

NW2 Technical Evaluation Results

17.12.2020

Mikko Tarkiainen, Kimmo Kauvo

Technical evaluation common KPIs

		WHERE STUDIED		
Indicator/KPI	UNIT	FI	NO	SE
Physical coverage	-	х	х	-
Number of vehicles equipped with fully-functional C-ITS in-vehicle-device partially functional C-ITS in-vehicle-device	Number	x x	x x	-
Change in number of external data sources per C-ITS service	Number	-	х	-
Number of C-ITS service vehicles or users	Number	х	-	-
Number of C-ITS messages distributed per service and node	Number	х	-	-
Location accuracy	-	х	-	-
Latency	s ms	x x	х -	x x
Message success rate	%	х	-	-
Cross-border continuity of services	Yes/no	x	x	х
Cross-organizational/cross-brands data sharing	Yes/no	х	х	-

Methods - Controlled field tests in FI

- Selected service to the test: Hazardous location notifications (slippery road)
- Testing with two mobile apps
 - ForeC (EEE Innovations),
 - Louhi (Sitowise)
- end-to-end testing included:
 - Overall functionality of the service
 - Location accuracy KPI measurements
 - End-to-end latency KPI measurements
- Stationary and driving tests in Tampere 27 29.4.2020

Methods - Logging & Field test measurements

e2e latency measurement from video

Interchange loop

Node loop

Results – Scale of the pilots in FI & NO

KPI	DESCRIPTION	UNIT	RESULTS	
Number of vehicles equipped	Change in number of vehicles equipped with fully functional C-ITS new mobile applications	Number	FINLAND: 860 - number of new mobile installations (during Jan - May 2020) NORWAY: 40 test vehicles with OBU FI - Large scale pilo NO - PoC, local pilo	
Number of vehicles equipped (partially functional C-ITS in-vehicle-device)	Change in number of vehicles equipped with partially functional (only receiving or sending messages) C-ITS in-vehicle-device	Number	FINLAND: 120 new in-vehicle devices (during Jan - May 2020) NORWAY: 10 vehicles with mobile applications	
Number of C-ITS service vehicles or users	Change in number of vehicles receiving C-ITS service(s), e.g. number of users	Number	FINLAND: 465 - number of active mobile users (per month)	

COUNTRY	MEASUREMENT DESCRIPTION	LATENCY	COMMENTS
Finland	Louhi app -> Interchange -> ForeC app	6.2 sec (median)	Controlled test, N=21 measured from video timestamps
	ForeC app -> Interchange -> Louhi app	5.3 sec (median)	Controlled test, N=25 measured from video timestamps
Sweden	Changing a geofence state in the GUI -> response in the vehicle	10 sec (average)	Dynamic controlled zone, controlled test, measured by the 'Stopwatch' method

Median e2e latencies in FI controlled tests Node and Interchange loops

Results – latency between federated interchange nodes

COUNTRY	MEASUREMENT DESCRIPTION	LATENCY	COMMENTS
Finland	Infotripla node -> Interchange -> EEE node	219 ms (median)	Mainly weather/road condition related warnings, N=2741
	EEE node -> Interchange -> Infotripla node	85 ms (median)	Mainly weather/road condition related warnings, N=358126
	Round trip time: Carmenta TrafficWatch -> Interchange node -> Volvo Cars Cloud	203 ms (average)	Emergency Vehicle Approaching warning, N=1813
Sweden	Traffic Light Controller -> Interchange node -> OEM clouds	Gothenburg: between 50 - 500ms (max)	Connected traffic signals, SPAT and MAP data
		Uppsala: between 675 - 1200ms (average)	
	Dynamic access control transmission	300 ms	Dynamic environmental zone,
	-> reception in the application	(average)	N=299

Co-financed by the European Union

Connecting Europe Facility

Cross-border continuity of services

- Cross-border testing of the services was included the Nordic Tour tests:
 mobile application presented continuously messages from the interchange federation nodes.
- The interchange received events and messages from all countries and service providers
- Logging of messages and visual observations from the map view of a mobile application verified that the system was working well in all four countries. => Cross-border continuity of services was verified

Lessons learnt

- Data logging have to be done according to common specifications which enables KPI analysis
- Latency calculations from logs need accurate synchronisation of the server clocks which needs to be monitored constantly
 - => enables also monitoring of the C-ITS services after the deployment
- Variability of the latency results in the pilot implementations highlights the need for monitoring of KPIs to ensure the service quality

To conclude

Quality of service: Is the quality of C-ITS services sufficient?

- End-to-end latency measurements proved that the cellular (4G-LTE) implementation
 of the piloted services over NW Interchange nodes enables fully functional
 Day-1 C-ITS services (most of which are not time critical)
- Cellular networks provides excellent economy of scale and nationwide road network coverage from the start and the networks will evolve
- Cross-organisational and cross-border data sharing across the federated Interchange system was confirmed => the NordicWay works!

Thank you!

Contact: Mikko Tarkiainen, Mikko.Tarkiainen@vtt.fi Kimmo Kauvo, Kimmo.Kauvo@vtt.fi

Co-financed by the European Union
Connecting Europe Facility

