

Nordicway Interchange

Heart of the NW ecosystem

Goals

- Real time data exchange between many different actors' back end systems
- Highly scalable
- Minimum effort for data exchange

The data sharing problem

The problem is NOT:

 Lack of standardized data formats. Several data formats exist that cover a wide range of use cases.

The problem is:

Lack of data sharing ecosystem.

Specifically, the problem can be broken down in to two:

- 1. No way to know what data is available from what provider.
- Existing solution mainly rely on one-to-one bilateral data exchange. This is expensive to build and maintain, and impossible to build large scale when the number of actors get large.

The interchange network

- Started working on a solution for these problems back in Nordicway 1
- AMQP based solution with automated service discovery and data subscription handling.
- Work picked up by C-ROADS
- The NordicWay 3 interchanges will be harmonized with the C-Roads specifications.
- During the NordicWay 2 project, 6 Interchanges were active. With 5 providing cross-border data flow (federation)

2020 test

- To confirm interoperability between two different implementations, a test was conducted between the Norwegian and Swedish node.
- •We tested the average latency from end user to end user. (Not over cellular network!)
 - Ericsson(Swe) user located in Lund, Sweden. Ericsson Node also in Lund.
 - Bouvet(Nor) user located in Oslo, Norway. Bouvet Node located in Finland.
- Physical message route:
 - Lund(Client) -> Lund(Interchange) -> Finland(Interchange) -> Oslo(Client)
- User to user latency was 57.2 milliseconds on average for single messages.

If you were standing at one end of a bowling lane speaking to your friend, ~57ms is the time it would take for the sound of your voice to go from your mouth to your friend's ear.

Open-source implementation

- The Norwegian interchange node implementation is open source.
- Developed by Bouvet for the Norwegian Public Roads Administration.
- Available on Github: github.com/NordicWayInterchange/interchange

NordicTour

Route and technology

120 hours of driving 6000 kilometres 3 border crossing while driving

Nordic

Road and lane closure in the Nordics

A connected drive through Denmark, Sweden, Finland and Norway

RDS TMC Message – in Finnish ??????

Roadworks data challenges, Ghost roadworks and unknown roadworks

Readiness for automation

Positioning

Communication

Human machine-readable infrastructure

GNSS

			214	•••••	/-			mux
country								
Denmark	11758.00	1.70	8.78	0.80	1.04	1.19	1.38	256.29
Finland	78898.00	1.07	2.00	0.47	0.79	1.01	1.25	403.05
Norway	103802.00	54.27	503.08	0.50	0.78	0.93	1.18	12156.42
Sweden	124612.00	2.45	28.42	0.53	1.09	1.44	1.73	1644.52

min 25% 50% 75%

Tunnels are a problem, high latitudes are not, jamming is present – need for IMU supported GNSS

max

Cellular coverage

400 meter segment coverage, all technologies (2G,3G,4G) as percent of total segments

	Modem	Tablet	VCC_int	VCC_roof
Denmark	99,4	99,0	100,0	100,0
Finland	100,0	99,9	99,5	99,5
Norway	97,1	96,8	98,0	98,2
Sweden	99,7	99,7	98,3	96,8

Notes:

- 1: Norway, issue with long tunnels
- 2: Sweden, software issue on the VCC equipment day 2

Human/machine readable infrastructure

Note:

Design of systems play a significant impact – not a bug it is a feature! 60km/h and Norway

Dropouts are quite often – but for small stretches, typically 2-3 seconds – 23 seconds longest found – sharp turn

Telco -border crossing

Border crossing still has some issues, there is typically a loss of reception before reestablishing connection. But same equipment may behave differently, two Samsung S9 phones behaved quite differently – seems a bit random or linked to activity?

