Required practical: Calculating density

Density requires the measurement of the volume of an object and the mass of an object

Measurement of mass

The mass of a solid object is measured using a balance.

The mass of a liquid is measured by measuring the mass of an empty container and then measuring the mass of the container + liquid.

mass of water = (mass of container + liquid) - mass of container.

Measurement of volume of regular object

The volume of a regular object can be calculated by measuring three sides and multiplying them together.

volume = $4 \times 4 \times 5$

 $volume = 80cm^3$

Measurement of irregular volume (measuring cylinder)

volume of statue = (initial volume + volume of statue) - initial volume

Required practical: Calculating density...

Measurement of irregular volume (eureka can)

Calculation of density from results

The equation linking mass, volume and density is:

Standard values for density

The following values are the densities for some common pure substances. You may be asked to calculate a density of an object in an exam and check if it is our by comparing your answer with the known density of the object.

water - 1.0 g/cm³ gold - 19.3 g/cm³ iron - 7.8 g/cm³

ice - 0.9 g/cm³ lithium - 0.5 g/cm³ iridium - 22.6 g/cm³

