

Specific heat capacity

To calculate the amount of energy stored in hot water, scientists use specific heat capacity.

The specific heat capacity of a substance is the amount of energy required the raise the temperature of 1 kg of the substance by 1 C

The equation to calculate change in thermal energy

You DO NOT need to learn this equation for the exam

Calculating change in thermal energy

Calculate the energy required to increase the temperature of 2 kg of water from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}$.

1. Calculate the change in temperature : 100-20=80
2. Use the equation $\Delta E=m \times c \times \Delta \theta$
3. Substitute the values into the equation. $\Delta E=2 \times 4200 \times 80$
4. $\Delta E=672000 \mathrm{~J}($ or 672 kJ$)$

Practice question \#1

An iron has an aluminium foot with a mass of 2 kg . Calculate the energy stored in the foot when the temperature rises from $20^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$. The specific heat capacity of aluminium is $913 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.

1. Calculate the change in temperature : 180-20=160

2. Use the equation $\Delta E=m \times c \times \Delta \theta$
3. Substitute the values into the equation. $\Delta E=2 \times 913 \times 160$
4. $\Delta E=292160 \mathrm{~J}($ or 292 kJ$)$

Specific heat capacity...

Practice question \#2

A saucepan cools down from 80 C to 20 C releasing 650000 J of thermal energy. Calculate the mass of the water in the saucepan. The specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{kg}$ C.

1. Calculate the change in temperature : 80-20=60
2. Use the equation $\Delta E=m \times c \times \Delta \theta$
3. Substitute the values into the equation. $\quad 650000=m \times 4200 \times 60$
4. Simplify the equation. $650000=252000 \mathrm{~m}$
5. To calculate m, divide the number on the left by the number on the right.

$$
m=650000 \div 252000
$$

6. $m=2.58 \mathrm{~kg}$

Practice question \#3

A storage heater contains 20 kg .400000 J of energy is transferred to heat up the 15 C to 40 C. Calculate the specific heat capacity of concrete.

1. Calculate the change in temperature : $40-15=25$
2. Use the equation $\Delta E=m \times c \times \Delta \theta$
3. Substitute the values into the equation. $\quad 400000=20 \times c \times 25$
4. Simplify the equation. $400000=500 \mathrm{c}$
5. To calculate c, divide the number on the left by the number on the right.

$$
c=400000 \div 500
$$

6. $\mathrm{C}=800 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

