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Radiomic tumor phenotypes augment molecular
profiling in predicting recurrence free survival after
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Abstract

Background Early changes in breast intratumor heterogeneity during neoadjuvant che-

motherapy may reflect the tumor’s ability to adapt and evade treatment. We investigated the

combination of precision medicine predictors of genomic and MRI data towards improved

prediction of recurrence free survival (RFS).

Methods A total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively

analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from pub-

licly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps

from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion

from each kinetic map, features of change in radiomic heterogeneity were summarized into 6

principal components.

Results We identify two imaging phenotypes of change in intratumor heterogeneity

(p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding

phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint,

PAM50, and p53 scores in a Cox regression model improves the concordance statistic for

predicting RFS from 0.73 to 0.79 (p= 0.002).

Conclusions These results demonstrate an important step in combining personalized

molecular signatures and longitudinal imaging data towards improved prognosis.

https://doi.org/10.1038/s43856-023-00273-1 OPEN

1 Department of Bioengineering, University of Pennsylvania, Perelman School of Medicine 3400 Spruce Street, Philadelphia, PA 19104, USA. 2Department of
Radiology, Division of Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine 3400 Spruce Street, Philadelphia, PA 19104, USA.
3 Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece. 4 DIANA-Lab, Hellenic Pasteur Institute,
Athens, Greece. 5 Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA. 6 Department of Surgery and Oncology,
University of California, San Francisco, USA. 7Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania, Perelman School of
Medicine 3400 Spruce Street, Philadelphia, PA 19104, USA. 8These authors contributed equally: Rhea Chitalia, Marios Miliotis. ✉email: Despina.Kontos@
pennmedicine.upenn.edu

Plain language summary
Early changes in tumor properties

during treatment may tell us whether

or not a patient’s tumor is responding

to treatment. Such changes may be

seen on imaging. Here, changes in

breast cancer properties are identi-

fied on imaging and are used in

combination with gene markers to

investigate whether response to

treatment can be predicted using

mathematical models. We demon-

strate that tumor properties seen on

imaging early on in treatment can

help to predict patient outcomes. Our

approach may allow clinicians to

better inform patients about their

prognosis and choose appropriate

and effective therapies.
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Cancer is a dynamic and heterogeneous disease, with het-
erogeneity manifesting both across and within tumors1,2.
Breast cancer heterogeneity specifically, is well-established,

with intratumor heterogeneity arising due to genomic and tran-
scriptomic variations leading to heterogeneous subpopulations
driving prognosis and response to therapy3,4. As such, increased
heterogeneity is thought to be associated with adverse clinical
outcomes5.

Neoadjuvant chemotherapy (NACT) is an established course of
treatment for locally advanced breast cancer (LABC) and can
promote breast-conserving surgeries by reducing tumor size6.
Additionally, women achieving pathologic complete response
(pCR) after completing neoadjuvant chemotherapy may have
improved survival outcomes7,8. Early prediction of response to
neoadjuvant treatment can allow for personalized changes to
treatment plans, including targeted therapies, and early dis-
continuation of inactive therapies9,10. Intratumor heterogeneity is
thought to change in response to neoadjuvant chemotherapy
leading to altered biomarker expressions11. Such changes may
arise due to the acquired resistance by specific subclones during
treatment12. Early, noninvasive characterization of such changes
may indicate response versus resistance to treatment, enabling
early treatment changes prior to treatment completion.

Personalized gene expression-based molecular assays, such as
the 70-gene MammaPrint microarray assay (Agendia BV) and the
50-gene PAM50 risk of recurrence score assay (ROR-S), provide
risk stratification for future recurrence13,14. p53 mutation status is
an established predictor for more aggressive tumor biology and
therefore a worse prognosis in terms of recurrence free survival
(RFS)15. Such precision-medicine predictors may improve clinical
decision-making by deviating from the “one size fits all” approach
to treating breast cancer. However, as such assays, mutation
statuses, and established histopathologic biomarkers are deter-
mined largely from selective tissue sampling acquired by biopsy,
they may fall short in fully capturing heterogeneous disease
burden.

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) can allow for longitudinal, non-invasive monitoring
of heterogeneous tumors during the course of neoadjuvant che-
motherapy. Previous studies have demonstrated the role of
longitudinal patterns for tumor response during neoadjuvant
chemotherapy and have examined their associations with treat-
ment response and overall survival16–19. Hylton et al. demon-
strated the prognostic and predictive value of measuring
functional tumor volume (FTV) at various longitudinal time
points during neoadjuvant chemotherapy20. Jahani et al. devel-
oped registration-based biomarkers for the early prediction of
pCR and recurrence free survival (RFS) in tumors from baseline
to early treatment time points21. While much progress has been
made, these studies may be limited by not examining the asso-
ciations between aggregate changes in intratumor heterogeneity
that arise in response to therapy and the complementary infor-
mation provided by genomics-based information22.

The purpose of this study was to identify imaging phenotypes
of early changes in intratumor heterogeneity in DCE-MRI and

evaluate their prognostic value in augmenting FTV measures and
molecular profiling signatures scores for predicting RFS after
breast NACT. We show that distinct heterogeneity imaging
tumor profiles occur during neoadjuvant treatment for locally
advanced breast cancer which can be utilized, in combination
with personalized genomic biosignatures, to enhance current
prognostic models and treatment management.

Methods
Discovery cohort. DCE-MR images of women enrolled in the
ACRIN 6657/I-SPY1 trial, diagnosed with advanced invasive
breast cancer from May 2002 through March 2006, were retro-
spectively analyzed23,24. Per the inclusion criteria of ACRIN
6657/I-SPY 1, women diagnosed with stage 2 or 3 breast cancer
were selected for the study and underwent anthracycline-
cyclophosphamide NACT. Longitudinal DCE-MRI was per-
formed using a 1.5 T scanner at four time points: prior to the start
of neoadjuvant therapy (T1), at least 2 weeks after the first cycle
of chemotherapy (T2), between treatments (T3), and after the
completion of chemotherapy, before surgery (T4). Data acquisi-
tion was as described in the ACRIN 6657/I-SPY 1 protocol19. The
first and second post-contrast images were acquired 2.5 and
7.5 min after contrast injection.

Of the 222 trial participants with publicly available data23,24,
we retained the 143 women for whom both complete clinical data
and T1 and T2 DCE-MR imaging were available. For analyses
involving gene expression, we used the subset of 100 women for
whom gene expression information was available through the
Gene Expression Omnibus25,26, under the accession number
GSE2222627. Clinical and histopathologic data including age,
hormone receptor (HR) status, human epidermal growth factor
receptor 2 (HER2) status, and pCR status were available for each
woman (Table 1). Functional tumor volume at T2 (FTV2),
previously shown to have significant association with RFS20, was
also calculated for each woman. RFS times were available, defined
as time to recurrence (event), or time to death or last follow-up
(censor).

Validation cohort. A validation cohort of 92 women was formed
from the remaining 43 women from the original cohort (n= 143)
for whom gene expression data was not publicly available, and a
separate dataset of 49 women from the publicly available Breast
MRI NACT Pilot study28. This study had similar inclusion cri-
teria as the I-SPY 1 trial, and participants underwent a similar
treatment and imaging protocol as the I-SPY 1 trial. Clinical
information on age, HR status, and HER2 status and 3-year RFS
information was available for each woman in the validation
cohort (Supplementary Table 1).

Research participants. All eligible patients selected for the I-SPY
1 TRIAL and Breast-MRI-NACT-Pilot study gave their written
consent. In the I-SPY 1 TRIAL, the Health Insurance Portability
and Accountability Act–compliant protocol and the written
consent were approved by the American College of Radiology
Institutional Review Board and local-site institutional review
boards. More details regarding the trial’s study design and
patients’ enrollment can be found here29. In the Breast-MRI-
NACT-Pilot study, the research protocol was approved by an
institutional review board (IRB). Details can be found here28. For
this retrospective analysis, the requirement of informed consent
was waived under institutional review board approval. Additional
ethical approval for this retrospective study was not required as
the data was publicly available and fully deidentified, hosted
through the National Cancer Institute on the Cancer Imaging
Archive24.

Table 1 Selected patient characteristics for discovery cohort.

No future event of
recurrence (n= 72)

Future event of
recurrence (n= 28)

Hormone Receptor
positive

28 (53%) 17 (61%)

HER2+ positive 23 (32%) 11 (39%)
pCR 23 (32%) 4 (14%)
Age (min-max) 48.15 (33.18–64.33) 46.31 (28.76–65.39)
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Approximation of gene expression based molecular profiling
signatures. Molecular profiling of the I-SPY 1 enrolled women
with gene expression information was built as previously
described27. Specifically, we re-created three gene signatures in
order to classify tumors regarding their metastatic potential,
risk of recurrence, and p53 oncogene mutation status: the 70-
gene signature (MammaPrint)30,31, PAM50 risk of recurrence
(ROR-S)32,33, and p53 mutation signature34 respectively.
Briefly, MammaPrint classification was achieved by calculating
the cosine similarity of the expression of the 70-gene signature
for each sample against a “good prognosis” sample set30, using
thresholds as defined in the original study31. ROR-S sample
categorization was determined by computing the weighted sum
of the correlation coefficients33 of each sample against the
intrinsic subtype sample sets of the PAM50 gene signature
study32. Lastly, p53 mutation status was estimated by calculat-
ing the proximity of the I-SPY 1 samples and the p53 mutation
signature centroids (wildtype vs. mutant) as Spearman’s corre-
lation values, as described in the p53 gene signature study34.
The integrity of our classification was examined by comparing
our results with the original results of the Esserman et al.
study27. We confirmed that our recreated results corresponded
to the original results by comparing the numbers of individuals
attributed to each class in the overall cohort.

Delta radiomic feature extraction. For each woman in the dis-
covery cohort, the 3-D primary lesions at pre-treatment (T1) and
early-treatment (T2) time points were selected by first identifying
the functional tumor volume (FTV) within the publicly available
bounding region, as previously reported35. The largest contiguous
volume of voxels included in the FTV was selected as the location
for the primary lesion; this volume was then further refined using
manual segmentation to remove isolated voxels and include
voxels within the primary tumor lesion volume which were not
initially selected by the FTV threshold35. Final tumor segmenta-
tions for T1 and T2 were visually confirmed by a board-certified
and fellowship trained breast imaging radiologist (ESM). Images
were preprocessed by N3 bias-field normalization to correct for
bias field signal36.

For each woman in the discovery cohort, at T1 and T2 time
points, four voxel-wise kinetic image maps were calculated within
the segmented tumor, the peak enhancement (PE) (Eq. 1), signal
enhancement ratio (SER) (Eq. 2), wash-in slope (WIS) (Eq. 3),
and wash-out slope (WOS) (Eq. 4) images, to quantify the
enhancement patterns over the dynamic scans using the signal
intensity for the pre-contrast, first post-contrast, and second post-
contrast time points (I0, I1, and I2, respectively).

PE ¼ max
t¼tPE

It � I0
I0

ð1Þ

SER ¼ I1 � I0
I2 � I0

ð2Þ

WIS ¼
(

PE
tPE�t0

if tPE ≠ 0

0 otherwise
ð3Þ

WOS ¼
(

I2�I1
t2�tPE

if t2 ≠ tPE
0 otherwise

ð4Þ

All kinetic image maps and tumor segmentations were
resampled by linear interpolation to a spatial resolution of
256 × 256 voxels, the lowest resolution of the data cohort, to
ensure consistent resolution across all scans. A total of 104
radiomic features characterizing lesion intensity, texture patterns,

and morphology were extracted from the entire tumor region,
from each kinetic map at each treatment time point, resulting in a
total of 416 features at each time point for each woman. All
features were extracted using the publicly available Cancer
Imaging Phenomics Toolkit (CaPTk; v.1.7.1; University of
Pennsylvania; https://cbica.github.io/CaPTk/)37 (Supplementary
Table 2). Features at each treatment time point (fT1 and fT2) were
subsequently sign-adjusted such that increasing feature values
corresponded to increasing lesion heterogeneity as per each
feature definition. Subsequently, the change in each radiomic
feature between the baseline and early treatment time points, or
delta feature Δf, was calculated as:

Δf ¼ f T2 � f T1
f T1

ð5Þ

These delta features were subsequently z-score normalized and
features with extreme skewness or low interquartile range (i.e.,
skewness > 5, IQR < 1) were excluded from further analysis.
Features characterizing tumor texture or morphology in only
2-D image dimensions were also excluded to allow for whole-
tumor, 3-D analysis. This resulted in a total of 42 delta features
included in our final analysis. To reduce dimensionality and
identify correlated delta features, features were clustered in an
agglomerative hierarchical manner using Pearson’s correlation as
the distance metric, with highly correlated features being grouped
together. Consensus clustering was used to determine the optimal
number of stable delta feature groups, with each feature group
consisting of highly correlated delta features. Within each feature
group, principal component analysis (PCA) was performed and
principal components (PCs) totaling greater than 85% explained
variance were retained to represent each feature group. As higher
values for each delta radiomic feature prior to PCA indicated
increasing heterogeneity from T1 to T2, higher values of a PC
incorporating primarily positive contributions of features were
interpreted as increasing heterogeneity, and one with negative
contributions were interpreted as decreasing heterogeneity38. The
PCs found, and their subsequent use in identifying imaging
phenotypes of tumors, could serve to characterize tumors as
having radiomic signatures indicating increasing or decreasing
heterogeneity.

Identifying imaging phenotypes of early change in tumor
heterogeneity. To identify imaging phenotypes of early changes
in tumor heterogeneity, tumors in the discovery cohort were
classified via unsupervised hierarchical clustering, using the
retained principal components to represent each tumor. The
clusters identified through unsupervised clustering were inter-
preted as phenotypes of changes in heterogeneity seen in the
study population. An overview schematic for how imaging phe-
notypes were generated can be found in Supplementary Fig. 1. An
agglomerative hierarchical approach was used to cluster tumors,
using Euclidean distance as the distance metric between the
retained principal components for each tumor. Ward’s minimum
variance method was used as the clustering metric39. To deter-
mine the optimal k number of clusters, consensus clustering40

was used to determine the number of stable phenotypes by
repeatedly subsampling the data, performing unsupervised hier-
archical clustering, and noting the proportion of subsamples in
which, for every pair of tumors, they occupied the same cluster
when they appeared in the same dataset. As such, a cumulative
distribution function (CDF) was determined for each increase in
k, and the stable number of clusters was determined to be the k at
which the area under the CDF increased less than 10%. SigClust41

methods were used to determine the number of significant phe-
notypes by calculating the significance of the cluster index, a
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metric defined as the sum of within cluster sum of squares about
the overall mean, tested against a null distribution at each cluster
division. The significance of each phenotype split was tested at
p < 0.05.

Prognostic value of early change in heterogeneity phenotypes-
statistical analysis. Distributions of clinical and histopathologic
covariate values and molecular profiling scores were assessed for
differences across radiomic phenotypes using Chi-square and
Kruskal-Wallis tests for categorical and continuous covariates,
respectively. Statistical corrections for multiplicity were made
using the Bonferroni correction42.

RFS times across phenotypes were evaluated using Kaplan-
Meier survival curves, in both the whole cohort and within strata
of HR status, HER2 status, TN status, and greater than and less
than median FTV2 values, with the log rank test used to
determine statistical significance. RFS was also modeled via Cox
proportional-hazards regression. Eight models were evaluated:
univariable models for each molecular signature; the baseline
model-using the covariates age, HR status, and HER2 status;
baseline+ FTV2; baseline+ FTV2+ radiomic phenotype; and
baseline+ FTV2+ all molecular signatures, both with and with-
out the addition of radiomic phenotype. All models were
evaluated using 5-fold cross validation and averaged over 100
replicates.

The prognostic value of radiomic phenotypes was further
evaluated by generating a risk score for each woman, defined as
the prediction score of covariates weighted by the corresponding
Cox-proportional hazard’s coefficients. Kaplan-Meier survival
was analyzed split on the median risk calculated by the Cox
model using baseline factors and FTV2.

Lastly, confusion matrices for the categories of RFS event/
censor were generated to assess the predictive performance of
radiomic phenotypes compared to MammaPrint scores, ROR-s,
and p53 mutation status.

Validation of early change in heterogeneity phenotypes. Tumor
segmentations for cases in the validation cohort were generated
similarly to those in the discovery cohort. Delta radiomic features
were calculated using the same feature preprocessing methods
used in the discovery cohort. The same delta features selected in
the discovery cohort were also selected for the validation cohort.
These resulting delta features were normalized using the mean

and standard deviation values from the delta feature values in the
discovery cohort, to standardize feature ranges.

Features were subsequently grouped together based on the
cluster assignment of correlated features determined from the
discovery cohort. Within each validation feature cluster, features
were projected into the discovery cohort feature groups’-principal
component space to determine component values. The same
numbers of PCs summarizing each feature group retained in the
discovery cohort were selected from the validation cohort to form
the validation cohort principal-component vectors.

To determine phenotype assignment in the validation cohort,
each tumor was assigned to the discovery cohort-identified
phenotypes by minimizing the Euclidean distance between each
validation cohort principal component vector and the discovery
cohort phenotype centroid, defined as the average of principal
component vector across all tumors in each phenotype.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Discovery cohort. A total of 28 (28%) women included in the
discovery cohort had future events of recurrence while 72 (72%)
women did not have future events of recurrence (Table 1).
Median RFS time was 3.9 years (range, 0.5–6.9 years)35. Neoad-
juvant and radiation therapy information was available for
women in the discovery cohort (Table 2).

Validation cohort. Of the women included in the validation
cohort, 27 (29%) women had future events of recurrence while 65
(71%) did not (Supplementary Table 1). Median RFS time was
4.13 years (range, 0.28–8.79 years).

Gene expression signatures classification. Recreated classifica-
tions closely approximated the original results, considering minor
differences regarding the sample cohorts (Supplementary
Table 3–5). Following that, gene expression data were matched to
the available imaging data for each patient. The recreated meth-
ods were then utilized to classify each tumor in the discovery
cohort. Classifications are shown in Table 3. Further details
regarding the recreated analysis are available in Supplementary
Methods.

Table 2 Selected treatment characteristics for discovery cohort.

Locally advanced cancers (n= 100)

No future event of recurrence (n= 72) Future event of recurrence (n= 28) p-value

Neoadjuvant Chemotherapy > 0.99
Anthracycline-Cyclophosphamide (AC) only 1(1.4%) 0 (0%)
AC+ Tamoxifen 62 (86%) 24 (86%)
AC+ Tamoxifen+Herceptin 8 (11%) 3 (11%)
AC+ Tamoxifen+Other 1 (1.4%) 1 (4%)
Herceptin 8 (11%) 3 (11%) > 0.99
Radiation Therapy 58 (81%) 19 (68%) 0.21

Table 3 Molecular profiles in the discovery cohort.

Gene signature Distribution rates (n= 100)

MammaPrint 7 (low risk) 93 (high risk)
p53 score 46 (wildtype) 54 (mutant)
PAM 50 ROR-S 31 (low risk) 31 (intermediate risk) 38 (high risk)
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Delta radiomic feature extraction. A total of four stable groups
of correlated features was determined by consensus clustering.
Selecting the PCs totaling greater than 85% explained variance
from each group, a total of six principal components were
identified to summarize change in heterogeneity for each primary
lesion.

Imaging phenotypes of early change in tumor heterogeneity.
Two radiomic phenotypes of early change in intratumor hetero-
geneity were identified using unsupervised hierarchical clustering
and shown to be statistically significant using the SigClust method
(p < 0.01). Comparing the average of the six radiomic PC values
observed for tumors in each phenotype allowed the two pheno-
types to be interpreted as decreasing (Phenotype 1, n= 58) and
increasing (Phenotype 2, n= 42) intratumor heterogeneity from
T1 to T2 (Fig. 1). A Bonferroni statistical correction resulted in a
p-value ≤ 0.007 to signify statistical significance in clinical cov-
ariate distribution across phenotypes. The number of future
recurrences was significantly different across phenotypes
(p < 0.001), with proportionally more recurrences in Phenotype 2
(increasing heterogeneity) than Phenotype 1 (decreasing hetero-
geneity), via the Chi-square test. Other clinical and histopatho-
logic covariates, and molecular signatures, were not significantly
different across phenotypes (Supplementary Fig. 2). Additionally,
neoadjuvant treatment paradigms and targeted treatment para-
digms were not significantly associated with radiomic pheno-
types. Kaplan Meier RFS curves were also significantly different
between phenotypes (p < 0.001).

Within molecular subtypes of breast cancer, splitting women
by radiomic phenotype assignment showed no significant
difference in RFS for the HR+ /HER2- subgroup (p= 0.3) and
significant differences within the HER2+ and Triple Negative
subtypes (both p= 0.02) (Fig. 2).

Kaplan Meier RFS curve separation by phenotype, within strata
of FTV2 value (less than/greater than median FTV2) also
demonstrated significant differences; curve separation on FTV2

itself was not significant (Fig. 3).
Kaplan-Meier curve separation of tumors split on the median

risk score generated from a Cox proportional hazards model
using baseline model covariates (age, HR status, and HER2 status)
and FTV2 was significant (p= 0.04). Within the low-risk tumors,
further separation on phenotype demonstrated no significant
curve differences. For high-risk tumors, separation by phenotype
was significant (p < 0.01) (Fig. 4).

Univariable Cox regression models based on each of
MammaPrint, ROR-S, and p53 scores resulted in c-statistics of
0.63, 0.62, and 0.60, respectively. Kaplan Meier survival curves for
MammaPrint, ROR-S, and p53 scores were not significant
(Supplementary Fig. 3). A baseline model (model 1) based on
age, HR status and HER2 status resulted in a cross validated,
averaged over 100 replicates, c-statistic of 0.55. Adding FTV2 to
the baseline model (model 2) improved the c-statistic to 0.67 and
adding,molecular signatures to the baseline and FTV2 model
(model 3) resulted in a c-statistic of 0.61. A model of baseline,
FTV2, and radiomic phenotype assignment (model 4) resulted in
a c-statistic of 0.73 and a combined model of baseline, FTV2,
molecular profile scores, and radiomic phenotype assignment
(model 5) demonstrated improved discriminatory capacity with a
c-statistic of 0.79. The improvement in the final combined model
was significant compared to the baseline, FTV2, and molecular
signature score model, as determined by the log-likelihood test
(p < 0.01) (Table 4).

Confusion matrices for associations between molecular profile
scores and radiomic phenotypes and RFS event/censor were
generated. Overall positive predictive values (PPV) and negative

predictive values (NPV) for MammaPrint, ROR-S, p53 mutation
status and radiomic phenotype assignment demonstrated that
radiomic phenotype status had the highest PPV and NPV out of
the four models (Fig. 5).

The two radiomic phenotypes identified in the discovery set
were replicated in the validation cohort and found to be
statistically significant via the SigClust method (p= 0.04).
Kaplan-Meier curves of tumors in the validation cohort split by
phenotype also had a statistically significant difference (p < 0.01).
A Bonferroni statistical correction calculated for the total number
of comparisons being made resulted in a p-value <= 0.008 sug-
gesting statistical significance in clinical covariate distribution
across phenotypes. The proportional number of recurrences was
significantly different across phenotypes (p= 0.004) using the
Chi-square test, with Phenotype 2 (increasing heterogeneity)
having proportionally more recurrence evens than Phenotype 1
(decreasing heterogeneity) (Fig. 6).

Discussion
Two intrinsic radiomic phenotypes of early change in intratumor
heterogeneity in response to neoadjuvant chemotherapy for
locally advanced breast cancer were identified and validated.
Interpretation of the two radiomic phenotypes as capturing an
increase and decrease in intratumor heterogeneity from pre-
treatment to early-treatment showed that tumors assigned to the
phenotype with increasing intratumor heterogeneity had a greater
number of future recurrences. This was further supported by
significant separation in Kaplan Meier curves when stratifying
women by phenotype assignment. Additionally, the stratification
of women within FTV subgroups by phenotype demonstrates the
added value of radiomic analysis in modeling prognosis (Fig. 3).
Augmenting established clinical and histopathological prognostic
factors with molecular signature scores and radiomic phenotypes
resulted in better prediction of RFS. This suggests that leveraging
the complementary information provided by genomic and
radiomic data can allow for a more comprehensive assessment of
tumors and personalized therapy selection.

There may be certain plausible explanations for our observations.
By capturing changes in kinetic maps of the DCE-MRI data, the
identified phenotypes could reflect changes in tumor composition
and angiogenic properties in response to neoadjuvant chemother-
apy. Increased heterogeneity may in turn reflect tumor plasticity,
which can lead to acquired resistance. The imaging phenotype
demonstrating increased heterogeneity from baseline to early-
treatment exhibits an increased number of recurrence events, thus
supporting the hypothesis that more heterogeneous tumors may
result in more adverse clinical outcomes. In contrast, the radiomic
phenotype demonstrating decreasing heterogeneity from pre-
treatment to early-treatment included a higher number of tumors
achieving pCR, which may suggest a relationship between decreased
intratumor heterogeneity and an improved response to neoadjuvant
chemotherapy (Fig. 1).

Interpreting the radiomic phenotypes of change in tumor het-
erogeneity through the lens of tumor biology may provide further
insight into the biologic changes occurring within the tumor in
response to neoadjuvant chemotherapy. As an example, two repre-
sentative tumors from women with similar age, receptor status,
FTV2 values, and genomic scores were assigned to separate imaging
phenotypes based on their early change in heterogeneity. The tumor
assigned to Phenotype 2, with an increase in intratumor hetero-
geneity after initiation of treatment, actually had a future event of
recurrence while the tumor assigned to Phenotype 1, having a
decrease in intratumor heterogeneity, did not have a future event of
recurrence (Fig. 7). For these two representative cases, both women
were of similar age with similar histopathologic status (HR+ /
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Fig. 1 Unsupervised Hierarchical Clustering of Tumors in the Discovery Cohort. a Unsupervised hierarchical clustering of tumors in the discovery cohort
(n= 100) identified two phenotypes of early changes in intratumor heterogeneity: decreasing heterogeneity from T1 to T2 (Phenotype 1, in blue) and
increasing heterogeneity from T1 to T2 (Phenotype 2, in red). b Kaplan-Meier curves for recurrence free survival (RFS) of patient groups split by phenotype
show significant separation, with tumors showing increase in intratumor heterogeneity after initiation of neoadjuvant therapy (Phenotype 2) having worse
recurrence outcomes.
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HER2−). While ROR-S and p53 scores for both women char-
acterized their tumors as “low risk of recurrence” and MammaPrint
as “high risk of recurrence”, they were assigned to separate pheno-
types based on their early change in their intratumor heterogeneity.
In this particular example, the woman classified as “high risk” by
MammaPrint score, went on to have no future recurrence event,
while the woman classified as “low risk” based on ROR-S and p53
classifications did have a future event of recurrence. As none of the
gene signature scores were significantly associated with phenotype
assignment across the cohort (Supplementary Fig. 2), this suggests
that the complementary information provided by radiomic and
genomic analysis could allow for increased confidence in treatment
planning and clinical decision-making. Furthermore, examining the
principal component feature values for each woman suggests that
quantitative imaging characterizations could reflect differences in
these two tumors that may predict future outcomes. Of the six
principal components used to cluster all tumors into the two phe-
notypes, C1-PC1, C4-PC1, and C3-PC1 distributions were found to
be statistically significant tested against a p-value of 0.05 using Sig-
nificance Analysis of Microarrays Test43. Examining the delta

radiomics features comprising each feature cluster from which the
principal components were generated could provide more insight
into the specific quantitative differences in tumors in each pheno-
type. Specifically, as all radiomic features were extracted from the
voxel-wise kinetic images, they provide a quantitative characteriza-
tion of tumor angiogenesis and perfusion-related properties. C1-PC1
consists largely of features characterizing changes in tumor mor-
phology across all kinetic images, including ellipse diameter and
sphericity. In the representative images, the tumor assigned to
Phenotype 2 has a greater value of this feature, suggesting that it had
an increase in ellipse diameter and more irregular volume moving
from T1 to T2. C4-PC1 consists of features characterizing changes in
mean contrast intensity, specifically from the WOS image. As this
image quantifies the rate of “wash-out” of contrast agent, the
representative image in Phenotype 2 may have an increase in tumor
wash-out from T1 to T2, suggesting an increase in leaky vasculature
due to increased angiogenesis, a characteristic of more aggressive
tumors44. Lastly, C3-PC1 consists of features summarizing mor-
phologic flatness across all four kinetic images. Both representative
tumors have similar values for this feature suggesting that both

Fig. 2 Survival Analysis for Molecular Subtypes of Breast Cancer. Kaplan Meier recurrence free survival (RFS) curves split by phenotype assignment for
(a) HR+ /HER2- (n= 38), (b) HER2+ (n= 34) and (c) Triple Negative (n= 26) molecular subtypes of breast cancer in the discovery cohort.

Fig. 3 Survival Analysis for the Discovery Cohort Split by Median Functional Tumor Value. Kaplan Meier recurrence free survival (RFS) curves for the
discovery cohort split by median functional tumor volume at T2 (FTV2) value (n= 100) (a) versus split by phenotype within strata of less than median
FTV2 (n= 51) (b) and greater than median FTV2 (n= 49) (c). RFS split by above/below median FTV2 does not show p < 0.05 for separation. Within each
stratum of FTV2, the split on phenotype is significant (b and c).
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tumors decreased in morphologic flatness from T1 to T2 (Supple-
mentary Table 6).

Significant separation of women by radiomic phenotype
assignment by Kaplan-Meier curves for women with HER2+ and
triple-negative breast cancers may further highlight the known

sub-clonal diversity within these subtypes (Fig. 2)45–47. Our
findings suggest that tumors within these subgroups that become
more heterogeneous as an early response to neoadjuvant che-
motherapy may be more aggressive, resulting in increased like-
lihood of recurrence.

Fig. 4 Survival Analysis versus Risk Score. Survival versus risk score for the discovery cohort calculated by a Cox model using baseline model covariates
(age, HR status, and HER2 status) and functional tumor volume at T2 (FTV2). Split on above versus below median risk (n= 100) (a). b Split on phenotype
within the low-risk stratum (n= 100). c Split on phenotype within the high-risk stratum (n= 100).

Table 4 Univariable and multivariable Cox models of RFS within the discovery cohort.

Model c-statistic 95% CI for c-statistic Model pa p-versus nested model

MammaPrint 0.63 0.57–0.69 0.2
ROR-S 0.62 0.55–0.68 0.1
p53 score 0.60 0.56–0.64 0.06
Model 1: Baseline (age, HR status, HER2 status) 0.55 0.55–0.56 0.7
Model 2: Baseline, FTV2 0.67 0.66–0.68 0.06 0.005b

Model 3: Baseline, FTV2, molecular signatures 0.61 0.59–0.62 < 0.05 0.13c

Model 4: Baseline, FTV2, phenotype 0.73 0.72–0.74 < 0.01 0.01c

Model 5: Baseline, FTV2, molecular signatures, phenotype 0.79 0.78–0.81 < 0.001 0.002d

ap versus null model of equal hazard for all patients.
bp versus Model 1, log-likelihood test.
cp versus Model 2, log-likelihood test.
dp versus Model 3, log-likelihood test.

Fig. 5 Confusion Matrices for Discovery Cohort. Confusion matrices for recurrence-free survival (RFS) prediction models within the discovery cohort
using MammaPrint score (A), ROR-S (B), p53 mutation status (C), and radiomic phenotype (D).
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Fig. 6 Replication of Phenotypes in the Validation Cohort. a Replication of radiomics phenotypes in the validation cohort found to be significant
(p= 0.04). b Kaplan-Meier curves for recurrence free survival (RFS) split on radiomic phenotype show significant separation (p= 0.002).
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Confusion matrices for RFS prediction using molecular sig-
natures and radiomic phenotype assignment demonstrate a
greater PPV and NPV when using radiomic phenotypes (Fig. 7).
However, a limitation of using only radiomic phenotypes can be
seen when comparing the predictive value of radiomic pheno-
types alone against the MammaPrint assay. Seven women in
Phenotype 1 went on to have recurrence despite decreasing het-
erogeneity on imaging whereas only 2 women, identified as a
MammaPrint “low risk”, had a recurrence. Leveraging the com-
plementary information from both personalized molecular sig-
natures and incorporating longitudinal data about tumor
heterogeneity resulted in the most accurate predictive model in
our study.

Limitations to our study should be noted. First, our exploratory
analysis included a relatively small sample size, as we restricted it to
publicly available data from the ACRIN 6657/I-SPY 1 trial with
both DCE-MRI and gene expression data available. In addition, the
validation cohort utilized for this study did not include gene
expression data which prevented us from validating the prognostic
benefit of the molecular profiling scores. The publicly available
microarray data used to generate the molecular profiling scores was
also limited by older acquisition protocols and technology. Addi-
tionally, image analysis may have been limited by the older image
acquisition protocol and technology used in the I-SPY 1 trial.
However, the scan duration used for the dataset deriving from the
I-SPY 1 trial was 4.5 min, which is similar to the current American

Fig. 7 Representative Tumors from Each Phenotype. Representative tumors from Phenotype 1 (early decrease in intratumor heterogeneity) and.
Phenotype 2 (early increase in intratumor heterogeneity) shown in DCE-MRI scans at T1 and T2 from the discovery cohort. A Representative 2D DCE-MRI
slice and tumor region for T1 and T2 images from a woman, age 50, with an HR+ /HER2-, ROR-S low risk, p53 wildtype (low risk), and MammaPrint score
of −0.03 (high risk) tumor with no pCR and no future event of recurrence assigned to Phenotype 1. B Representative 2D DCE-MRI slice and tumor region
for T1 and T2 images from a woman aged 42, with an HR+ /HER2-, ROR-S low risk, p53 wildtype (low risk), and MammaPrint score of −0.35 (high risk)
tumor with no pCR and a future event of recurrence assigned to Phenotype 2. C Representative 2D images of peak enhancement (PE), signal enhancement
ratio (SER), wash-in slope (WIS), and wash-out slope (WOS) voxel-wise maps for T1 and T2 for the tumor in phenotype 1. D Functional tumor volume at
T2 (FTV2) overlay for these representative tumors from phenotype 1 and 2. E Representative 2D images of PE, SER, WIS, and WOS voxel-wise maps for T1
and T2 for the tumor in phenotype 2. F FTV2 values for each representative tumor. Values for features (G) C1-PC1, (H) C4-PC1, and (I) C3-PC1, for each
representative tumor. These representative cases provide an example where imaging characterizations of changes in each tumor’s heterogeneity provided
a stratification related to future outcomes. In this example, established clinical covariates did not provide such stratification.
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College of Radiology (ACR) recommendation of <= 4min48.
Moreover, the datasets used in this study for discovery and vali-
dation are among the only publicly available datasets with true
long-term follow-up available following NAC. Ultimately, given the
encouraging results with these older MRI protocols, we can hypo-
thesize that the performance of the proposed radiomic features may
be better with newer MRI protocols. Future work will include
expanding our analysis to larger cohort sizes with images acquired
with newer, more clinically utilized MRI acquisition protocols, as
well as exploring relationships between early changes in tumor
heterogeneity via radiomic phenotyping and differentially expressed
genes with related molecular pathways. Additionally, utilization of
Next Generation Sequencing (NGS) techniques which, in contrast
with microarrays, do not depend on specific probes for the quan-
tification of the expression of pre-specified genes will allow for
deeper and more rigorous analyses.

In conclusion, our exploratory results demonstrate that early
changes in intratumor heterogeneity in response to neoadjuvant
chemotherapy as captured by radiomic analysis of DCE-MRI may
provide improved prediction of RFS for locally advanced breast
cancer. Longitudinal non-invasive assessment of tumor pheno-
types via imaging may allow for monitoring of heterogeneity and
underlying tumor biology. Augmenting clinical, histopathologic,
and molecular covariates with imaging phenotypes may allow for
personalized risk stratification and early adaptation of treatment
strategies.

Data availability
The source data for all figures are available at https://doi.org/10.5281/zenodo.732743549.
All imaging data was available through The Cancer Imaging Archive24. Imaging data
from the Discovery Cohort can be found listed as Multi-center breast DCE-MRI data and
segmentations from patients in the I-SPY 1/ACRIN 6657 trials (ISPY1)23,24, and imaging
data from the Validation Cohort can be found listed as Multi-center breast DCE-MRI
data and segmentations from patients in the I-SPY 1/ACRIN 6657 trials (ISPY1) and as
Single site breast DCE-MRI data and segmentations from patients undergoing
neoadjuvant chemotherapy (Breast-MRI-NACT-Pilot)28.
Gene expression information for the 100 women in the Discovery Cohort is available

through the Gene Expression Ombinus25,26 under the accession number GSE2222627.

Code availability
Analyses were conducted using R50. The code reproducing our findings is available at
https://doi.org/10.5281/zenodo.732743549.
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