

Use of pre-cultivated perennial mats in large cities*

Herfort, S.¹ and Larsen, M.-S.¹

Problem

- The increasing sealing in cities with the accompanying deterioration of the overall urban climatic situation leads to stress and health problems
- It comes to a reduction in the quality of life of the population
- Especially in congested and heavily sealed inner city areas in large cities, there is a lack of extensive and species-rich green spaces and aisles
- In addition, the increase of CO₂ concentrations in the atmosphere continues, which is a major cause of climate change
- For this reason, great efforts are being made internationally and nationally to reduce CO₂ emissions
- Innovative developments to reduce CO₂ emissions, but also to absorb them, are therefore urgently needed

Objective

- In the research project "Use of pre-cultivated perennial mats in large cities for ecological enhancement", vegetation mats made of sheep's wool were developed for planting with perennial mixtures with high CO₂ uptake
- The objective is to develop an alternative greening concept with an appealing, durable and low-maintenance planting for public spaces
- In a model project in Berlin, over 600 m² of pre-cultivated vegetation mats made of sheep's wool and coconut fibers were pre-cultivated
- Various perennial species were used for shadow and sunny places
- The mats were installed on selected areas with heavy traffic and sealed surfaces or areas that are difficult to green
- Two selected plant mixtures with 8 different perennials were also tested for a roof greening and a greening of an underground garage

Results of vegetation mats of sheep's wool

- After one year, Aster ericoides, Stachys byzantina and Nepeta x faassenii, growing at the sunny site, already reach a high biomass and thus a high CO₂ uptake (Table 1)
- At the shady location Carex hachijoensis and Carex pendula reach a very high biomass and thus a high CO₂ uptake (Table 2)
- The CO₂ uptake of the roots also plays a decisive role
- A perennial mixture of 8 plants can absorb up to about 1110 g of CO₂ in the first year.
- The sheep's wool in the vegetation mats is mainly responsible for the good growth of the perennials
- The mats can absorb up to 27 l/m² of water and hold it for more than 26 days
- The natural nitrogen content in the wool of approx. 10-15% is a long-term fertilizer to the perennials
- In the future, the vegetation mats can also be used for green roofs

Table 1 Dry substance and CO₂ uptake of perennials for sunny location after 1 year

Plant name	Above-ground biomass (dry substance) [g/plant]	Root (dry substance) [g/plant]	Whole plant (dry substance) [g/plant]	CO ₂ uptake [g/plant]
Aster ericoides	46.1	152.2	198.4	294.0
Achillea filipendulina	16.8	19.1	35.8	55.2
Panicum virgatum	20.6	82.7	103.3	142.2
Stachys byzantina	38.8	90.6	129.4	160.9
Nepeta x faassenii	36.3	83.6	119.9	171.4
Sedum telephium	38.9	42.9	81.8	117.9
Calamintha nepeta	29.3	34.2	63.4	99.0
Sedum floriferum	21.4	23.9	45.3	69.5
Total	248.2	529.1	777.3	1110.1

Table 2 Dry substance and CO₂ uptake of perennials for shady location after 1 year

Plant name	Above-ground biomass (dry substance) [g/plant]	Root (dry substance) [g/plant]	Whole plant (dry substance) [g/plant]	CO ₂ uptake [g/plant]
Carex pendula	30.8	63.2	94.0	150.6
Hosta lancifolia	8.1	20.8	28.8	43.6
Hosta ventricosa	13.5	35.1	48.6	74.8
Bergenia cordifolia	41.4	27.2	68.5	107.8
Carex hachijoensis	48.9	72.9	121.8	192.9
Liriope muscari	15.0	32.6	47.5	73.1
Vinca minor	19.9	19.6	39.5	63.8
Total per 1 m ²	177.4	271.4	448.8	706.6

