Identification of Symptoms Associated with irAEs in the I-SPY Trial

Presented by: Amrita Basu, PhD

1Basu A, 1Umashankar S, 1Melisko M, 2Lu R, 2Yu H, 1Musthafa M, 1Jones T, 1Yau, C, 2Asare S, 2Pitsouni M, 3Shatsky R, 4Isaacs C, 5DeMichele A, 6Nanda R, 1Kim M, 1Wolf D, 7Hershman D, 1Esserman L, 1Rugo HS

1University of California, San Francisco, San Francisco, CA
2Quantum Leap Healthcare Collaborative, San Francisco
3University of California, San Diego, San Diego, CA
4Georgetown University, Washington DC
5University of Pennsylvania School of Medicine, Philadelphia, PA
6University of Chicago, Chicago, IL
7Columbia University, New York, NY

On behalf of the I-SPY2 Investigators
Immune checkpoint inhibitors

- Introduced first in the metastatic breast cancer setting with improved outcome in PD-L1 positive disease

- The checkpoint inhibitor, pembrolizumab, is now approved as standard neoadjuvant therapy for high-risk early-stage triple negative breast cancer, with improvements in both response and event free survival

- Associated with immune-related adverse events, some of which are irreversible
 - Hypothyroidism
 - Adrenal insufficiency (often late onset)
 - Diabetes (late onset)

Immune-related Adverse Events and Associated Symptoms

SYMPTOMS

- Diarrhea
- Fatigue
- Dizziness
- Shortness of breath
- Rash
- Vomiting
- Neuropathy
- Headache
- Nausea
- Palpitations
- Decreased appetite
- Acne
- Itching
- Insomnia
- Muscle pain
- Mouth/Throat sores
- Joint pain
- Abdominal pain
- Cough
- Constipation
- Taste changes
- Swelling
- Blurry vision
- Pain urination
- Dry eyes

Martins et al, 2019, Nature Reviews Clinical Oncology
Objectives

• Predict which patients are at risk for developing a serious irAE to enable early consideration of optimal treatment choices

• Understand which symptoms during treatment most contribute to impairment in overall quality of life
Balancing Toxicity and Efficacy: Developing a Standardized Method to Predict Immunotherapy Toxicities
The I-SPY 2 Trial Schema
Dataset Composition

ASSESSMENTS

Clinician-assessed adverse events (CTCAE v 5.0)
- Included all grade 1-4 AEs
- Collected weekly to every 2-3 weeks depending on chemotherapy schedule
- Follow-up: up to 1 year

Patient-reported Outcomes (PRO-CTCAE/PROMIS)
- Patients filled in at least 2 timepoints including baseline
- Surveys were collected weekly for symptoms, and monthly for QOL
- Surveys collected through 24 months
- Reported using the Likert scale 1-5 (from none/mild to severe)

STUDY POPULATION
- 482 patients prescribed at least 4 doses of immunotherapy in combination with chemotherapy (CTCAE)
- 346 patients (PRO-CTCAE/PROMIS), 72% completion rates, 20% overlap with CTCAE
irAEs Included in the Data Analysis

OUTCOMES VARIABLES – CTCAE Defined

• Hypothyroidism (12%)

• Adrenal insufficiency (AI) (8%)

• Pneumonitis (4%)

• Colitis (1%)
Demographic distribution of irAEs

<table>
<thead>
<tr>
<th></th>
<th>Overall (n=482)</th>
<th>Pneumonitis (n=20)</th>
<th>No Pneumonitis (n=462)</th>
<th>Colitis (n=6)</th>
<th>No Colitis (n=476)</th>
<th>Adrenal Insufficiency (n=38)</th>
<th>No Adrenal Insufficiency (n=444)</th>
<th>Hypothyroidism (n=61)</th>
<th>No Hypothyroidism (n=421)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Mean (SD))</td>
<td>47.6 (11.6)</td>
<td>54.0 (9.2)</td>
<td>47.4 (11.6)</td>
<td>51.6 (12.2)</td>
<td>47.6 (11.6)</td>
<td>48.5 (11.7)</td>
<td>47.6 (11.6)</td>
<td>46.4 (10.3)</td>
<td>48.5 (11.7)</td>
</tr>
<tr>
<td>Age (Median (Min-Max))</td>
<td>47.3 (20-79)</td>
<td>55.3 (35-69)</td>
<td>47 (20 – 79)</td>
<td>54.5 (32 – 66.2)</td>
<td>47(20 – 79)</td>
<td>49.5 (31 – 79)</td>
<td>47 (20 – 76)</td>
<td>45.5 (28.8 – 71)</td>
<td>47.9 (20 – 79)</td>
</tr>
<tr>
<td>Race American Indian Alaska Native</td>
<td>3 (.6%)</td>
<td>1 (5 %)</td>
<td>2 (.4%)</td>
<td>0 (0%)</td>
<td>3 (0.63%)</td>
<td>0 (0%)</td>
<td>3 (0.7%)</td>
<td>1 (1.6%)</td>
<td>2 (0.5%)</td>
</tr>
<tr>
<td>Black</td>
<td>60 (12.4%)</td>
<td>2 (10%)</td>
<td>58 (12.6%)</td>
<td>1 (16.7%)</td>
<td>31 (6.5%)</td>
<td>5 (13.2%)</td>
<td>55 (12.4%)</td>
<td>2 (3.3%)</td>
<td>58 (13.5%)</td>
</tr>
<tr>
<td>White</td>
<td>382 (79.3%)</td>
<td>16 (80%)</td>
<td>366 (79.2%)</td>
<td>4 (66.7%)</td>
<td>378 (79.4%)</td>
<td>32 (84.2%)</td>
<td>350 (78.8%)</td>
<td>53 (86.9%)</td>
<td>329 (78.1%)</td>
</tr>
<tr>
<td>Asian</td>
<td>32 (6.6%)</td>
<td>0 (0%)</td>
<td>32 (6.9%)</td>
<td>1 (16.7%)</td>
<td>31 (6.5%)</td>
<td>1 (2.6%)</td>
<td>31 (7.0%)</td>
<td>2 (3.3%)</td>
<td>30 (7.1%)</td>
</tr>
</tbody>
</table>

- Pneumonitis rates were higher in patients over 50 than under 50 (P<.01)
- No other significant associations were observed
Cumulative incidence of irAEs over time
Goal: Predict which patients were at risk for developing an irAE using symptom trajectory

- Symptoms leading up to an AE may be interconnected- “symptomics”
- Knowledge about which individual or constellation of symptoms (mild or severe) leading up to an AE are more predictive or sentinel
- Important implications for individualizing therapy to minimize toxicity
Methods: Predicting who is at risk for developing an irAE

Cohort and data
- All patients on immunotherapy
- Created separate model for each irAE

Method
- Elastic net regression
 - Input: Area under curve for each symptom
 - Output: Grade of irAE

Evaluation of Results
- Error estimates for each model
Methods: Calculation of Symptom Burden

AUC(sympont) = \sum_{n=1}^{n} Grade \times Duration

- Incorporated duration of symptom (days)
- Symptoms only up to the diagnosis of the irAE
- 4-12 weeks after treatment initiation

Grade

Days

Fatigue Rash Dry eyes

0 84

42 84

irAE
Results: Early Symptoms Associated with Hypothyroidism

Early onset of symptoms by 6 weeks was associated with subsequent development of hypothyroidism.

Error Estimate: 30%

- Grade 2 or higher fatigue
- Grade 2 or higher headache
- Grade 1 or higher shortness of breath

Developed hypothyroidism
No hypothyroidism

X axis – weeks
Y axis – proportion of patients

(Wks)

(Wks)
Results: Early Symptoms Associated with Adrenal Insufficiency

- Grade 2 or higher fatigue
- Grade 1 or higher shortness of breath
- Grade 2 or higher decreased appetite
- Grade 1 or higher diarrhea

Early onset of symptoms by 6 weeks was associated with subsequent development of adrenal insufficiency.

Error Estimate: 25%
Results: Co-occurring Symptoms up until 6 week timepoint

HYPOTHYROIDISM

ADRENAL INSUFFICIENCY

- Headache
- Vomiting
- Itching
- Palpitations
- Decreased Appetite
- Mouth Throat Sores
- Nausea
- Acne
- Heartburn
- Insomnia
- Blurry Vision
- Joint Pain
- Cough
- Hot Flashes
- Neuropathy
- Muscle Pain
- Diarrhea
- Rash
- Mouth Throat

- Swelling
- Acne
- Decreased Appetite
- Nasal Congestion
- Nausea
- Vomiting
- Mouth Throat
- Joint Pain
- Muscle Pain

This presentation is the intellectual property of Amrita Basu. Contact them at amrita.basu@ucsf.edu for permission to reprint and/or distribute.
Results: Removal of specific symptoms significantly decreases model performance

HYPOTHYROIDISM

- Headache
- Vomiting
- Itching
- Palpitations
- Decreased Appetite
- Mouth Throat Sores
- Nausea
- Acne
- Heartburn
- Insomnia
- Blurry Vision
- Joint Pain
- Cough
- Hot Flashes
- Neuropathy
- Muscle Pain

ADRENAL INSUFFICIENCY

- Swelling
- Acne
- Decreased Appetite
- Hot Flashes
- Insomnia
- Tense Silences
- Constipation
- Nausea
- Vomiting
- Mouth Throat Sores
- Headache
- Diarrhea
- Muscle Pain
Methods: Patient Reported Outcomes in I-SPY

ePRO launched in 2021 across 28 sites
Results: PRO enables us to evaluate symptoms and their impact on quality of life longitudinally

Joint and muscle pain starting at week 4 is most predictive of reduced QOL at week 12

Poster ID: P5-07-03
Poster Title: The Association Between Symptom Severity and Physical Function among Participants in I-SPY2

Thursday, 5 pm CT
Conclusions and Next Steps

• Early onset of symptoms may predict subsequent risk for irAEs
 ➢ Understanding the risk factors for developing an irAE will help to optimize intensity of surveillance and potential treatment modification to minimize the impact of toxicity

• Further confirmation of this model is required
 ➢ Analysis of PRO is ongoing
 ➢ Analysis of genetic predictors to identify who is at risk of developing a severe irAE
Acknowledgements

WORKING GROUP CHAIRS

Study PIs: L. Esserman
Agents: L. Esserman, D. Yee
Statistics: C. Yau
Operations: C. Isaacs, R. Shatsky
Patient Advocates: J. Perlmuter
Imaging: N. Hylton
PRO/QOL: D. Hershman, A. Basu
Informatics: A. Asare, A. Basu

Biomarkers: L. van’t Veer
Ct DNA: A. DeMichele
QED: A. DeMichele
IP Project Oversight: A. Barker
Surgery: J. Boughey, R. Mukhtar
Safety: H. Rugo, R. Nanda
Clinical Operations: M. Pitsiouni
Pathology: F. Symmans
IRB Working Group: T. Helsten
Return of Results: A. DeMichele

SITE PRINCIPAL INVESTIGATORS: 28 sites

City of Hope: Jennifer Tseng
Cleveland Clinic: Erin Roesch
Columbia: Meghan Trivedi
Denver: Anthony Elias
Emory: Kevin Kalinsky
Georgetown: Claudine Isaacs
HOAG: Chaitali Nangia
Huntman: Christos Vakayas
Loyola: Kathy Albain
Mayo: Judy Boughey
Moffitt: Heather Han
OSU: Nicole Williams
OHSU: Zahli Mitri
Rutgers: Coral Omene
Sanford: Amy Sanford
Sparrow: Brittani Thomas
UCB: Mili Arora
UCB: Rita Nanda
UCSF: Anne Wallace
UM: A. Jo Chien
UMC: Carla Falkson
UPenn: Amy Clark
USC: Evanthia Roussos Torres
Vanderbilt: Laura Kennedy
Wake Forest: Alexandra Thomas
Yale: Tara Sanft

PROJECT OVERSIGHT

Anna Barker/USC; Patrizia Cavazzoni/FDA CDER; Reena Phillip/FDA; Janet Woodcock/FDA; Eric Rubin/Merck, FNIH Biomarker Consortium; Lisa LaVange/UNC; Ken Ehlerl/UGH

QUANTUM LEAP HEALTHCARE COLLABORATIVE/ UCSF:

CEO: J. Palazzolo
Director of Clinical Operations: M. Pitsiouni

Safety:
M. Saleem (QLHC), A. Kelley, S. Bezawada, B. Smolich, M. Bozorginia (CCSA)

Site Regulatory:
E. Guerrero, S. Rice

Drug Management:
F. Chu, A. Spivak, A. Sangwan, J. Ritchie

Manuscripts/Strategy:
L. Sit, J. Matthews

Collaborations:
P. Henderson, S. Jafari, H. Fraser

Biomarkers/Specimens:

Imaging Lab:

Data Analysis, Data Management & IT:

PRIOR COLLABORATORS and STAFF

Thank you to the remarkable patients and families, our amazing advocates, all of the investigators, staff, and our DSMB for supporting the trial.
Participating Organizations

FUNDING PARTNERS
<table>
<thead>
<tr>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>William K Bowes, Jr. Foundation</td>
</tr>
<tr>
<td>Foundation for the National Institutes of Health (FNIH)</td>
</tr>
<tr>
<td>Give Breast Cancer the Boot</td>
</tr>
<tr>
<td>University of California San Francisco (UCSF)</td>
</tr>
<tr>
<td>The Biomarkers Consortium</td>
</tr>
<tr>
<td>The Breast Cancer Research Foundation (BCRF)</td>
</tr>
<tr>
<td>Safeway, an Albertsons Company</td>
</tr>
<tr>
<td>California Breast Cancer Research Program</td>
</tr>
<tr>
<td>Breast Cancer Research – Atwater Trust</td>
</tr>
<tr>
<td>Stand Up to Cancer</td>
</tr>
<tr>
<td>National Institutes of Health (NIH/NCI)</td>
</tr>
</tbody>
</table>

INVESTIGATIONAL AGENT PROVIDERS
<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbbVie</td>
</tr>
<tr>
<td>Amgen</td>
</tr>
<tr>
<td>Merck</td>
</tr>
<tr>
<td>Roche/Genentech</td>
</tr>
<tr>
<td>Synta Pharmaceutical</td>
</tr>
<tr>
<td>Puma Biototechnology</td>
</tr>
<tr>
<td>Plexxikon</td>
</tr>
<tr>
<td>Daiichi Sankyo</td>
</tr>
<tr>
<td>AstraZeneca</td>
</tr>
<tr>
<td>Seagen</td>
</tr>
<tr>
<td>Dynavax</td>
</tr>
<tr>
<td>Regeneron</td>
</tr>
<tr>
<td>G1 Therapeutics</td>
</tr>
<tr>
<td>GSK</td>
</tr>
<tr>
<td>Sanofi</td>
</tr>
<tr>
<td>Eli Lilly</td>
</tr>
<tr>
<td>Apotex</td>
</tr>
<tr>
<td>Athenex</td>
</tr>
<tr>
<td>Byondis</td>
</tr>
<tr>
<td>ALX Oncology</td>
</tr>
<tr>
<td>Ambrx</td>
</tr>
<tr>
<td>Vyriad</td>
</tr>
</tbody>
</table>

STUDY SPONSOR
| Quantum Leap Healthcare Collaborative (QLHC) |

DATA SUPPORT
<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS Associates, Inc</td>
</tr>
<tr>
<td>Salesforce.com, Inc.</td>
</tr>
<tr>
<td>OpenClinica, LLC</td>
</tr>
<tr>
<td>Formedix</td>
</tr>
<tr>
<td>OpenSpecimen</td>
</tr>
<tr>
<td>Natera, Inc</td>
</tr>
<tr>
<td>Agendia</td>
</tr>
<tr>
<td>Hologic, Inc.</td>
</tr>
<tr>
<td>The Translational Genomics Research Institute (TGen ®)</td>
</tr>
<tr>
<td>University of California San Francisco (UCSF)</td>
</tr>
<tr>
<td>Illumina</td>
</tr>
<tr>
<td>George Mason University (GMU)</td>
</tr>
<tr>
<td>Akoya Biosciences Inc.</td>
</tr>
<tr>
<td>Delphi</td>
</tr>
</tbody>
</table>

BIOMARKER PLATFORMS
<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbbVie</td>
</tr>
<tr>
<td>Amgen</td>
</tr>
<tr>
<td>Merck</td>
</tr>
<tr>
<td>Roche/Genentech</td>
</tr>
<tr>
<td>Synta Pharmaceutical</td>
</tr>
<tr>
<td>Puma Biototechnology</td>
</tr>
<tr>
<td>Plexxikon</td>
</tr>
<tr>
<td>Daiichi Sankyo</td>
</tr>
<tr>
<td>AstraZeneca</td>
</tr>
<tr>
<td>Seagen</td>
</tr>
<tr>
<td>Dynavax</td>
</tr>
<tr>
<td>Regeneron</td>
</tr>
<tr>
<td>G1 Therapeutics</td>
</tr>
<tr>
<td>GSK</td>
</tr>
<tr>
<td>Sanofi</td>
</tr>
<tr>
<td>Eli Lilly</td>
</tr>
<tr>
<td>Apotex</td>
</tr>
<tr>
<td>Athenex</td>
</tr>
<tr>
<td>Byondis</td>
</tr>
<tr>
<td>ALX Oncology</td>
</tr>
<tr>
<td>Ambrx</td>
</tr>
<tr>
<td>Vyriad</td>
</tr>
</tbody>
</table>

This presentation is the intellectual property of Amrita Basu. Contact them at amrita.basu@ucsf.edu for permission to reprint and/or distribute.

I-SPY | The right drug. The right patient. The right time. Now.