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Abstract
Purpose  Disseminated tumor cells (DTCs) expressing epithelial markers in the bone marrow are associated with recurrence 
and death, but little is known about risk factors predicting their occurrence. We detected EPCAM+/CD45− cells in bone 
marrow from early stage breast cancer patients after neoadjuvant chemotherapy (NAC) in the I-SPY 2 Trial and examined 
clinicopathologic factors and outcomes.
Methods  Patients who signed consent for SURMOUNT, a sub-study of the I-SPY 2 Trial (NCT01042379), had bone mar-
row collected after NAC at the time of surgery. EPCAM+CD45− cells in 4 mLs of bone marrow aspirate were enumerated 
using immunomagnetic enrichment/flow cytometry (IE/FC). Patients with > 4.16 EPCAM+CD45− cells per mL of bone 
marrow were classified as DTC-positive. Tumor response was assessed using the residual cancer burden (RCB), a standard-
ized approach to quantitate the extent of residual invasive cancer present in the breast and the axillary lymph nodes after 
NAC. Association of DTC-positivity with clinicopathologic variables and survival was examined.
Results  A total of 73 patients were enrolled, 51 of whom had successful EPCAM+CD45− cell enumeration. Twenty-four 
of 51 (47.1%) were DTC-positive. The DTC-positivity rate was similar across receptor subtypes, but DTC-positive patients 
were significantly younger (p = 0.0239) and had larger pretreatment tumors compared to DTC-negative patients (p = 0.0319). 
Twenty of 51 (39.2%) achieved a pathologic complete response (pCR). While DTC-positivity was not associated with 
achieving pCR, it was significantly associated with higher RCB class (RCB-II/III, 62.5% vs. RCB-0/I; 33.3%; Chi-squared 
p = 0.0373). No significant correlation was observed between DTC-positivity and distant recurrence-free survival (p = 0.38, 
median follow-up = 3.2 years).
Conclusion  DTC-positivity at surgery after NAC was higher in younger patients, those with larger tumors, and those with 
residual disease at surgery.
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Introduction

Disseminated tumor cells (DTCs) detected in the bone mar-
row (bone marrow) after neoadjuvant chemotherapy (NAC) 
are thought to represent dormant residual disease that could 
ultimately give rise to distant metastases. These cells are 
believed to have a non-proliferative phenotype, utilizing 
pathways for survival that are distinct from proliferating 
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cells in the primary tumor or growing distant metastases 
[2]. Several previous clinical studies in the neoadjuvant set-
ting for treatment of early stage breast cancer have shown 
that DTCs detected at surgery after completion of NAC or 
within the post-surgical follow-up period are independently 
predictive of breast cancer recurrence and survival [9, 10, 
18]. However, none of these studies showed a significant 
correlation between DTCs and response to NAC.

Achieving a pathologic complete response (pCR) or 
RCB-0 provides a significant survival advantage over those 
who have residual disease after NAC [13]. There are no 
well-established molecular and cell-based biomarkers that 
can accurately predict pCR or identify those at risk of recur-
rence after surgery. Additional molecular and cellular infor-
mation available at the time of surgery may help fine-tune 
the prognostic value of pCR as an early surrogate endpoint 
of survival. Detection of DTCs in bone marrow may comple-
ment pathologic evaluation of the primary tumor and could 
potentially supplement the prognostic value of pCR.

In this study, we assessed the clinical significance of 
DTCs in SURMOUNT, a sub-study of the neoadjuvant 
I-SPY 2 Trial—an ongoing, multicenter, and adaptive Phase 
2 trial—that investigates new agents combined with standard 
NAC for the treatment of locally advanced breast cancer [20, 
21, 25]. We sought to characterize patients who are DTC-
positive after NAC and assess whether DTC-positivity was 
associated with baseline clinicopathologic characteristics, 
response to NAC, or longer-term outcomes in the I-SPY 2 
Trial.

Patients and methods

Patient population

Patients enrolled in the I-SPY 2 Trial (NCT01042379) were 
recruited to participate in a sub-study called SURMOUNT 
(Surveillance Markers of Utility for Recurrence after Neo-
adjuvant Therapy for Breast Cancer) (Supplementary Fig. 1, 
Supplementary Table 1). Eligibility criteria for the I-SPY 2 
Trial have been described in detail in previous reports [20, 
21]. The study included female patients, 18 years of age or 
older, diagnosed with high-risk, stage II/III breast cancer and 
a tumor at least 2.5 cm in diameter. To be eligible for the 
SURMOUNT study, patients required consent for bone mar-
row aspiration obtained at surgery and collection of blood 
samples after NAC.

Ethics declaration

Six I-SPY 2 Trial sites participated in the SURMOUNT 
sub-study, obtaining Institutional Review Board approval 

for this additional consent form at each site, and all patients 
provided written informed consent to the sub-study.

Data acquisition

5 mLs of bone marrow aspirate were collected from the pos-
terior superior iliac crest while the patient was under anes-
thesia immediately before surgery (Supplementary Fig. 2). 
Samples were drawn into ethylenediaminetetraacetic acid 
(EDTA) tubes and shipped overnight in a cold pack to the 
John Park Laboratory at the University of California San 
Francisco using an overnight courier. Samples were pro-
cessed immediately after receipt.

Cells positive for expression of an epithelial marker 
(EPCAM) and negative for a leukocyte-specific marker 
(CD45), were enumerated in 4 mLs of bone marrow using 
an immunomagnetic enrichment/flow cytometry (IE/FC) 
assay as previously described [7, 16]. Briefly, magnetic 
beads coated with anti-EPCAM (epithelial cell adhesion 
molecule) monoclonal antibodies were used to enrich for 
EPCAM-expressing cells in the bone marrow. After adding 
a nuclear stain and fluorochrome-conjugated antibodies to 
EPCAM and CD45, the enriched sample was analyzed by 
flow cytometry.

To determine the presence of  background 
EPCAM+CD45− cells, bone marrow samples from 8 indi-
viduals with no history of cancer were subjected to IE/FC 
(Supplementary Table 2). The cutoff for DTC-positivity 
was then set at two standard deviations above the mean 
of EPCAM+CD45− cells per mL present in the samples 
(Supplementary Table 2). Bone marrow samples with > 4.16 
EPCAM+CD45− cells per mL of bone marrow from 
patients in this cohort were classified as DTC-positive.

Evaluation and reporting of the biomarker in this study 
were compliant with the REMARK guidelines [19].

Study design

The response endpoints were pCR and residual cancer bur-
den (RCB) as determined routinely on the I-SPY 2 Trial and 
previously described [13]. pCR was defined as the complete 
eradication of invasive cancer in both the breast and regional 
lymph nodes determined at the time of surgery. Residual 
cancer in the breast and the nodes was also evaluated using 
the RCB method [23]. This method classified patients into 4 
groups with increasing amounts of residual disease: RCB-0 
(equivalent to pCR), RCB-I (minimal), RCB-II (moderate), 
and RCB-III (extensive). Distant recurrence-free survival 
(DRFS) was calculated from the date of patient consent 
for treatment to the date of clinical diagnosis of metastatic 
recurrence or death by any cause. Patients lost to follow-up 
were censored at the time of their last visit. Survival analysis 
was performed on follow-up data available as of June 2020.
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Statistical methods

To determine associations between DTC-positivity and 
categorical variables, including menopausal status, clini-
cal T and N stage, receptor subtypes, MammaPrint status, 
race, pCR, and RCB, we used the Chi-square test for pro-
portions. t-test was used to compare means of continuous 
variables—age at screening, longest tumor diameter by mag-
netic resonance imaging (MRI), and RCB index—between 
groups stratified according to DTC status (DTC-positive vs. 
DTC-negative). Logistic regression was used to estimate the 
odds ratio (OR) and 95% confidence interval (CI). Survival 
in DTC-positive and DTC-negative groups was visualized 
using Kaplan–Meier analysis and compared using the log-
rank test. The hazard ratio and 95% confidence interval were 
estimated using Cox proportional hazard regression.

Results

A total of 73 patients from 6 participating I-SPY 2 sites were 
enrolled between July 2014 and June 2017 (Supplementary 
Fig. 1, Supplementary Table 1). Of the 73 enrolled patients, 
53 (72%) had bone marrow samples successfully collected, 
of which 51 (96.2%) were successfully analyzed for the pres-
ence of EPCAM + CD45− cells (Supplementary Fig. 2). The 

distribution of study patients by study site and treatment arm 
is shown in Supplementary Fig. 1. EPCAM+CD45− cells 
were detected in 46 (90.2%) patients, ranging from 0 to 104.5 
EPCAM+CD45− cells per mL (Supplementary Fig. 2). The 
median EPCAM+CD45− cells per mL of bone marrow was 
4.03. Using the cutoff > 4.16 EPCAM+CD45− cells per 
mL (Supplementary Table 2), 24 (47.1%) were classified as 
DTC-positive.

Association between DTCs and clinicopathologic 
variables

Younger age was significantly associated with higher levels 
of EPCAM + CD45- cells in DTC-positive patients (cor-
relation coefficient = − 0.41, Spearman rank p = 0.0490) 
(Fig. 1A). The mean age was significantly lower among 
DTC-positive patients compared to DTC-negative patients 
(43.4. vs. 50.1, t-test p = 0.0239) (Table 1, Fig. 1B). How-
ever, there was no association with menopausal status 
(Table 1, Supplementary Fig. 3). DTC-positivity was also 
significantly associated with non-white race, with 8 of 9 
(88.9%) non-white patients DTC-positive compared to only 
16 of 42 (38.1%) white patients (Chi-squared p = 0.0056). 
Regarding tumor factors, the length of the longest tumor 
diameter by MRI at pretreatment was significantly greater 
in DTC-positive compared to DTC-negative patients (t-test 

Fig. 1   DTCs after neoad-
juvant therapy vs. age and 
tumor burden at pretreat-
ment. A Correlation between 
EPCAM+CD45− cells per mL 
and age at screening in DTC-
positive patients. Correlation 
coefficient (rho) and p-value 
were calculated using Spear-
man’s rank correlation test; 
B Association between DTC 
status and age at screening; C 
Association between DTC sta-
tus and longest tumor diameter 
by magnetic resonance imaging 
(MRI) at pretreatment. Means 
between groups (in B and C) 
were compared using Wilcoxon 
signed rank test
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p = 0.0319, Fig. 1C). Notably, no significant associations 
were observed between DTC-positivity and nodal status 
or receptor subtype. Regarding the latter, it is noteworthy 
that 50% of patients were classified as DTC-positive in 
each receptor subtype when classified as HR+/HER2−, any 
HER2+, and triple-negative breast cancer.

To determine which factors were independently asso-
ciated with DTC-positivity, we built logistic regression 
models using the factors that were significant in univariate 

analysis. The univariate analysis showed that age (p = 0.0329), 
longest tumor diameter by MRI at pretreatment (p = 0.0366), 
and race (p = 0.0205) were significant predictors of DTC-
positivity (Table 2). In a multivariate model containing these 
three predictors, longer tumor diameter by MRI at pretreatment 
(p = 0.0444) and non-white race (p = 0.0250) remained signifi-
cantly independently associated with being positive for DTCs.

A total of 20/51 patients (39.2%) achieved pCR and 
there was no significant association between pCR and 

Table 1   Clinicopathologic 
characteristics of 51 patients 
according to DTC status after 
NAC

* For continuous clinicopathologic variables (age and tumor size), association with DTC-positivity was 
assessed using a t-test. For categorical variables, association with DTC-positivity was assessed using a 
Chi-squared test. P-values in bold and italics are considered statistically significant. RCB-residual cancer 
burden

DTC− % DTC+ % Total % p value*

Menopausal status (n = 47) 0.1884
 Post 11 61.1 7 38.9 18 38.3
 Pre 12 41.4 17 58.6 29 61.7

Tumor size (n = 49) 0.5604
 T1 and T2 20 55.6 16 44.4 36 73.5
 T3 and T4 6 46.2 7 53.8 13 26.5

Nodal status (n = 48) 0.7904
 Node-negative 14 53.8 12 46.2 26 54.2
 Node-positive 11 50.0 11 50.0 22 45.8

Subtype 1.0000
 HER2+ 9 52.9 8 47.1 17 33.3
 HR+HER2− 9 52.9 8 47.1 17 33.3
 Triple negative 9 52.9 8 47.1 17 33.3

MammaPrint 0.6678
 High 1 13 50.0 13 50.0 26 51.0
 High 2 14 56.0 11 44.0 25 49.0

Race 0.0056
 Non-white 1 11.1 8 88.9 9 17.6
 White 26 61.9 16 38.1 42 82.4

Pathological complete response 0.1658
 Yes 13 65.0 7 35.0 20 39.2
 No 14 45.2 17 54.8 31 60.8

RCB class 0.1138
 0 13 65.0 7 35.0 20 74.1
 I 5 71.4 2 28.6 7
 II 5 29.4 12 70.6 17
 III 4 57.1 3 42.9 7 25.9

RCB class (binary) 0.0373
 0 and I 18 66.7 9 33.3 27 52.9
 II and III 9 37.5 15 62.5 24 47.1

RCB index 0.1516
 Mean (range) 0.5 0–3.8 1.6 0–3.4

Age 0.0239
 Mean (range) [Years] 50.1 28–72 43.4 26–64

Longest tumor diameter by MRI (pretreat-
ment)

0.0319

 Mean and range [cm] 4.1 1.8–8.5 5.6 1.5–12.9
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DTC-positivity (Chi-squared p = 0.1658) (Table 1, Supple-
mentary Fig. 4). Association between DTC-positivity and 
RCB classes was not significant (Chi-squared p = 0.1138). 
When dichotomized as RCB-0/I vs. RCB-II/III, the association 
between DTC-positivity and RCB was significant (Chi-squared 
p = 0.0373), i.e., the proportion of DTC-positive patients was 
significantly higher in patients with moderate or extensive 
residual cancer (RCB-II/III, 62.5%) compared to those with 
no or minimal residual cancer (RCB-0/I, 33.3%). The mean 
RCB index was also numerically higher, but not statistically sig-
nificant, in DTC-positive patients compared to DTC-negative 
patients (1.6 vs. 1.0, t-test p = 0.1516).

At the time of this analysis, the median follow-up of the 
I-SPY 2 Trial DTC cohort was 3.2 years (range of 0.9–6.1 years). 
8/51 (15.7%) patients experienced distant recurrence, 6 (11.8%) 
of whom died. In this small sample, no significant difference 
was seen in DRFS between DTC-positive and DTC-negative 
patients (log-rank p = 0.38) (Supplementary Fig. 5) even after 
adjusting for subtype (Supplementary Table 3).

Discussion

We examined the relationship of DTC-positivity detected 
after NAC with standard clinicopathologic variables, 
response to NAC, and risk of metastatic recurrence and 
death in locally advanced high-risk breast cancer patients 
in the SURMOUNT study, a subset of the I-SPY 2 Trial.

In univariate analysis, we found that DTC-positive 
patients were significantly younger and had larger pretreat-
ment tumors by MRI compared to those who were DTC-
negative. Preliminary findings based on our small dataset 
showed a significant association between DTC-positivity 
and race: non-white patients had a higher DTC-positivity 
rate compared to white patients. In multivariate analy-
sis, pretreatment tumor size by MRI and race but not age 
remained significant predictors of DTC-positivity.

Our results showed no significant association between 
DTC-positivity after NAC and pCR. However, when the 
response variable RCB was dichotomized (RCB-0/I vs. 
RCB-II/III), we found that the proportion of DTC-positives 
was significantly higher in patients with moderate and exten-
sive residual disease (RCB-II/III, 62.5%) compared those 
with no or minimal residual disease (RCB-0/I, 33.3%).

Our findings that DTC-positivity after NAC reflect 
aggressive disease (e.g., larger tumors at pretreatment) pro-
vide additional clinical evidence that DTCs are an interme-
diate step in the metastatic process. The finding of a higher 
DTC-positivity rate in non-whites vs. white patients was 
unanticipated and not clearly due to the confounding effects 
of more advanced stage, warranting further investigation.

To our knowledge, our study is the first to report on a 
significant association between DTC-positivity and response 
to NAC. Here, DTCs were detected using the IE/FC assay, 
a method that involves enrichment and detection of cells 
based on EPCAM expression. Tumor cells with low expres-
sion of EPCAM, e.g., those undergoing an epithelial-to-
mesenchymal transition [12], will be missed by IE/FC and 
thus represents a limitation of the assay. Another limitation 
involves the detection of false positives in bone marrow sam-
ples from individuals with no history of cancer. Testing of 
the IE/FC assay in non-cancer controls during initial devel-
opment revealed the presence of EPCAM+CD45− events 
by flow cytometry in non-cancer controls (mean: 1.31 DTC/
mL, standard deviation: 1.43). Upon further investigation, 
we found cells with a weak autofluorescence in the EPCAM 
channel that resulted in what appears to be false-positive 
events. In this study, we used a cutoff based on two stand-
ard deviations above the mean EPCAM+CD45− cells 
per mL in the bone marrow of non-cancer controls for 
DTC-positivity. Samples in the present cohort with > 4.16 
EPCAM+CD45− cells per mL were classified as DTC-
positive. Since false positives were detected in non-cancer 
controls, we acknowledge that not all EPCAM+CD45− cells 
in bone marrow detected by IE/FC may represent bona fide 
DTCs with malignant characteristics. We, therefore, con-
sider the results of our study as tentative findings that war-
rant future confirmatory studies.

In addition to EPCAM, other studies have used cytokera-
tin expression for detecting DTCs in bone marrow using 
standard immunocytochemistry (ICC) [6, 14]. In this study, 
we observed that 47.1% of bone marrow was DTC-posi-
tive. In a large, pooled DTC study using ICC, the positiv-
ity rate was 30.6% [5]. The IE/FC approach used in this 
study detected higher numbers of DTCs compared to ICC. 
The difference in detection rates may be due to the number 
of cells used as input for each assay. The IE/FC method 
routinely uses 4 mLs of bone marrow, which is equivalent 

Table 2   Logistic regression 
models for prediction of DTC-
positivity after neoadjuvant 
chemotherapy. OR-odds ratio, 
CI-confidence interval

Predictors Univariate Multivariate

p value Odds ratio Lower 95% CI Higher 95% CI p value

Age at screening 0.0329 0.97 0.90 1.03 0.3379
Longest tumor diameter by 

MRI (pretreatment)
0.0366 1.37 1.03 1.94 0.0444

Non-white vs. White 0.0205 13.86 1.90 290.21 0.0250
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to ~ 176 million mononuclear cells per sample, while the 
standard ICC evaluates 4–8 million cells per sample [8]. 
Therefore, IE/FC interrogates > 20-fold more cells than ICC 
and thus may reflect the higher sensitivity of the IE/FC, but 
its specificity may be lower compared to that of the cytoker-
atin-based ICC assay. It is also possible that the IE/FC and 
ICC methods detect overlapping, but distinct populations of 
cells, since the former is based on flow cytometry detection 
of EPCAM expression, whereas the latter is based on the 
immunohistochemical detection of cytokeratin expression.

In contrast to previous reports by Hall [9] and Hartkopf 
[10], our survival analysis did not reveal any significant cor-
relation between DTC-positivity after NAC and increased 
risk of disease relapse or death. This may be due to the lim-
ited sample size, heterogeneity of clinical characteristics 
across breast cancer subtypes and the treatment received, 
and the relatively short follow-up of 3.2 years. Also, previ-
ous studies that have demonstrated the prognostic impact 
of DTCs have used cytokeratin-based approaches to detect 
these cells in the bone marrow [9, 10]. Our previous studies 
using IE/FC to detect DTCs in treatment-naïve early stage 
breast cancer did show that DTC-positive patients who were 
also CTC-positive (DTC+CTC+) at surgery had the worst 
breast cancer-specific survival compared to other groups: 
DTC+CTC−, DTC−CTC+, and DTC−CTC− [17]. Also, 
higher pretreatment levels of DTCs, detected by IE/FC, were 
a significant predictor of recurrence and death in stage I-III 
breast cancer patients receiving adjuvant zoledronic acid 
[24].

The promise of DTCs lies in their potential utility for 
guiding patient selection [4] and improving risk stratification 
by adding prognostic information to the response endpoints 
(e.g., pCR and RCB) to accurately estimate the risk of recur-
rence. For example, the patient who had the highest levels of 
EPCAM+CD45− cells (104.5 cells per mL) achieved a pCR 
but experienced an ipsilateral breast cancer recurrence. Sur-
vival analysis using data from the whole population, how-
ever, did not show that DTCs were significantly associated 
with survival. Importantly, we found that DTCs after NAC 
were significantly associated with the presence of moder-
ate and extensive residual disease (RCB II/III), a finding 
that warrants further study in larger populations. Identify-
ing patients with systemic residual cancer, using DTCs as 
a surrogate marker, could inform therapeutic decisions in 
the adjuvant setting. In addition, the presence of DTCs after 
NAC may identify those who may benefit from more aggres-
sive and/or targeted therapy (escalation) vs. those who can 
forgo additional treatment (de-escalation).

DTCs also provide an opportunity to target tumor dor-
mancy, to eliminate the reservoir of cells that can ulti-
mately reactivate and travel to distant sites. Previous work 
on genomic analysis of EPCAM+/CD45− cells isolated by 
IE/FC from the bone marrow of early stage breast cancer 

patients have revealed malignant characteristics of these 
cells [15]. DTCs detected after NAC represent genetic sub-
clones that have escaped therapy [11]. Molecular characteri-
zation of these cells has revealed novel therapeutic targets, 
which could facilitate the development of more effective 
treatments in the neoadjuvant setting [1, 3, 22]. Such tri-
als are ongoing, including the CLEVER (NCT03032406), 
PALAVY (NCT04841148), and ABBY (NCT04523857) 
trials.

Conclusions

Higher rates of DTC-positivity after NAC were observed in 
younger patients, those with larger tumors, and those with 
residual disease at surgery. The analyses were, however, 
limited by the small sample size. Further studies in larger 
cohorts are needed to confirm the predictive and prognostic 
impact of DTCs as well as their utility for guiding neoadju-
vant therapy to improve patient outcomes.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10549-​022-​06803-0.
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