Required practical: Calculating density

(s) Density requires the measurement of the volume of an object and the mass of an object

Measurement of mass

(er) The mass of a solid object is measured using a balance.

(r) The mass of a liquid is measured by measuring the mass of an empty container and then measuring the mass of the container + liquid.
mass of water $=$ (mass of container + liquid $)-$ mass of container.

Measurement of volume of regular object

The volume of a regular object can be calculated by measuring three sides and
multiplying them together.

$$
\begin{aligned}
& \text { volume }=4 \times 4 \times 5 \\
& \text { volume }=80 \mathrm{~cm}^{3}
\end{aligned}
$$

Measurement of irregular volume (measuring cylinder)

volume of statue $=$ (initial volume + volume of statue) - initial volume

Required practical: Calculating density...

Measurement of irregular volume (eureka can)

Calculation of density from results

The equation linking mass, volume and density is:

$$
\begin{array}{lll}
\text { density }=\underset{\downarrow}{\operatorname{mass}} \div \underset{\downarrow}{\text { malume }} \underset{\downarrow}{ } & \boldsymbol{v}=\mathrm{m} / \mathrm{v} & \boldsymbol{\rho}=\mathrm{rho} \\
\text { density }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \text { mass }(\mathrm{kg}) \text { volume }\left(\mathrm{m}^{3}\right)
\end{array}
$$

Standard values for density

The following values are the densities for some common pure substances. You may be asked to calculate a density of an object in an exam and check if it is our by comparing your answer with the known density of the object.
water - $1.0 \mathrm{~g} / \mathrm{cm}^{3}$ gold $-19.3 \mathrm{~g} / \mathrm{cm}^{3}$ iron- $7.8 \mathrm{~g} / \mathrm{cm}^{3}$
ice $-0.9 \mathrm{~g} / \mathrm{cm}^{3}$ lithium $-0.5 \mathrm{~g} / \mathrm{cm}^{3}$ iridium $-22.6 \mathrm{~g} / \mathrm{cm}^{3}$

