

Specific heat capacity

1) Calculate the amount of energy stored in or released from a system as the temperature changes.

Specific heat capacity

To calculate the amount of energy stored in hot water, scientists use specific heat capacity.

The specific heat capacity of a substance is the amount of energy required the raise the temperature of 1 kg of the substance by 1°C

The equation to calculate change in thermal energy

A means temperature

Change in thermal energy

= mass x specific heat x temperature capacity x change

or $\Delta E = m \times c \times \Delta \theta$

joules (J)

kilograms (kg) joules/kilograms celsius

celsius

△ means change

You DO NOT need to learn this equation for the exam,

Calculating change in thermal energy

Calculate the energy required to increase the temperature of 2 kg of water from 20°C to 100°C. The specific heat capacity of water is 4200 J/Kg°C.

- 1. Calculate the change in temperature: 100 20 = 80
- 2. Use the equation $\Delta E = m \times c \times \Delta \theta$

3. Substitute the values into the equation. $\Delta E = 2 \times 4200 \times 80$

4. $\Delta E = 672000 J$ (or 672kJ)

Practice question #1

An iron has an aluminium foot with a mass of 2kg. Calculate the energy stored in the foot when the temperature rises from 20°C to 180°C. The specific heat capacity of aluminium is 913 J/kg°C.

- 1. Calculate the change in temperature: 180 20 = 160
- 2. Use the equation $\Delta E = m \times c \times \Delta \theta$

3. Substitute the values into the equation. $\Delta E = 2 \times 913 \times 160$

4. $\Delta E = 292160 J$ (or 292 kJ)

Specific heat capacity...

Practice question #2

A saucepan cools down from 80 C to 20 C releasing 650000 J of thermal energy. Calculate the mass of the water in the saucepan. The specific heat capacity of water is 4200 J/kg C.

- 1. Calculate the change in temperature: 80 20 = 60
- 2. Use the equation $\Delta E = m \times c \times \Delta \theta$
- 3. Substitute the values into the equation. $650000 = m \times 4200 \times 60$
- 4. Simplify the equation. 650000 = 252000m
- 5. To calculate m, divide the number on the left by the number on the right. $m = 650000 \div 252000$

6.
$$m = 2.58 \text{ kg}$$

Practice question #3

A storage heater contains 20kg. 400000 J of energy is transferred to heat up the 15 C to 40 C. Calculate the specific heat capacity of concrete.

- 1. Calculate the change in temperature : 40 15 = 25
- 2. Use the equation $\Delta E = m \times c \times \Delta \theta$
- 3. Substitute the values into the equation. $400000 = 20 \times c \times 25$
- 4. Simplify the equation. 400000 = 500c
- 5. To calculate c, divide the number on the left by the number on the right.

$$c = 400000 \div 500$$

6.
$$c = 800 \text{ J/kg}^{\circ}\text{C}$$

