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A B S T R A C T   

Purpose: Image registration plays a vital role in spatially aligning multiple MRI scans for better longitudinal 
assessment of tumor morphological features. The objective was to evaluate the effect of registration accuracy of 
six established deformable registration methods(ANTs, DRAMMS, ART, NiftyReg, SSD-FFD, and NMI-FFD) on the 
predictive value of extracted radiomic features when modeling recurrence-free-survival(RFS) for women after 
neoadjuvant chemotherapy(NAC) for locally advanced breast cancer. 
Methods: 130 women had DCE-MRI scans available from the first two visits in the ISPY1/ACRIN-6657 cohort. We 
calculated the transformation field from each of the different deformable registration methods, and used it to 
compute voxel-wise parametric-response-maps(PRM) for established four kinetic features.104-radiomic features 
were computed from each PRM map to characterize intra-tumor heterogeneity. We evaluated performance for 
RFS using Cox-regression, C-statistic, and Kaplan-Meier(KM) plots. 
Results: A baseline model(F1:Age, Race, and Hormone-receptor-status) had a 0.54 C-statistic, and model F2 
(baseline + functional-tumor-volume at early treatment visit(FTV2)) had 0.63. The F2+ANTs had the highest C- 
statistic(0.72) with the smallest landmark differences(5.40±4.40mm) as compared to other models. The KM 
curve for model F2 gave p=0.004 for separation between women above and below the median hazard compared 
to the model F1(p=0.31). A models augmented with radiomic features, also achieved significant KM curve 
separation(p<0.001) except the F2+ART model. 
Conclusion: Incorporating image registration in quantifying changes in tumor heterogeneity during NAC can 
improve prediction of RFS. Radiomic features of PRM maps derived from warping the DCE-MRI kinetic maps 
using ANTs registration method further improved the early prediction of RFS as compared to other methods.   

Introduction 

Breast cancer is the second leading cancer in the United States and 
continues to increase in incidence [1]. An estimated 281,550 new cases 
of invasive breast cancer will be diagnosed among women in 2021 that 
will result in approximately 43,600 breast cancer deaths in women in 
the same year [1]. This emphasizes the need for early tumor diagnosis 
and accurate assessment of treatment response. In the budding precision 
medicine era, it is accepted that a predefined therapy treatment may not 
provide effective treatment for all patients or yield identical responses. 

Identifying the non-responders at an early stage may direct these pa-
tients to different therapies, leading to potentially better outcomes [2, 
3]. This highlights the importance of early predictions of patient 
response to cancer treatments or therapies [4,5]. The longitudinal pat-
terns of tumor response may be a significant predictor in evaluating 
treatment response and measuring the likelihood of overall survival 
during neoadjuvant chemotherapy (NAC). At present, NAC has become 
a standard preoperational treatment paradigm for locally advanced 
breast cancer patients, which enables monitoring the longitudinal 
changes [6,7]. 

* Corresponding author at: Rm D702 Richards Bldg. 3700 Hamilton Walk. 
E-mail address: despina.kontos@pennmedicine.upenn.edu (D. Kontos).  

Contents lists available at ScienceDirect 

Translational Oncology 

journal homepage: www.elsevier.com/locate/tranon 

https://doi.org/10.1016/j.tranon.2022.101411 
Received 24 January 2022; Received in revised form 9 March 2022; Accepted 27 March 2022   

mailto:despina.kontos@pennmedicine.upenn.edu
www.sciencedirect.com/science/journal/19365233
https://www.elsevier.com/locate/tranon
https://doi.org/10.1016/j.tranon.2022.101411
https://doi.org/10.1016/j.tranon.2022.101411
https://doi.org/10.1016/j.tranon.2022.101411
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2022.101411&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Oncology 20 (2022) 101411

2

Breast cancer is a heterogeneous disease, with intra-tumor hetero-
geneity manifesting in imaging modalities both spatially and tempo-
rally. Recent studies have shown that analysis of intra-tumor 
heterogeneity manifests in raw image data [8,9] or parametric maps of 
kinetic features [10,11], which can help in the evaluation of breast 
cancer therapy response. Regional analysis like voxel-based analysis can 
capture heterogeneity better than average-based whole-tumor analysis 
[12,13]. Conventional biomarkers have fallen short of fully capturing 
intra-tumor heterogeneity as reported in previous studies [14–16]. 
Several studies have shown that voxel-level heterogeneity measures 
derived from dynamic-contrast-enhanced MRI (DCE-MRI) can be asso-
ciated with NAC outcomes [11,17]. 

During treatment of locally advanced breast cancer, monitoring 
tumor changes during NAC effectively and predicting the long-term 
pathologic response and recurrence-free survival (RFS) are important 
for patient management [18]. For this purpose, clinicians refer to lon-
gitudinal breast MR images acquired in multiple visits, days or weeks 
apart [7]. In contrast, to quantify heterogeneous tumor changes, the 
challenge is to evaluate patients over multiple longitudinal MRI acqui-
sitions to assess the morphological and functional tumor changes during 
treatment. For a better assessment of tissue morphological features, 
inter-visit image registration can play a vital role in bringing multiple 
MRI scans in the same space [19]. Deformable image registration 
techniques can also evaluate the spatial heterogeneity of voxel-level 
changes [18,20,21]. There are several image registration methods that 
exist and can be used for this task. Moreover, a comprehensive evalua-
tion of these image registration methods remains an unexplored topic, 
motivating our work in this article. 

The purpose of our study is to evaluate the effect of the registration 
accuracy of several deformable image registration methods on the pre-
dictive value of extracted radiomic features to model RFS in women 
undergoing NAC for locally advanced breast cancer. We also evaluate 
and compare six deformable image registration methods based on 2,380 
landmarks individually marked by two radiologists in an independent 
dataset of longitudinal breast MR scans. 

Methods 

Study population and MRI data acquisitions 

There was no consent required for this retrospective study as de- 
identified data was obtained from “The Cancer Imaging Archive” 
(TCIA) [22]. This study has been approved by the Institutional Review 
Board of the University of Pennsylvania. The patient population 
analyzed in our study was a subset of patients with longitudinal breast 
DCE-MRI scans, publicly available at TCIA, from the ISPY1/ACRIN 
66577 trial. The women enrolled in the study had T3 breast tumors 
measuring 3cm and received anthracycline-cyclophosphamide neo-
adjuvant chemotherapy. The imaging protocols were previously 
described according to the ISPY1/ACRIN 66577. 

All MRI experiments were performed at 1.5 Tesla using a dedicated 
breast coil. Four longitudinal MRI examinations were performed at 
different time points during the therapy. In this study, we used MRIs 
from the first two visits, focusing on the ability to predict likelihood of 
survival early in the course of the therapy. The first MRI (T1, MRI1 (pre- 
treatment)) was performed at four weeks before anthracycline- 
cyclophosphamide (AC) chemotherapy. The second MRI (T2, MRI2 
(early-treatment)) was performed at least two weeks after the first cycle 
of AC and before the second cycle of AC. 

Cohort for evaluating registration accuracy 
Prior to analyzing the cohort for RFS, an independent “test-retest” 

sample of 14 subjects with retrospectively collected breast MR images, 
also publicly available by the ISPY/ACRIN 6657, were used to evaluate 
the registration accuracy in this study [23,24]. This dataset was previ-
ously used and described in the literature to evaluate the registration 

accuracy for different registration methods (DRAMMS, NMI-FFD and 
SSD-FFD) [19]. Briefly, two experienced breast imaging radiologists 
annotated landmarks individually in the images. A total of 2,380 land-
marks (median 78 (IQR:63.25-107.25) per patient) were marked and 
labeled at breast boundaries, nipples, internal milk ducts, chest walls, 
glandular structures, vessels, and tumors. We registered the follow-up 
image to the baseline image for each patient (median 17.5 
(IQR:14-55.75) days apart). The expert-defined landmarks were used as 
the gold standard. In the current study, we included and compared the 
registration accuracy of ANTs, ART and NiftyReg methods with above 
mentioned methods. 

Cohort for the prediction of NAC RFS 
The functional tumor volume (FTV) calculated at pre-treatment 

(FTV1) and early-treatment visits (FTV2) was available for each DCE- 
MRI scan. According to STEEP criteria [25], RFS outcomes were calcu-
lated for each woman, defined as the time from the first chemotherapy 
cycle to the event (i.e., recurrence or death). The inclusion and exclusion 
criteria used to attain the final study cohort are summarized in Figure 1. 
After excluding 65 scans due to incomplete clinical and/or imaging data 
at the first two visits, 15 scans due to the low image quality, and 12 scans 
for which image registration failed, our final analysis included 130 
women with 38 events from the ISPY1/ACRIN 66577 cohort for RFS 
analysis. Pathologic Complete Response (pCR) information was missing 
for 5 participants, leaving 125 patients for pCR analysis, having an 
overall tumor response rate for our study sample of about 28.5%. 

Image pre-processing 

All images were pre-processed using N3 bias-field normalization to 
minimize intensity variations caused by the imaging sequences or arti-
facts [26] . Histogram matching was applied between pre- and 
early-treatment images for more accurate registration [10]. These image 
pre-processing steps were applied before registration and quantitative 
analysis. 

Registration methods and parameter setting 

After the pre-processing steps, we used six different deformable 
image registration methods outlined in Supplementary Table S1 (ANTs, 
DRAMMS, ART, NiftyReg, SSD-FFD, and NMI-FFD) for spatial and 
anatomical alignment of the early-treatment MRI scans to their corre-
sponding pre-treatment MRIs. Each deformable image registration 
method is usually described by three important components: 1) 

Fig. 1. Inclusion and exclusion criteria for our study.  
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deformation model, 2) similarity metric, and 3) regularization, as shown 
in Table S1. We chose these methods because they are publicly available 
and previously reported in the literature to register MR images in gen-
eral [19,27–31]. Below we summarize the registration methods evalu-
ated in our study. The parameters stated below were not set arbitrarily. 
Generally, the authors of the below-mentioned studies evaluated a wide 
variety of parameter settings and reported the ones that gave the most 
accurate alignment of longitudinal breast MR images. 

Advanced normalization tools (ANTs) 
ANTs [32] splits the diffeomorphic deformation into two symmetric 

components. Instead of deforming the first image into the space of the 
second image, which is usually not symmetric to the input images, ANTs 
work by deforming two input images, each towards the “midpoint” 
image. As a result, the formulation is symmetric to the input images. We 
used cross-correlation with symmetric image normalization method 
(SyN) transformation in this study. The ANTs registration tool can be 
found at http://stnava.github.io/ANTs/. 

Deformable registration via attribute matching and mutual-saliency 
weighting (DRAMMS) 

This deformable image registration method [33] is based on 
attribute-matching and mutual-saliency-weighting, which uses 
high-dimensional Gabor texture attributes obtained from the multi-scale 
and multi-orientation neighborhoods of voxels [31]. The DRAMMS 
registration tool is publicly available at http://www.cbica.upenn. 
edu/sbia/software/dramms/. The regularization weight (g) is an 
important parameter that may need to be tuned in the DRAMMS regis-
tration method. It is commonly set between 0 and 1. We used g=0.3, 
which led to slightly smoother deformations than the default setting 
(g=0.2). 

Automatic registration toolbox (ART) 
In the ART [28,34] method, the intensity values of all the neigh-

borhood voxels are stacked to generate a high dimensional feature 
vector that characterizes a voxel. The inner-product of two feature 
vectors and an idempotent and symmetric matrix that removes the mean 
of the vector it pre-multiplies defines the similarity of two voxels. ART 
only searches correspondences at voxels whose gradient norms are in a 
certain upper percentile of the gradient magnitude histogram when 
analyzing the highest image resolution. For ART, sd is defined as spec-
ifying the degree of smoothing applied to the displacement vector field, 
which typically ranges from 5.0 to 12.0 mm. we set sd=8.0 in our 
evaluation. This ART registration tool is publicly available at http: 
//www.nitrc.org/projects/art/. 

Free form deformation (FFD) 
FFD is a geometric transformation model and combined with 

normalized mutual information (NMI) similarity metric in the original 
work [30]. It can be used along with other similarity metrics. Two 
important parameters are control point spacing δ with a larger spacing 
that capture more global deformations; and regularization weight λ with 
larger weights that provide smoother deformations. We used δ = 10 mm, 
larger spacing means capturing more global deformations; and λ =0.01 
in our evaluation. NMI-FFD and SSD-FFD were included in this study. 
This software tool is publicly available at http://www.doc.ic.ac.uk/ 
~dr/software/. 

Nifty registration (NiftyReg) 
This method is used for global and local image registration [27,30]. 

The global registration uses the block-matching technique whereas 
cubic B-splines to capture the local registration. This method is based on 
free form deformation [30], further extended as fast free form defor-
mation [27] to speed-up registration. Normalized Mutual Information 
(NMI) and the Bending-Energy are used in this study. This software tool 
is publicly available at https://www.nitrc.org/projects/niftyreg/. 

Evaluation criterion for registration accuracy 

The inter-expert landmark differences and algorithm-to-expert 
landmark differences were first computed to evaluate the registration 
accuracy using the previously described method [19]. Two radiologists 
independently found their corresponding points in the follow-up image, 
denoted as y1i, and y2i. The inter-expert landmark difference (the length 
of the solid line as shown in Figure 2), for each landmark, was computed 
as the Euclidean distance between the landmark points designated by 
each of the two experts.  

d (y1i, y2i), for i=1,2,3,……………….……,k                                      (1) 

The algorithm-to-expert landmark difference (the average length of 
the dashed lines in Figure 2) was computed as:  

[d (y3i, y1i) + d (y3i, y2i)]/2, for i=1,2,3,…………,k                          (2) 

where d (•,•) is again the Euclidean distance and i varies over the k 
landmarks. 

Computation of parametric response maps (PRM) and their radiomic 
features for the prediction of RFS 

DCE-MRI images consisted of a pre-contrast (t0) image and images at 
two times, t1 and t2, following injection of the contrast agent. The signal 
intensity of each voxel was computed at each time point S(t). Four voxel- 
wise kinetic features were calculated from the t0, t1, and t2 intensity 
values at each voxel, for both pre- and early-treatment images: peak 
enhancement (PE), signal enhancement ratio (SER), wash-in slope 
(WIS), and wash-out slope (WOS) [18]. We also computed the difference 
between the kinetic feature maps from pre- and early-treatment MR 
images without registration. Resampling value of 1 mm was used for 
higher accuracy. Rotation variant LBP was used and a total of 27 
neighbors were considered for computation of LBP. Linear Interpolation 
was used for the MRI images. We extracted 104 radiomic texture fea-
tures (detailed list of radiomic features in Supplementary Table S2) from 
each without registered kinetic features map, using the publicly avail-
able software, Cancer Phenomics Toolkit (CaPTk) [35], applied prin-
cipal component (PC) analysis to the 104-dimensional feature vector 
after calculating the z-score, and retained the first four PCs for modeling 
(i.e., one covariate for every 10 events in our cohort). To quantify voxel 
scale changes between visits, corresponding voxels between pre- and 
early-treatment visits maps must be determined. The transformation 
field derived from the image registration allowed us to construct the 
voxel-wise maps of change in a given kinetic feature (also called the 
PRM) between corresponding points at the pre- and early treatment 
visits. For each of the six different deformable registration methods 
(ANTs, DRAMMS, ART, NiftyReg, NMI-FFD, and SSD-FFD), we calcu-
lated the transformation field and used it to warp the kinetic maps ob-
tained from early-treatment MR images. For a voxel x in the 
pre-treatment image, let T12(x) indicate the voxels in the 
early-treatment image, which was warped to x. For a given Kinetic 

Fig. 2. Depiction of inter-expert and algorithm versus expert landmark 
differences. 
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Feature (KF), one of PE, SER, WIS, or WOS, we computed at the pre- or 
early-treatment visit(KF1 or KF2), the PRM value at each voxel x18 is 
calculated as:  

PRM(x)=Jacobian (KF2(T12(x)) - KF1(x))                                            (3) 

Jacobian is the proportional volume change at x between pre- and 
early-treatment visits, which scales the value when a voxel in one image 
is the larger or smaller volume in the corresponding image. The kinetic 
features (and their PRMs and radiomic features) were only measured 
within tumor. A signal enhancement ratio method was used to analyze 
DCE-MR images and segment functional tumor volumes (FTV1 and 
FTV2). A total of 104 radiomic features were extracted from each PRM 
kinetic map, using CaPTk [35], applied principal component (PC) 
analysis to the 104-dimensional feature vector after calculating the 
z-score, and retained the first four PCs for modeling (i.e., one covariate 
for every 10 events in our cohort). Figure 3 shows the flow chart of the 
analysis performed in this study. 

Statistical analysis 

Cox proportional hazards regression was used to model 5-year RFS 
for each set of covariates, comparing eight models: 1) First, a model with 
the baseline covariates of age, race, and hormone receptor status (model 
F1), 2) model F1 plus functional tumor volume at the early-treatment 
visit (FTV2) (model F2), 3) model F2 plus radiomic feature without 
registration(model F3) and 4-9) the covariates in F2 with the addition of 
the radiomic feature PCs derived from each registration method (ANTs, 
DRAMMS, ART, NiftyReg, SSD-FFD, and NMI-FFD). The C-statistic [36] 
was calculated both on the full models as well as 3-fold cross-validation 
averaged over 100 replicates. The full models were used to generate 
corresponding KM plots, and the log-rank p-value was used for esti-
mating significance of KM separation and hazard ratios (HR) in Cox 
modeling. Each subject’s risk signature was dichotomized at the median 

into high- and low-risk groups. For a given model, the risk signature of 
each subject was defined as that subject’s values of the covariates in the 
model (age, race, hormone receptor status, FTV2, and selected features) 
weighted by the corresponding coefficients of those covariates in the 
model, to arrive at a predicted risk score. For every model, we also used 
a randomization test to calculate a p-value versus the null hypothesis 
that the improvement in the C statistic, obtained by adding the radiomic 
data, was due only to chance. This randomization test was performed for 
both full-model and 3-cross-validated with 100 repetitions C-statistic. 
The p-value of 0.05 cutoff was used to indicate statistical significance 
throughout this article. The radiomic features were extracted using 
Cancer Imaging Phenomics Toolkit (CaPTK) [35] version 1.7.2. The 
statistical analysis was computed using R version 3.3.2. 

Results 

Landmark-based registration accuracy 

The mean and SD of landmark difference(mm) are listed for different 
registration methods (Table 1). The mean inter-expert landmark dif-
ferences was 3.12 ± 2.84 mm. The landmark differences of all the 
automated registration methods evaluated were larger than the inter- 
expert differences. Among the automated registration methods 
included in our study, ANTs had the smallest landmark differences (5.40 

Fig. 3. Outline of the process using different deformable image registration methods. (a) Acquiring dynamic contrast-enhanced magnetic resonance imaging 
before and during neoadjuvant chemotherapy. (b) Computing different kinetic maps from both pre-treatment and early treatment MR images. (c) Applying different 
deformable image registration method to obtain the transformation field, followed by warping the kinetic maps obtained from early treatment MR images. (d) 
Parametric response maps (PRM) showing kinetic feature variation. (e) Computing radiomic features extraction followed by principal component analysis. (f) 
Building multi-variable models using the meta feature and comparing their performance in predicting recurrence-free survival (RFS). 

Table 1 
Mean and Standard Deviation (SD) of Landmark differences(mm) for different 
registration methods and inter-expert.   

Inter- 
expert 

ANTs DRAMMS ART NiftyReg NMI- 
FFD 

SSD- 
FFD 

Mean 3.12 5.40 6.05 10.33 7.02 8.21 9.46 
SD 2.84 4.40 4.86 2.79 4.23 3.81 4.55  
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± 4.40 mm) and was closest to the inter-expert differences, followed by 
the DRAMMS (6.05 ± 4.86 mm), NiftyReg (7.02±4.23), NMI-FFD (8.21 
± 3.81 mm), and SSD-FFD (9.46 ± 4.55 mm). ART had the largest 
landmark differences (10.33 ± 2.79 mm) from the inter-expert 
differences. 

Recurrence-free survival 

130 women were used in our study for RFS analysis. The clinical, 
demographic, and histopathologic information were available for each 
patient, as shown in Table 2. In this study cohort, 38 women (29.2%) 
had recurrence/death events, and 92 women (70.8%) were event-free 
until their last available follow-up (Table 2). 

The baseline model (F1: age, race, and hormone receptor status) 
provided a C-statistic of 0.54 with a full-model and mean 3-fold cross- 
validated with 100 repetitions C-statistic of 0.44 (SD:0.07) (Table 3). 
Fitting this baseline (F1) model to the full dataset, none of the covariates 
(age, race, and hormone receptor status) showed a statistically signifi-
cant association with RFS (Table 4). When adding FTV2 to the baseline 
model (F2), this F2 model provided a full-model C-statistic of 0.63 and a 
mean 3-fold cross-validated with 100 repetitions C-statistic of 0.53 
(SD:0.08) (Table 3). Fitting this model to the full dataset, only FTV2 
showed a statistically significant association with RFS (hazard ratio: 
1.62, p < 0.001), as shown in Table 5. 

For both full and 3-fold cross-validated with 100 repetitions models, 
the C-statistic of Cox models including F2 + PCs of PRM radiomic fea-
tures, as derived from different registration methods were higher than 
the C-statistic of the baseline (F1) model, F2 model and the model 
incorporating radiomic features without registration. The F2 + radio-
mics without registration model (F3 model) provided a C-statistic of 
0.66 and a mean 3-fold cross-validated with 100 repetitions C-statistic of 
0.55 (SD:0.07). Among the automated registration methods (Table 6), 
F4(F2+ANTs) model had the highest performance for the full model (C- 
statistic of 0.72 with p = 0.01) as well as a mean 3-fold cross-validated 
with 100 repetitions (C-statistic of 0.63(SD: 0.07) with p = 0.01). F5 
(F2+DRAMMS) model provided a C-statistic of 0.70 with a full-model 
and mean 3-fold cross-validated with 100 repetitions C-statistic of 
0.58(SD:0.07), followed by F2+NiftyReg, F2+NMI-FFD, and F2+SSD- 
FFD. F6 (F2 + ART) had the lowest performance for both full (C-statistic 
of 0.66) and 3-fold cross-validation with 100 repetitions (mean C-sta-
tistic of 0.54(SD: 0.08)). 

When combining the FTV2 with the baseline predictors, the KM plots 
(Figure 4) showed a greater separation between high-risk and low-risk 
patients based on their median risk score with log-rank p = 0.004 as 
compared to the baseline predictors (log-rank p = 0.31). 

The F4 model gave a greater separation between high-risk and low- 
risk patients with log-rank p<0.0001 as compared to other models (F5: 
log-rank p = 0.00061, F6: log-rank p = 0.036, F7: log-rank p=0.00079, 
F8: log-rank p = 0.0023, and F9: log-rank p = 0.0012) as shown in 
Figure 5. 

Discussion and conclusion 

It has been shown that early-treatment response assessment helps in 
optimizing patient care and treatment alteration [37,38]. Voxel-wise 
3-D volumetric changes can be automatically captured by deformable 
image registration. This makes it a potentially suitable choice for 
quantifying the spatially heterogeneous changes within tumors over the 
course of therapy. This study evaluated six different deformable regis-
tration algorithms (ANTs, DRAMMS, ART, NiftyReg, SSD-FFD, and 
NMI-FFD) for registration of longitudinal breast DCE-MRI scans. We 
evaluated the effect of the registration accuracy of these registration 
methods on the predictive value of radiomic features to model RFS in 
women undergoing NAC for locally advanced breast cancer. We also 
compared the accuracies of different registration methods using 
expert-defined landmarks as gold standard. 

Our work adds several important findings to the literature. We 
showed preliminary results of using the ANTs registration method, 
which had the best accuracy in registering the longitudinal breast MR 
images as evidenced by the smallest landmark differences and being 
closest to the inter-expert differences. DRAMMS had earlier demon-
strated smaller landmark difference reported in previous studies [19], 
which were almost 25–40% smaller than the difference from other 
registration methods (CC-FFD, NMI-FFD, SSD-FFD, Demons, and Dif-
feomorphic Demons). Our results suggest that ANTs registration out-
performs other methods (DRAMMS, ART, NiftyReg, SSD-FFD, and 

Table 2 
Patient characteristics for our study from the ISPY-1/ACRIN 6657 cohort.   

Non-recurrent 
cases 
N=92(70.8%) 

Recurrent/death 
cases 
N=38(29.2%) 

P-Value 

Age  
Median age (IQR), 

years 
47.73(41.31- 
53.30) 

48.77(39.16-53.69) 

Laterality p = 0.78 
Left 46(50%) 18(47.4%) 
Right 46(50%) 20(52.6%) 
Race p = 0.63 
White or Hispanic 69(75%) 30(78.9%) 
Others 23(25%) 8(21.1%) 
Progesterone Receptor Status p = 0.89 
Negative 52(56.5%) 21(55.3%) 
Positive 40(43.5%) 17(44.7%) 
Hormone Response Status p = 0.38 
HER2+ 30(32.6%) 17(44.7%) 
HR+ and HER2- 39(42.4%) 12(31.6%) 
Triple-negative 23(25%) 9(23.7%)  

Table 3 
C-statistics of the F1: baseline and F2: baseline + FTV2 for full and 3-fold cross- 
validation (with 100 rep) Cox models. SD: Standard Deviation; rep: repetitions.  

Model Covariates C-statistic 
(Full 
model) 

Mean C-statistic 
(SD) (3-fold cross- 
validation with 100 
rep) 

F1: Baseline Age, Race, Hormone 
receptor status 

0.54 0.44(0.07) 

F2: F1+FTV2 Age, Race, Hormone 
receptor status, FTV2 

0.63 0.53(0.08) 

F3: F2+Without 
Registration 

Age, Race, Hormone 
receptor status, FTV2, 

radiomics features 
without registration. 

0.66 0.55(0.07)  

Table 4 
Multi-variable analyses of the F1: baseline model using the full dataset for 
hazard ratio assessment.  

Covariate Hazard ratio 95% CI p-value 

Age 0.99 0.95-1.03 0.72 
Race 0.91 0.41-1.99 0.82 
Hormone receptor status 1.11 0.74-1.67 0.59  

Table 5 
Multi-variable analyses of the F2: baseline and FTV2 model using the full dataset 
for hazard ratio assessment. * p <0.05  

Covariate Hazard ratio 95% CI p-value 

Age 0.98 0.95-1.02 0.59 
Race 0.85 0.39-1.88 0.69 
Hormone receptor status 0.99 0.64-1.52 0.97 
FTV2 1.62 1.19-2.20 <0.001*  
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NMI-FFD) in terms of registration accuracy. The registration process 
improves the alignment of the input images, hence ideally resulting in 
improved performance of extracted PRM features. Several studies re-
ported for prediction of RFS without integration of image registration 
[39–41]. Our results suggest that indeed registration methods can 

improve early prediction of RFS, regardless of which method is used. 
Furthermore, improvement in registration accuracy also results in 
further improvement of the extracted PRM radiomic features. Our re-
sults suggest that radiomic features of PRM maps using the ANTs 
registration method significantly improved the early prediction of 

Table 6 
Mean C-statistics of full and 3-fold cross validation (with 100 rep) Cox models including F2 + PCs of PRM radiomic features, as derived from each registration method. 
P value computed using randomization test. SD:Standard Deviation.* p <0.05  

Model C-statistic (Full model) p-value Mean C-statistic (SD) (3-fold cross-validation with 100 rep) p-value 

F4: F2+ANTs 0.72 0.01* 0.63(0.07) 0.01* 
F5: F2+DRAMMS 0.70 0.05 0.58(0.07) 0.07 
F6: F2+ART 0.66 0.20 0.54(0.08) 0.16 
F7: F2+NiftyReg 0.68 0.06 0.56(0.08) 0.20 
F8: F2+NMI-FFD 0.67 0.11 0.55(0.07) 0.07 
F9: F2+SSD-FFD 0.67 0.14 0.56(0.08) 0.17  

Fig. 4. Kaplan-Meier plots of RFS for full models. a) F1: Baseline, and b) F2: F1+FTV2.  

Fig. 5. Kaplan-Meier plots of RFS (full models) for different registration methods. a) F2+ANTs, b) F2+DRAMMS, c) F2+ART, d) F2+Niftyreg, e) F2+NMI-FFD, and f) 
F2+SSD-FFD. 
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survival during NAC compared to other methods. 
In our study, we extracted PRMs derived from warping the DCE-MRI 

kinetic maps using registration methods. The radiomic features based on 
the PRMs of kinetic features are also important in capturing tumor 
heterogeneity to augment models of RFS. The framework of the current 
study consists of robust registration, voxel-wise changes of PRMs of ki-
netic features, radiomic feature and principal component analysis pro-
vide statistically significant improvements over previous similar 
analyses in predicting RFS [7,14]. By adding registration, we improved 
the PRM feature performance, with further improvement for registration 
methods that are most accurate. 

Important limitations of our study must be noted. We analyzed a 
relatively small sample size (n=130) of the women with small number of 
events for RFS analysis. We plan to perform another round of evaluation 
when the imaging data from a larger independent validation data set 
such as ISPY-2 becomes available. An extension of this study can be done 
by applying these analyses to longitudinal images at mid- and late- 
treatment time points to better characterize heterogeneous tumor re-
sponses and the effects of treatment over time. The accuracy of these 
registration methods will also be tested for large anatomical variabilities 
or imaging device differences (e.g., 2-D ultrasound to 3-D MRI) in future 
studies. Other registration methods such as DROP, HAMMER, Plasti-
match, and MIND will also be evaluated in future studies. Registration 
accuracy can be further improved by to utilizing multiple registration 
methods in a meta-analysis framework, where an underperforming or 
failed method in a task can be overcome by other methods. Preliminary 
results for the evaluation of meta-registration pipelines have been 
published in recent articles. For example, the combination of ANTs and 
DRAMMS in a multi-atlas labeling framework, results in a high- 
performance method, as shown in a recent MICCAI segmentation chal-
lenge [42]. Another study focused on the combination of ANTs, Nif-
tyReg, and DROP and showed significantly reduced registration errors in 
pulmonary images [43]. Such a meta-registration framework can also be 
explored for longitudinal breast MRI in the future studies and may 
provide even more predictive signatures in treatment response 
assessment. 

In conclusion, we evaluated the effect of the registration accuracy of 
several deformable registration methods on the predictive value of 
radiomic features to model RFS in women undergoing NAC for locally 
advanced breast cancer. Our study also performed a comprehensive 
evaluation of the deformable image registration methods (ANTs, 
DRAMMS, ART, NiftyReg, SSD-FFD, and NMI-FFD) for longitudinal 
breast MR images to evaluate registration accuracy, using expert- 
annotated landmarks as gold standard. Our results showed a two-fold 
conclusion that analyzing registration-quantified tumor changes im-
proves the prediction accuracy for RFS analysis and improvement in the 
registration process results in further improvements in the performance 
of PRM radiomic features when predicting RFS. In our study, the 
radiomic features of PRM maps derived from warping the DCE-MRI ki-
netic maps using the ANTs registration method significantly improved 
early prediction of survival during NAC. 
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