Adaptive designs in clinical trials

Francois Vandenhende, Ph.D. Clinbay

francois@clinbay.com

UCL, March 6, 2009

Outline

- Introduction to Bayesian adaptive doseresponse trials
- Illustration of adaptive dose-response trials in
 - Phase I (safety)
 - Phase II (efficacy)
- Software
- Conclusions

Definition: Adaptive Dose-Response Trials (AD-RT)

- Designs with prospectively defined doseadapting plans.
- Controlled multi-arm clinical trials
- Planned interim analyses at selected times
- Outcomes at each interim:
 - Early stopping:
 - Futility
 - Efficacy
 - Adapt treatment allocation in next cohort

Adaptive design process map

Advantages and Challenges

Advantages

- Test more treatments/ doses
 - Fewer retained at the end
- Early decisions
 - Ethical benefit
 - Accelerated development
- Limit risks of failed trials

Challenges

- Statistical
 - Multiplicity/ Control of error rates
 - Predictions
- Trial Logistics
 - Access to data (EDC)
 - Drug Supply
- Feasibility
 - Recruitment rate slow relative to time to response.

Bayesian adaptive design

 Relies Bayes theorem to summary treatment effects at any time:

$$p(\theta \mid y) \propto p(\theta) p(y \mid \theta)$$

- Mix of study data and prior information
 - Weight of likelihood increases with sample size
- Decisions based on :
 - Posterior probability of success/failure
 - intuitive and interpretable risk estimators
 - Posterior predictive distributions
 - E.g., Predictive power at final analysis.
 - Utility functions

Decisions

Posterior distribution:

$$p[g(\theta) \mid y]$$

- Examples: $g(\theta)$ = drug effect vs pbo
 - Efficacy decision if Pr[g(θ)>ε|Y] is large (eg, >95%)
 - Futility decision if $Pr[g(\theta)>\epsilon|Y]$ is low (eg, <5%)

Decisions

- Posterior predictive distribution
 - Decisions based on predictions
 - Distribution of future responses:
 - Given current data, and
 - Unconditionally to any fixed parameter value.

$$p(y_{new} \mid y) = \int p(y_{new} \mid \theta, y) p(\theta \mid y) d\theta$$

 Example: proportion of future patients with a response high enough should be large

$$\Pr[y_{new} > \varepsilon \mid y] > \tau$$

Decisions

- Predictive power for a test at study completion
 - Interim data = Y
 - Sample size at completion = N
 - $-\alpha$ is the type I error rate for the test
 - $-\beta(\theta_0)$ is the type II error rate for the test at $\theta = \theta_0$
 - Then, predictive power is

$$1 - \int \beta(N \mid \alpha, \theta, y) p(\theta \mid y) d\theta$$

Adaptive allocator

- Utility-based
- Enrolment in cohorts
 - Flexible treatment arms: N patients among x arms
 - Fixed treatments (N/arm)
- Utility of flexible arms computed after each interim

analysis (larger is better).

$$E(d) = \int U(d,\theta) p(\theta \mid y) d\theta$$

- Examples
 - Variance of a parameter
 - Cost/Benefit ratio for dose
- Randomise proportionally to utility values.

ILLUSTRATIONS IN:

- PHASE I (SAFETY)
- PHASE II (EFFICACY)

ADAPTIVE DESIGN IN PHASE I

Dose-escalation methods:

- CRM : O'Quigley et al. (1990), Chevret (1993), Faries (1994), Goodman et al. (1995)...
- EWOC: Babb et al. (1998), Zacks et al (1998), Shih et al. (1999), Tighiouart et al (2005),...

First Human Dose

- First-in-man, single dose escalation trial of a cancer product
- Low dose tested before escalating up
 - Cohort of 3 patients/dose
 - Interim safety review drives dose escalation & trial termination
- Dose-limiting toxicity (DLT)
 - Overall summary of subject's tolerability evaluation
 - Binary response (No DLT/ DLT) per subject.
- Goal of study:
 - To identify the maximum tolerated dose (MTD)
 - Dose at which DLT rate is not too large: 20 to 30%.

Dose-response model

Logistic regression:

Response = Yes/No

$$Y_{ij} \sim Bern(p_j)$$

$$\log(\frac{p_j}{1-p_j}) = \alpha + \beta * dose_j$$

2 parameters:

- α : logit score under placebo (α=0 ⇔ p=50%)
- β : log-odds ratio for a change with dose. Monotonic increase with dose when $\beta>0$.

Bayesian inference - Priors

Prior distribution of model parameters:

- Before study starts, elicitation of
 - α: Non-tolerability rate under placebo

Bayesian inference - Priors

 – Exp(β): change in NT odds ratio when increasing dose by 1 unit.

Convenient reparameterization

- Dose in [Xmin, Xmax]
 - $-\rho = Pr[DLT|dose=Xmin]$
 - $-\gamma = MTD$
- Then,

$$\alpha = \frac{1}{\gamma - X \min} [\gamma \log it(\rho) - X \min \log it(0.3)]$$

$$\beta = \frac{1}{\gamma - X \min} [\log it(0.3) - \log it(\rho)]$$

Bayesian Posterior Update

Starts out of full conditionals of model parameters:

$$f(\beta | \alpha, Y)$$
 and $f(\alpha | \beta, Y)$.

- If not analytical form available, use known distribution & accept/reject samples (e.g., Metropolis/Hastings algorithm).
- Then, iterate on the following sampling scheme:

$$\beta_k \sim f(\beta \mid \alpha_{k-1}, Y)$$

$$\alpha_k \sim f(\alpha \mid \beta_k, Y)$$

• The chain converges when k is large to a random sample $\{\alpha_k, \beta_k\} \sim f(\beta, \alpha \mid Y)$

Model implementation in Winbugs

```
model{
# loop across subjects
for(i in 1:N) {
  logit(p[i]) <- alpha + beta*d[i]
  y[i] \sim dbern(p[i], n[i])
  alpha \sim dnorm(-4,0.25)
  beta \sim dnorm(0.3,44)
```

We.

Trial Objective: MTD

- The objective of the trial is:
 - To estimate precisely the MTD

$$\hat{MTD} = \max_{j} \frac{d_{j} : \Pr(p_{j} \le 30\% \mid Y)}{\sum_{j=1}^{n} \hat{\beta}} \cdot \frac{\log(0.3/0.7) - \hat{\alpha}}{\hat{\beta}}$$

– Stop enrolment when:

CV(MTD)<20%

Prediction

 Predicting future DLT rate in next cohort of 3 patients at a dose:

$$p(y_{new} | y) = \int Bin(p, 3) f(p | y) dp$$

MCMC estimation

$$Y_{k.new} \sim Bin(p_k,3).$$

$$\overline{Y}_{new}$$

Adaptive Allocator

- Enroll subjects in cohorts of size=3
- Start with lowest dose possible
- Pre-specify list of admissible doses:
 - Xmin, X2, X3, ..., Xmax.
- Adaptive allocator = posterior probability that dose xi is the MTD.
- Randomizer = All 3 subjects to dose with highest probability.

Overdose control (EWOC)

- Ethically, one cannot assign unsafe doses.
- Do not test too high doses if lower safe doses have not been administered beforehand.
- Admissible doses d_i:
 - d_i < low quantile of MTD distribution
 - Or so that $Pr[p_i>30\%|Y]$ is low
- Practical limit:
 - No more than doubling the maximum administered dose.

How does the CRM allocator work?

Posterior logistic model (N=3 @ dose=1; No DLT).

Pr[Dose=MTD] & Allocator

Trial Simulations

- To assess operational characteristics of an adaptive design
- Example: 10 dose levels DLT rate:

- True MTD = 7.17mg
- N=3/dose Max size =60 (20 cohorts).

Simulation Results (100 sims)- Size

Pr[Stop before cap]=66%

Simulation Results - MTD

MTD estimate => 7.13 mg

Pr[DLT] vs dose

Simulation results - Doses

Dose allocation by cohort

Summary: Adaptive design in Phase I

- Goal is to estimate the MTD
- Bayesian method provides a probability measure that each dose is the MTD.
- Ethical benefit:
 - Stop when precision is sufficient
- Mix of statistical methodology, expert input and practical constraints
- Trial simulations help to predict future trial performance
- Several methods (CRM, EWOC,...) around a similar concept
- Multivariate/Mixed model extensions.
 - Several endpoints (efficacy/safety)
 - Several patient populations

Hybrid Bayesian/Frequentist Analysis

Two part efficacy study:

- 1. Proof of concept: MTD vs placebo
- 2. Dose-ranging

ADAPTIVE DESIGN IN PHASE II

Phase II Clinical Trial

- Neuropathic Pain Compound
- Change in VAS after 12 weeks.
- Doses of 0, 14, 28, 42, 70, 98, 140mg
- 2 Parts study:
 - POC:
 - N=20/arm Pbo vs 140mg
 - T-test at ½ study part (interim) and at completion
 - Dose-ranging if POC successful
 - N=12 subjects/cohort; 1 pbo & 11 active
 - Maximum of 10 cohort in total (including POC): N<=136.
 - Goal: Find ED50 = dose producing 50% of the maximum effect at 140mg.

Normal Dynamic Linear Model (NDLM)

• Semi-parametric regression for normal responses
The model is as follows:

$$Y_{ij}|x_i \sim N(\theta_i, \tau),$$

where τ is the residual precision (i.e., the inverse variance), and for j>1:

$$\theta_{i} = \theta_{i-1} + (x_{i} - x_{i-1})\delta_{i-1} + \omega_{i}, \quad \omega_{i} \sim N(0, \tau/W_{\theta}),$$
 (1)

and

$$\delta_j = \delta_{j-1} + \gamma_j, \quad \gamma_j \sim N(0, \tau/W_{\delta}).$$

- W is the variance inflation factor. It determines the extend of smoothing in D-R curve:
 - W => 0: rigid fit => linear regression
 - W => ANOVA

Quantile variance allocator

• Quantile q=50% $g(d_{(q)}) = target(q)$.

$$Var[g(d_{(q)})] = \sum_{k=0}^{K} Var[g(d_k)] p_k(d_{(q)}),$$

Randomizer: Biased-coin proportional to utility value.

Stopping rules

- POC: Frequentist test p<0.05 one-sided
- Dose response:
 - Efficacy: N=30 patients at any single dose
 - Trial failure: 10 cohorts enrolled.

Decimaker Software

- Developed by ClinBAY
- Adaptive design & Bayesian analysis software
 - Trial simulations
 - Inference
- Main Features
 - CRM method
 - NDLM
 - Models for normal & binary data
 - Frequentist & Bayesian tests
 - D- & C-optimal designs
- Interactive & batch-mode execution.

Decimaker Architecture

- ☐Uses R and Winbugs for computation
 - R/Dcom server link to GUI
 - Versatile
 - Powerful
- ☐ Graphical interface in .NET
 - Microsoft GUI
 - Nicer, dynamic graphics
 - Inter-operational with MS products
- □Clinical trial oriented
 - ■Support, validation, audit trails,...

Software components

Demo

- Phase II 2 Part Study
 - Simulation results

Summary: Adaptive design in phase II

- Mixed Bayesian/Frequentist Inference possible
 - Extensions: Group-sequential methods, predictive power
- Semi-parametric regression for dose-response:
 - Weaker assumptions than model-based
 - Slight loss of efficiency
 - Worst case scenario reverts to ANOVA
- Multi-Part/Seamless Phase trials:
 - « Keep the ball rolling »
 - Pre-planning of resources is more demanding.

Conclusions

- Bayesian adaptive designs permit to:
 - Design studies based on quantitative measures of risks/benefits
 - Modify designs in real-time to optimize these measures.

Modeling and simulations

This requires specialized skills and software:

Thank you!

ANY QUESTION?

A job with us? See www.clinbay.com/-Career-.html