

TECH REPORT

204:

Converting Sample Pressures to Forces

Document: Pressure Force Conversion Tech Report, Rev. 3.0
05-12-17

Culturing Cells in a Mechanically Active Environment ${ }^{\mathrm{TM}}$
Flexcell International Corporation • 2730 Tucker Street, Suite 200 • Burlington, NC 27215 800-728-3714 • (919) 732-1591 • FAX: (919) 732-5196 • www.flexcellint.com

COPYRIGHT © 2009 FLEXCELL $^{\circledR}$ INTERNATIONAL CORPORATION

The actual pressure applied to a sample in the well of a BioPress ${ }^{\mathrm{TM}}$ compression plate is dependent on the surface area of the sample to which the force is being applied. Therefore, the FX-5000 ${ }^{\mathrm{TM}}$ Compression System is designed to apply a force to three dimensional samples so that force is not dependent on sample size.

The FX-5000 ${ }^{\mathrm{TM}}$ Compression System has a conversion calculator built into the software for converting pressure (kPa) to force (lbs), and vice versa. To access this calculator, select Calculate from the Regimens menu. Select the Convert Pressure to Force or Convert Force to Pressure calculator by clicking on the appropriate button beside the calculator label. For pressure to force conversions, enter the pressure in kPa in the Pressure ($\mathbf{k P a}$) box and the sample diameter in millimeters in the Sample Diameter (mm) box. Click Calculate. The calculated force in lbs will appear in the Force (lbs) box.

For force to pressure conversions, enter the force in lbs in the Force (lbs) box and the sample diameter in millimeters in the Sample Diameter (mm) box. Click Calculate. The calculated pressure in kPA will appear in the Pressure (kPa) box.

Alternatively, you can use the equation below to convert your desired pressure to a force. Simply plug the pressure that you wish to apply to your sample into the equation below, along with your sample diameter, and program the resulting force into the FlexSoft ${ }^{\circledR}$ software.

$$
\text { Force }_{\text {lbs }}=0.177 *\left(P_{M P a}\right) *\left(D_{m m}{ }^{2}\right)
$$

where Forcelbs is the force applied to a single sample or cell in pounds, $P_{M P a}$ is the pressure that you wish to apply to the sample in megapascals (MPa), and $D_{m m}$ is the diameter of a single sample in mm .

If you wish to determine the pressure applied to your samples given the force programmed into the software, you can use the following equation:

$$
P_{M P a}=\left(5.65 * \text { Force }_{l b s}\right) /\left(D_{m m}{ }^{2}\right)
$$

where $P_{M P a}$ is the pressure applied to the sample in megapascals (MPa), Force ${ }_{l b s}$ is the force entered into the regimen or displayed on the software screen in pounds, and $D_{m m}$ is the diameter of a single sample in mm .

