Energy transferred $=$ mass \times specific heat capacity \times change in temperature $\quad \Delta E=m \times c \times \Delta \theta$ Energy transferred $=$ mass \times specific latent heat $\quad \Delta E=m \times L$

Calculating energy transferred when temperature rises

1. How much energy is required to increase the temperature of 1 kg of water ($\mathrm{SHC}=4200 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$) by $30^{\circ} \mathrm{C}$? $(126,000)$.
2. How much energy is required to increase the temperature of 300 g of water $\left(\mathrm{SHC}=4200 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}\right)$ by $30^{\circ} \mathrm{C}$? $(37,800)$.
3. How much energy is required to increase the temperature of 1 kg of water (SHC $=4200 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}$) by $100^{\circ} \mathrm{C}$? $(420,000)$.
4. Calculate the energy required to raise the temperature of a 5 kg iron block at $20^{\circ} \mathrm{C}$ to its melting point of $1535{ }^{\circ} \mathrm{C}$. The specific heat capacity of iron is $450 \mathrm{~J} / \mathrm{kg}$.

Calculating the specific heat capacity of a substance

$4.5,000 \mathrm{~J}$ of energy is transferred to 1 kg of an unknown liquid. The temperature of the liquid rises by $5^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the liquid (1000).

Calculating the mass of a substance

5. 50 Watts of energy is transferred to a liquid with a specific heat capacity of $780 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}$ for 5 minutes. The temperature of the liquid increases by $4^{\circ} \mathrm{C}$. What is the mass of the liquid? (4.81).
(Hint: for this question, you need to convert Watts (J / s) into total energy transferred)

Calculating the temperature of a substance

6. The initial temperature of a glass of water ($\mathrm{SHC}=4200 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}$) is $35^{\circ} \mathrm{C}$. It has a mass of 250 g .5000 J of energy is transferred into the water. What will its new temperature be? (39.8).

Calculate the energy transferred to change state

8. Calculate the energy required to melt a 5 kg block of iron. The specific latent heat of fusion for iron is $272000 \mathrm{~J} / \mathrm{kg}$.

Calculate total energy transferred using specific heat capacity AND specific latent heat

9. Calculate the energy to raise the temperature of a 5 kg solid block of iron at $20^{\circ} \mathrm{C}$ to 5 kg of liquid iron at $1535^{\circ} \mathrm{C}$. The specific latent heat of fusion for iron is $272000 \mathrm{~J} / \mathrm{kg}$. The specific heat capacity of iron is $450 \mathrm{~J} / \mathrm{kg}$.

Annotated answers

Calculating energy transferred when temperature rises

1. How much energy is required to increase the temperature of 1 kg of water ($\mathrm{SHC}=4200 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$) by $30^{\circ} \mathrm{C}$?
As there is a change in temperature we use this equation: $\Delta E=m \times c \times \Delta \theta$
Substitute the values from the question into the equation: $\Delta E=1 \times 4200 \times 30$
Calculate: $\Delta \mathrm{E}=126000 \mathrm{~J}$ (do not forget the units)
2. How much energy is required to increase the temperature of 300 g of water (SHC $=4200 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}$) by $30^{\circ} \mathrm{C}$?
As there is a change in temperature we use this equation: $\Delta \mathrm{E}=\mathrm{m} \times \mathrm{c} \times \Delta \theta$
First convert the mass in g to mass in kg . $300 / 1000=0.3 \mathrm{~kg}$
Substitute the values from the question into the equation: $\Delta \mathrm{E}=0.3 \times 4200 \times 30$
Calculate: $\Delta E=37000 \mathrm{~J}$ (do not forget the units)
3. How much energy is required to increase the temperature of 1 kg of water (SHC $\left.=4200 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)$ by $100^{\circ} \mathrm{C}$?
As there is a change in temperature we use this equation: $\Delta E=m \times c \times \Delta \theta$
Substitute the values from the question into the equation: $\Delta E=1 \times 4200 \times 100$
Calculate: $\Delta E=420000 \mathrm{~J}$ (do not forget the units)
4. Calculate the energy required to raise the temperature of a 5 kg iron block at $20^{\circ} \mathrm{C}$ to its meling point of $1535^{\circ} \mathrm{C}$. The specific heat capacity of ir on is $450 \mathrm{~J} / \mathrm{kg}$.
First calculate the change in temperature.
Change in temperature $=$ final temperature - initial temperature $=1535-20=1515$
As there is a change in temperature we use this equation: $\Delta E=m \times c \times \Delta \theta$
Substitute the values from the question into the equation: $\Delta E=5 \times 450 \times 1515$
Calculate: $\Delta E=3408750 \mathrm{~J}$ (do not forget the units)

Calculating the specific heat capacity of a substance

4. $5,000 \mathrm{~J}$ of energy is transferred to 1 kg of an unknown liquid. The temperature of the liquid rises by $5^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the liquid.
As there is a change in temperature we use this equation: $\Delta E=m \times c \times \Delta \theta$
Substitute the values from the question into the equation: $5000 \mathrm{~J}=1 \times \mathrm{c} \times 5$
Simplify the right side of equation by multiplying numbers together: $5000=5 \mathrm{c}$
Divide the number on the left by the number on the right to calculate c
$c=5000 / 5=100 \mathrm{~J} / \mathrm{Kg}$ C (do not forget the units)

Calculating the mass of a substance

5. 50 Watts of energy is transferred to a liquid with a specific heat capacity of $780 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ for 5 minutes.

The temperature of the liquid increases by $4^{\circ} \mathrm{C}$. What is the mass of the liquid? (4.81).
(Hint: for this question, you need to convert Watts (J / s) into total energy transferred)
First, we need to calculate the amount of energy transferred
Use the equation $E=P \times t$
First convert minutes into seconds 5 minutes $=5 \times 60=300$ seconds
$E=50 \times 300$
$E=15000 \mathrm{~J}$
As there is a change in temperature we use this equation: $\Delta E=m \times c \times \Delta \theta$
Substitute the values from the question into the equation: $15000=m \times 780 \times 4$
Simplify the right side of equation by multiplying numbers together: $15000=3120 \mathrm{~m}$
Divide the number on the left by the number on the right to calculate m
$m=15000 / 3120=4.81 \mathrm{~kg}$ (do not forget the units)

Calculating the temperature of a substance

6. The initial temperature of a glass of water (SHC $\left.=4200 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}\right)$ is $35^{\circ} \mathrm{C}$. It has a mass of 250 g .5000 J of energy is transferred into the water. What will its new temperature be?
With this question, we will need to calculate the change in temperature first. Then we can add that to the
initial temperature to calculate the final temperature.
First convert the mass in g to mass in kg. $250 / 1000=0.250 \mathrm{~kg}$
As there is a change in temperature we use this equation: $\Delta \mathrm{E}=\mathrm{m} \times \mathrm{c} \times \Delta \theta$
Substitute the values from the question into the equation: $5000=0.25 \times 4200 \times \Delta \theta$
Simplify the right side of equation by multiplying numbers together: $5000=1050 \Delta \theta$
Divide the number on the left by the number on the right to calculate m
$m=5000 / 1050=4.8^{\circ} \mathrm{C}$ (do not forget the units)
We now add the change in temperature to the initial temperature to find the final temperature
$4.8^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}=39.8^{\circ} \mathrm{C}$

Calculate the energy transferred to change state

8. Calculate the energy required to melt a 5 kg block of iron. The specific latent heat of fusion for iron is $272000 \mathrm{~J} / \mathrm{kg}$.
As there is a change in state we use this equation $\Delta E=m \times L$
Substitute the values from the question into the equation: $\Delta \mathrm{E}=5 \times 272000$
$\Delta E=1360000 \mathrm{~J}$

Calculate total energy transferred using specific heat capacity AND specific latent heat

9. Calculate the energy to raise the temperature of a 5 kg solid block of iron at $20^{\circ} \mathrm{C}$ to 5 kg of liquid iron at $1535^{\circ} \mathrm{C}$. The specific latent heat of fusion for ir on is $272000 \mathrm{~J} / \mathrm{kg}$. The specific heat capacity of iron is $450 \mathrm{~J} / \mathrm{kg}$ 。
For this question, we need to spit it into two sections. First, we use this formula, $\Delta E=m \times c \times \Delta \theta$, to calculate the energy required to raise the temperature of iron from $20^{\circ} \mathrm{C}$ to $1535^{\circ} \mathrm{C}$. We then need to use the formula $\Delta E=m \times L$, to calculate the energy required to change the state of iron (solid to liquid).

For the change in temperature we use this equation: $\Delta E=m \times c \times \Delta \theta$

First calculate the change in temperature.
Change in temperature $=$ final temperature - initial temperature $=1535-20=1515$ Substitute the values from the question into the equation: $\Delta E=5 \times 450 \times 1515$ $\Delta E=3408750 \mathrm{~J}$

For the change in state we use this equation $\Delta E=m \times L$
Substitute the values from the question into the equation: $\Delta E=5 \times 272000$ $\Delta E=1360000 \mathrm{~J}$

To calculate the total amount of energy used we add to two figures together Total energy transferred $=3408750 \mathrm{~J}+1360000 \mathrm{~J}=4768750 \mathrm{~J}$

