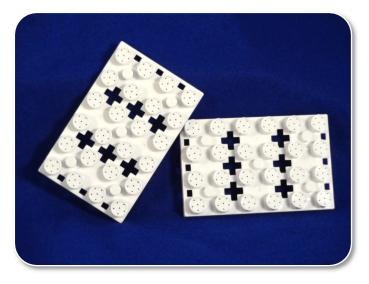


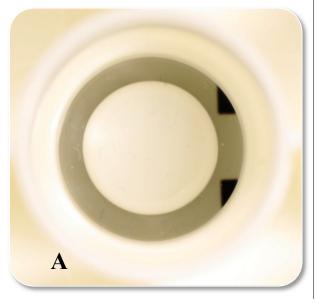
USER MANUAL

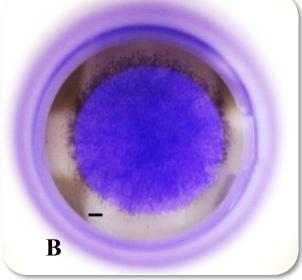
HT Cell Seeder™

05-12-17 Rev 2.1


Culturing Cells in a Mechanically Active Environment[™]
Flexcell International Corporation • 2730 Tucker Street, Suite 200 • Burlington, NC 27215 800-728-3714 • (919) 732-1591 • FAX: (919) 732-5196 • www.flexcellint.com

COPYRIGHT © 2014 FLEXCELL® INTERNATIONAL CORPORATION




INTRODUCTION

The HT Cell SeederTM (Fig. 1) confines cells during plating to the area of the HT BioFlex[®] membrane that is directly over the Loading StationTM. Thus, it prevents cells from being subjected to undefined strains when using the 24-well equibiaxial Loading StationsTM during strain application (Fig. 2). The HT Cell SeederTM is inserted into the 24-well HT Baseplate (Fig. 3), and the HT BioFlex[®] plate plus the gasket is placed on top of the HT Cell SeederTM. The HT Cell SeederTM is only required for seeding cells onto the membrane for a minimal period of time. Afterwards, cell feedings and experiments can be conducted as normal.

Figure 1. 24-well HT Cell Seeders[™].

Figure 2. A) A cylindrical loading post used when applying equibiaxial strain under the well of an HT BioFlex[®] plate. Cells seeded on the membrane in areas outside of the loading post will be subject to undefined strains. B) The results of using an HT Cell Seeder™ when plating cells to confine them to the area directly above the loading post (blue = Crystal Violet stain; bar = 1 mm).

Figure 3. HT Cell Seeders[™] in a 24-well HT Baseplate.

INSTRUCTIONS

- 1. Insert the HT Cell Seeder[™] into a 24-well HT Baseplate, similar to how the cylindrical loading stations are placed in the baseplate.
- 2. Place an HT BioFlex® plate and its respective gasket over the HT Cell SeederTM, ensuring that the wells in the plate align with the posts on the HT Cell SeederTM.
- 3. Using the FX-5000[™] Tension System, create and start a regimen with the following settings:
 - SHAPE: Static
 - MIN: 0.0
 - MAX: 8.0
 - FREQ: 1 Hz (this value must still be entered even though the regimen is static)
 - DURATION: Equal to the seeding time (see step 5 below) plus the time needed to plate the cells into the well.
 - PLATFORM: HT 24-Well Plate (Cylindrical LS)

NOTE: The membrane may be subjected to strains up to 1-2% (10 to 20 microns per 1 millimeter) when seeding, due to the inherent strain caused when using the HT Cell Seeder.

4. The recommended suspension volume when using an HT Cell Seeder[™] for an individual well is 175 μL. This volume is large enough to allow uniform distribution of the mediacell suspension within the well when dispensing with a 1000 μL micropipette (Fig. 4). Also, this volume is small enough to prevent the media-cell suspension from spilling out of the HT Cell Seeder[™] when handling the baseplate.

Figure 4. Suspension volume within the HT Cell Seeder[™].

- 5. Due to the limited suspension volume, it is advised that the user try to limit the seeding time required for the cells to adhere to the membrane. We recommend a seeding time of at least two hours, but the time that will be required is dependent on the type of cells being used.
- 6. After the cells have adhered, remove the vacuum gradually. You can create a slow vacuum release regimen if needed that reduces the vacuum a set percent every "n" seconds. An example regimen is outlined below in Table 1.
- 7. Slowly add 1 mL of fresh media to each well to increase the volume for proper aspiration of non-adherent cells. Then, insert an aspirator tip near the side of the plate well (instead of the cell seeder well) and aspirate the media containing non-adherent cells.
- 8. Add 1 mL of fresh media to each well.

Table 1. Sample regimen parameters for releasing the vacuum pressure slowly.

Step	Shape	Min	Max	Freq	DC%	dd:hh:mm:ss	Back To	Repeat
1	Static	0.0	8.0	1.0	50.0	00:02:30:00	0	0
2	Static	0.0	6.0	1.0	50.0	00:00:00:06	0	0
3	Static	0.0	4.0	1.0	50.0	00:00:00:06	0	0
4	Static	0.0	2.0	1.0	50.0	00:00:00:06	0	0
5	Static	0.0	1.0	1.0	50.0	00:00:00:06	0	0

In this example, we are assuming a two hour seeding time plus a 30 minute set-up time (Step 1). Following seeding, this example releases the strain by 1-2% every six seconds.