V Hybrid-Cascaded SC DC-DC Converter

Initial design, fabrication, begin testing

- Target ~5V input, ~1V output
- Up to 1 A load current
- Off-chip passives
- On chip switches, gate drivers, control & instrumentation

Spec	Design	Tested
Supply	4V – 6V	5 V
Output	0.4V - 1.2V	0.4V – 1.2 V
Load Current	10mA - 1.5A	50 mA – 700 mA
Efficiency	~94% @ 300 mA	92.6% 300 mA
Load Transient	± 1A → ~40 mV over/undershoot	TBD
Line Transient	1V/3µs	TBD
Startup		TBD

Power Management Integration Center

Past Work: Integrated 5V:1V Hybrid-Cascaded SC DC-DC Converter

Remaining Work

- Finish testing, reporting
- Need to tune & explore efficiency
- Load/Line transient
- Startup performance/behavior

Spec	Design	Tested
Supply	4V – 6V	5 V
Output	0.4V - 1.2V	0.4V – 1.2 V
Load Current	10mA - 1.5A	50 mA – 700 mA
Efficiency	~94% @ 300 mA	92.6% 300 mA
Load Transient	± 1A → ~40 mV over/undershoot	TBD
Line Transient	1V/3µs	TBD
Startup		TBD

Power Management Integration Center

Next Work: New Control Concept

Have Shown:

- For all converters that are 'controllable' and 'observable,' switching node, Vx, is linked to 'independent' flying cap states
- i.e. adjusting/regulating Vx can enforce voltage balance
- Vx level also informs switch voltage stress

Constant Switch Stress (CSS) Control

Objective

- Regulate the final Vx of 'high' phases.
- 'Low' phases have the same duration.
- Potential to 'adapt' switching threshold depending on cap values, SC network configuration

Constant Switch Stress (CSS) Control

Dartmouth/PMIC confidential

Constant Switch Stress (CSS) Control

Benefit: Simplicity, Scalability/Portability, Robustness

ntegration Center

- Vout can be regulated with any control scheme (voltage mode PID, current mode, AOT, hysteretic, etc)
- Only need a secondary loop that triggers 'high' to 'low' transitions of Vx.
 →it is a form of nonlinear control, but only activates when needed; lots of possibilities going forward.

Dartmouth/PMIC confidential

Preliminary Simulation Results

Matlab simulation shows safe startup, fast regulation, balanced operation

Deliverables and Timeline

- Month 1-2: Finish testing and reporting of previous design
- Month 3-8: Constant Switch Stress (CSS) control
 - Analytical study: stability and balancing requirements
 - Simulation and benchmarking
 - Explore with different control schemes (CM, VM, Nonlinear)
 - Design and simulation of prototype hardware design
- Month 8-10: Hardware design and verification
 - Target discrete (printed circuit board design)
 - Prototype with GaN devices, explore higher power, higher voltage
 - Fabricate and test
- Month 10-12: Reporting, Testing, Prepare for IAB Meeting

Resources and Benefits

Cost and Resources

- Budget \$65,000/year
 - 1 student, \$61,000
 - Supplies and materials, partial tapeout cost \$4000
- Key facilities used:
 - Stauth Research lab
 - Computing and simulation
 - Cadence IC6
- Project leader: PI Stauth

Member Company Benefits

- Explore promising control strategy for future hybrid-SC converters
- Possible IP related to architecture & control scheme
- Early access to research results, students, and investigators