Adaptive Bayesian Methods for Biomarker Trials: Application to Brain Imaging

Francois Vandenhende, Ph.D.

francois@clinbay.com

PSI Biomarker in Early Phase, London, 18 Nov. 2008.

Disclosure

 I work for a statistical CRO that develops and commercializes Decimaker, a software for Bayesian adaptive designs and decision analyses.

www.decimaker.com

Objective

 Develop a Bayesian Toolbox for Early Phase Biomarker Trials:

- Show value of Bayesian methods
 - Case study using brain imaging
- Leverage use of Bayesian methods
 - Sharing of programs and best practices

Outline

Background: biomarkers in early phase

 Bayesian toolbox & use in a simple example

Some more advanced problems

Summary and Conclusions

Survey # 1

WHO KNOWS ABOUT BAYESIAN METHODS?

RE: ABOUT 20/30

WHO USES THEM FOR BIOMARKERS?

RE: 2/30

WHAT LANGUAGE?

RE: C (N=1) DURING PHD.

Biomarkers in Early Phase

- Proof of mechanism:
 - Drug-on-target assessment

Receptor Occupancy PET

- Proof of principle:
 - Pharmacodynamic effect on disease phenotype

β-CIT SPECT in Parkinson

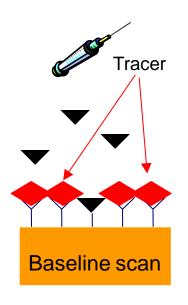
- Proof of concept:
 - Clinical benefit to patient

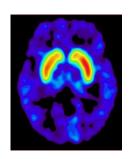
FDG-PET in Oncology

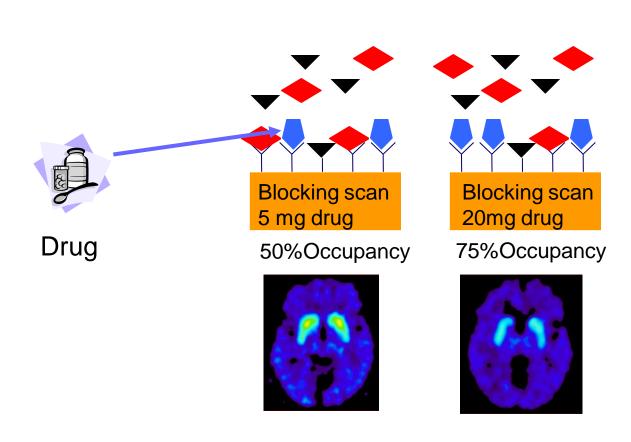
Opportunities and Challenges

- Streamline drug development:
 - Go/No go
 - Dose selection
- Some Challenges:
 - Complex technology, signal processing
 - Multiplicity of targets
 - Small sample size, expensive assay
 - Reliability of decisions
 - Trial failure: is it drug failure or biomarker failure?

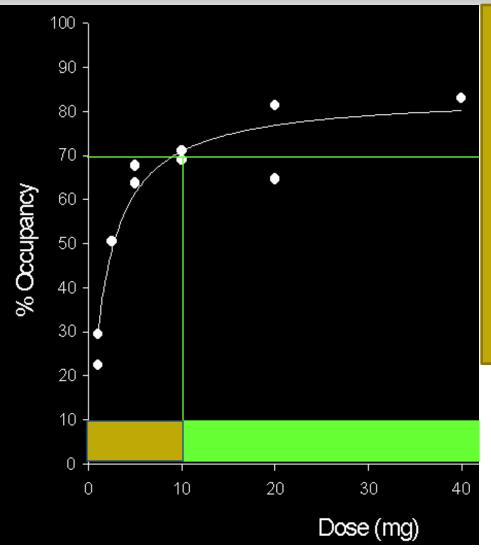
Example: Receptor Blockade PET







O Dose-Occupancy Relationship



Strategy:

Fit dose-response model

Find dosage range producing meaningful response.

Examples:

11C-DASB PET for SSRI

J. Meyer et al., [11C]DASB uptake before and after fluoxetine, Toronto.

Fixed-design, Frequentist

 Pre-specify design, doses, size.

- Fit model (e.g., Emax)
- Decide based on pvalues, confidence intervals.

Bayesian Adaptive

- Choice of relevant priors
- Pre-specify analysis plan and max. size.
- Enroll iteratively groups of patients
- Fit model (e.g., Emax)
- Decide based on posterior distribution :
 - Stop/Go
 - Adaptive dose selection
- Predict future events

Bayesian Methods

Posterior update

$$p(\theta \mid y) \propto p(\theta) p(y \mid \theta)$$

- Intuitive idea: cumulative learning of historical and trial information
- Immediate applications to drug development:
 - Summary of relevant information
 - Probability of success
 - Utility-based decisions
 - Prediction of future results

SIMPLE BAYESIAN TOOLBOX FOR RO-PET

We.

Simple Illustration

 Dose-Response Emax Model for One Brain Region:

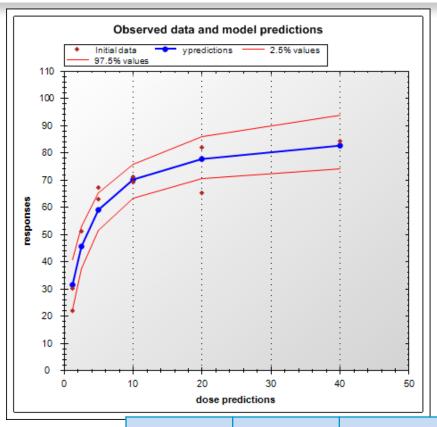
$$\mu = E0 + \frac{E \max dose}{ED_{50} + dose}$$

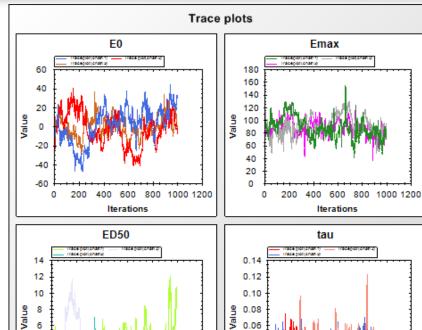
- Priors:
 - Flat on Emax and ED50.
 - Informative on E0: normal; mean=0, std=20.

Winbugs code for Emax model

```
model{
for (i in 1:n.obs) {
  y[i]~dnorm(mean[i],tau)
  mean[i]<-E0 + Emax * x[i]/(ED50+ x[i])}
E0~dnorm(0,.0025)
Emax~dflat()
ED50~dflat()
tau~dgamma(0.0001,0.0001)
```


Model fit to PET data





600 800 1000 1200

0.04 0.02

> 0 200 400

600 800 1000 1200

				Ite	erations	Ite	rations
	Param	mean	sd	2.5%	median	97.5%	
	E0	-0.823	15.99	-36	0.359	28.58	
	Emax	88.74	14.63	60.43	87.58	120.8	
	ED50	2.84	1.836	0.95	2.34	8.618	
	tau	0.021	0.012	0.005	0.019	0.05	

0

200 400

Bayesian Decisions

Principle: Based on posterior distribution of functions of parameters.

Examples:

- Probability of success
 - $-\Pr[\mu(dose)>70\%|data]$

Pr(40mg)=99%

- Estimation of a target dose
 - Predicted dose where μ =70%

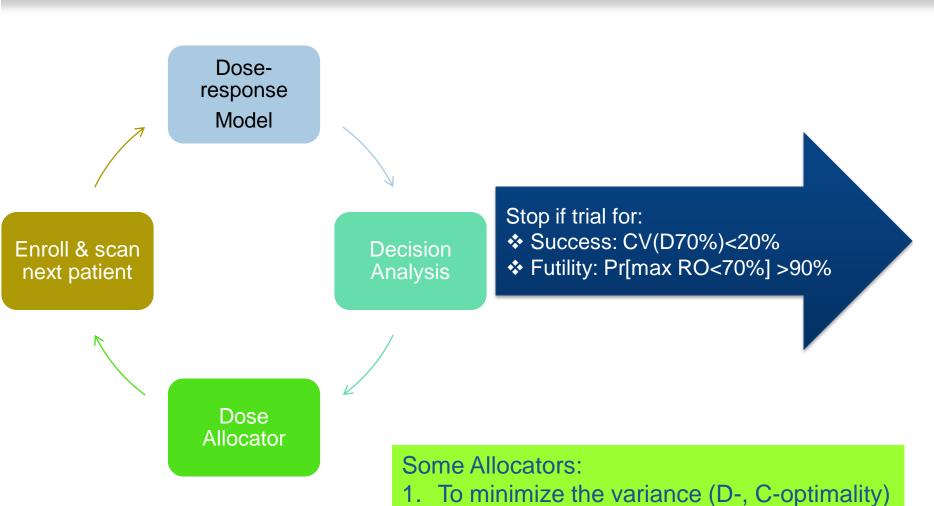
$$D_{70\%} = \text{ED50} \frac{70\% - \text{E0}}{\text{Emax} - 70\% + \text{E0}}$$

	Mean	Sd	Median
D70%	10.51	5.30	9.78

Winbugs code for Decisions

```
model{
for (i in 1:n.obs) {
Likelihood...
Pr.70[i]<-step(mean[i]-70)}
Priors...
Dtarget<-ED50*(70-E0)/(Emax-70+E0)
```


Adaptive Dose Selection



2. To find a target dose (D70%)

Utility-based dose allocators

- Let {d₁, ..., d_N} be the set of possible doses:
 - E.g., 1.25, 2.5, 5, 10, 20, 40mg
- We choose as next dose the candidate that maximizes the expected utility function:

$$E(d) = \int U(d,\theta) p(\theta \mid y) d\theta$$

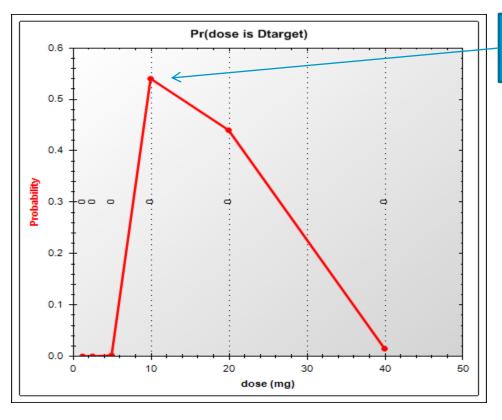
Some utility examples:

- Variance:
 - D-optimality: $U(d,\theta) = det[M(d,\theta)]$
 - C-optimality: U(d,ED50) = var[ED50(d)]

- Minimum dose producing desired effect:
 - $dTarget(θ) = min_d μ(d, θ)≥70%$
 - $-U(d,\theta) = \{d==dTarget(\theta)\}$

Results: DTarget Allocator

Probability that dose is the minimum dose where RO>70% versus dose.



Largest probability at 10 mg (54%).

Winbugs/R code for DTarget

Remember: Pr.70 : matrix (#col=#doses) equal to TRUE if mean[i]>=70%, FALSE otherwise.

Then, in R:

dose<-c(1.25,2.5,5,10,20,40)

We calculate for each row(j) of Pr.70:

min.dose[j]<-min(dose[pr.70[j,]])

The Dtarget distribution is computed from frequencies in:

table(min.dose)

Survey #2:

We have discussed:

- the choice of relevant priors to gain efficiency & decrease size
- Bayesian Go/Stop and adaptive allocation decisions based on posterior distribution functions.

WHAT ELSE CAN BE ACCOMPLISHED USING BAYESIAN METHODS?

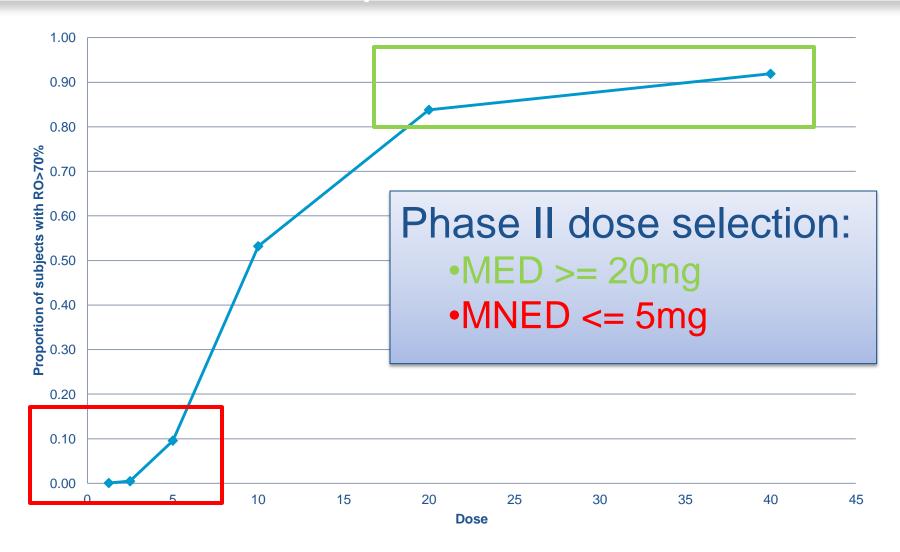
Predictions

- Posterior predictive distribution
 - Look at what is most likely next:
 - Given current data, and
 - Unconditionally to any fixed parameter value.
 - Predicting Receptor Occupancy in future patient:

$$p(y_{new} \mid y) = \int p(y_{new} \mid \theta, y) p(\theta \mid y) d\theta$$

Virtual patient model

Proportion of Future Patients with Receptor Saturation



Winbugs code for prediction

```
model{
for (i in 1:n.obs) {
Likelihood...
next.RO[i]~dnorm(mean[i],tau)
pr.next.70[i]<-step(next.RO[i]-70)
}...}
```


Predictive Power

- We would like to use the current knowledge summarized in the posterior distribution to calculate sample size for a next study:
 - Goal is to show that μ >70%

We compute the predictive power:

$$PP(\mu > 70\%) = \int CP(\mu > 70\% \mid \theta, y) p(\theta \mid y) d\theta$$

WinBugs/R Code for Conditional Power

 Step 1 - WinBUGS: We predict the mean RO for the target sample size N as:

```
N<-4; sd<- sqrt(1/tau);
se<-sd/sqrt(N);inv.se2<-1(se*se);
mean.N~dnorm(mean,inv.se2)
```

 Step 2 – R: We calculate the power for the t-test statistic using:

```
cp<-power.t.test(n=N,delta=mean.N-70,sd=sd,alternative="one.sided",type="one.sample")
```

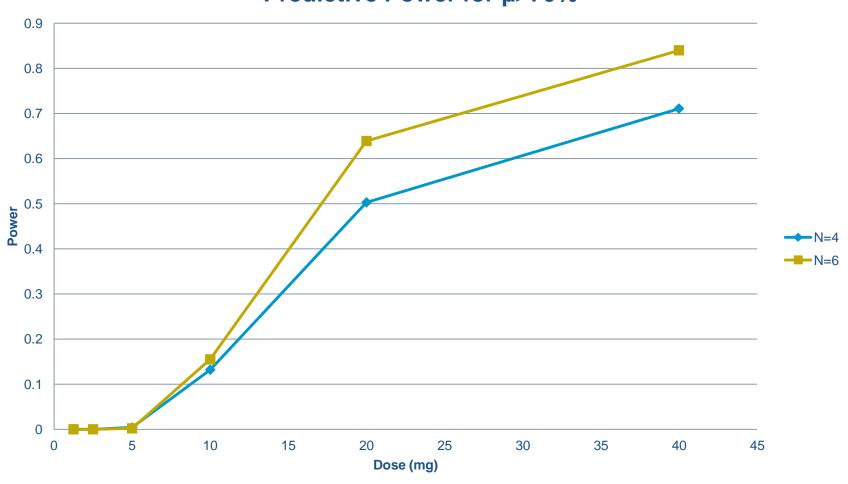

R Code for Predictive Power

 We start out of cp\$power: the MCMC chain of conditional powers:

Mean.N	Sd	cp\$power
84.5	10.1	0.7686
72.4	9.7	0.5673
78.7	12.3	0.6575
81.7	9.2	0.7889

 The predictive power is then calculated as: mean(cp\$power)

Result for PET trial



Use of Discrete Priors

- Discrete probability distribution for selected parameters
 - E.g.: Instead of Emax~flat(), we define:

Emax	Prior Prob.	Posterior Prob.
0	33.3%	0.03%
50	33.3%	7.27%
70	33.3%	92.70%

- Utility:
 - Dichotomous decisions
 - Dose selection (eg, ED50)
 - Use of posterior MCMC samples as a new prior

Inits...

Winbugs code for discrete priors

```
Emax<-Emax.v[Emax.k]
Emax.k~dcat(Emax.p[])
Data:
Emax.v=c(0, 50, 70)
Emax.p=c(0.33, 0.33, 0.33)
```


Summary and Conclusions

- We illustrated the Bayesian logic applied to early phase biomarker trials.
- We discussed:
 - Choice of priors
 - Bayesian posterior analysis for decision, adaptive designs, predictions and power.
- Extensions to more complex models is « easy ».
- Main obstacles to Bayesian methods:
 - Know-how: need sharing of best practices
 - Programming:
 - Winbugs is a standard but not really user-friendly
 - Proc MCMC in SAS 9.2 (new & not tested yet).

