Quantitative chemistry
State the numbers of atoms for each
element in $\mathrm{H}_{2} \mathrm{O}$.
Conservation of mass and balanced chemical equations

Quantitative chemistry

State the number of atoms in $\mathrm{Ca}(\mathrm{OH})_{2}$.

Conservation of mass and balanced chemical equations

Quantitative chemistry

Balance $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H} 2 \mathrm{O}$.

Conservation of mass and balanced chemical equations

Quantitative chemistry

What is the relative formula mass of a compound?

Quantitative chemistry

State the number of atoms for each element in NH_{3}.

Conservation of mass and balanced chemical equations

Quantitative chemistry

State the number of atoms for each element in $\mathrm{Ca}(\mathrm{OH})_{2}$.

Conservation of mass and balanced chemical equations
Quantitative chemistry
Balance $\mathrm{Cl}_{2}+\mathrm{KI} \rightarrow \mathrm{KCI}+\mathrm{I}_{2}$.

Conservation of mass and balanced chemical equations
Quantitative chemistry
What is the relative formula mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Relative formula mass

Quantitative chemistry

What is the relative formula mass of $\mathrm{Ca}(\mathrm{OH})_{2}$?

Nitrogen $=1$, Hydrogen $=3$.

Calcium $=1$, Oxygen $=2$, Hydrogen $=2$.
$\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
$H=1 \times 2=2 ;$
$S=32 ;$
$0=16 \times 4=64 ;$
$2+32+64=98$
$\mathrm{Ca}=40 ;$
$0=16 \times 2=32 ;$
$H=1 \times 2=2$;
$40+32+2=74$

Hydrogen =2, Oxygen $=1$.

5

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

The sum of the relative atomic masses of the atoms in the compound.
$\mathrm{Na}=23 \times 2=46 ;$
$C=12$;
$0=16 \times 3=48$;
$46+12+48=106$

Quantitative chemistry

Explain why some reactions may seem to involve a change in mass?

Mass changes when a reactant or product is a gas
Quantitative chemistry
Describe the mass changes that occur during the thermal decomposition of metal carbonates in a non-enclosed system.

Mass changes when a reactant or product is a gas

Quantitative chemistry

How do you calculate the range of a set of measurements?

Quantitative chemistry

Describe the mass changes that occur when a metal reacts with oxygen in a nonenclosed system.

Mass changes when a reactant or product is a gas
Quantitative chemistry
Define uncertainty.

Chemical measurements

Quantitative chemistry

What does a large range of a set of measurements about the mean signify?

Chemical measurements

Quantitative chemistry

What are chemical amounts measured using?

Moles (HT)

Quantitative chemistry

How is the relative formula mass of a substance linked to the mole?

When a metal reacts with oxygen the mass of the metal oxide will be more than the mass of the metal because of the addition of oxygen gas.

Uncertainty is the amount of error in your measurements.

In a non-enclosed system one of the reactants or products may be a gas and its mass has not been measured.

When a metal carbonate decomposes the mass of the products will appear less than the mass of the reactants because carbon dioxide gas is given off.

The range is the highest repeat value minus the lowest repeat value.

Uncertainty = range $/ 2$. equal to its relative formula mass in grams. E.g. Mr of carbon = 12; therefore 1 mole of carbon has a mass of 12 g .

Quantitative chemistry
Compare the number of panticles in one
mole of carbon (C) with the number of
particles in one mole of carbon dioxide
$\left(\mathrm{CO}_{2}\right)$.
Moles (HT)

Quantitative chemistry

What is the formula that links the number of moles, relative formula (or atomic) mass and mass in grams?

Quantitative chemistry
 Calculate the mass of 0.4 mol of CO_{2}.

Quantitative chemistry

What is the formula to calculate the percentage mass of an element in a compound?

Amounts of substances in equations (HT)

Quantitative chemistry

12 g of magnesium (Mg) react with 8 g of oxygen $\left(\mathrm{O}_{2}\right)$ to produce 20 g of magnesium oxide (MgO). Write a balanced equation for the reaction.

Using moles to balance equations (HT)

Amounts of substances in equations (HT)

Quantitative chemistry

What is the value of the Avogadro constant?

Quantitative chemistry

How many moles are there in 44 g of $\mathrm{H}_{2} \mathrm{O}$?

Quantitative chemistry

Describe the following equation in terms of moles: $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$.

Quantitative chemistry

Describe how you would balance an equation using the masses of the products and reactants.

Using moles to balance equations (HT)

Quantitative chemistry

What is a limiting reactant?
6.02×10^{23} per mole

Number of moles $=44 /(1 \times 2)+16$;
Number of moles $=44 / 18$;
Number of moles $=2.4 \mathrm{~mol}$

1 mole of magnesium reacts with 2 moles of hydrochloric acid to form 1 mole of magnesium chloride and 1 mole of hydrogen.

Divide the mass of each substance by its relative formula mass to find the number of moles of each substance. Divide the number of moles of each substance by the smallest number of moles in the reaction. If the any of the numbers are not whole numbers, multiply all the numbers so that they become whole numbers.

The limiting reactant limits the amount of product made in a reaction.

The number of particles in one mole of carbon is equal to the number of particles in one mole of carbon dioxide.

Number of moles $=$ mass in grams $/ \mathrm{Mr}$ of the substance

Rearrange the equation: mass = number of moles $\times \mathrm{Mr}$ of the substance: mass $=0.4$ $\times(12+(16 \times 2):$ mass $=0.4 \times 44:$ mass $=$ 17.6 g

Percentage mass of an element in a compound $=(\mathrm{Ar} \times$ number of atoms of the element / Mr of the compound) $\times 100$
$\mathrm{Mg}=0.5 / 0.25=2 ; \mathrm{O}_{2}=0.25 / 0.25=1 ; \mathrm{MgO}=0.5$
$10.25=2$. The balanced equation for the reaction is:
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
and the volume of the solvent (HT).

Quantitative chemistry
Why is it common to use an excess of one
of the reactants in a chemical reaction?
Limiting reactants (HT)

Quantitative chemistry
What is a solution?
Concentration of solutions

Quantitative chemistry

What is a solute?

Concentration of solutions
Quantitative chemistry
What is a solvent?
Concentration of solutions

Quantitative chemistry

What is the formula to calculate the concentration of a solution?

Concentration of solutions
Quantitative chemistry
How many cm^{3} in $1 \mathrm{dm}^{3}$?
Concentration of solutions

Quantitative chemistry

Explain how the concentration of the solution is related to the mass of the solute

Quantitative chemistry
What does the mass of a product formed in a chemical reaction depend upon?

Limiting reactants (HT)

Quantitative chemistry

What is a solution?

Concentration of solutions

Concentration of solutions

Concentration of solutions
Quantitative chemistry
What is the concentration of a salt solution when 20 g of salt is dissolved in $500 \mathrm{~cm}^{3}$ of water?

Concentration of solutions

Chemical changes

What are the products when metals react with oxygen?

The mass of the limiting reactant.

The solid part of a solution which has been dissolved.

Concentration = mass of the solute (g)/ volume of solvent (dm3).

Convert 500 cm 3 into $0.5 \mathrm{dm}^{3}$. Concentration
$=$ mass of solute $/$ volume of solvent;
concentration $=20 / 0.5=40 \mathrm{~g} / \mathrm{dm}^{3}$

Metal oxides.

To ensure that the other reactants involved are used up.

A solution consists of a solute (solid) dissolved in a solvent (iiquid).

The liquid part of the solution.

$$
1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}
$$

The more solute added for a given volume the higher the concentration of a solution. The more solvent added for a given mass of solute the lower the concentration of the solution.

