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Application of Machine Learning to elucidate the biology predicting response in the I-SPY 2 neoadjuvant breast cancer trial
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PREDICTORS WITHIN MECHANISM OF ACTION
Prediction of pCR using only genes reflecting the known mechanism of the drug
succeeded in 5 subgroups, with DNA repair genes (Figure 5A) predicting VC response and
immune genes (Figure 5B) predicting Pembro response in HR+HER2- and
HR-HER2- subsets, and AKT/PI3K/HER + HER2 amplicon genes predicting pertuzumab
response in HR+HER2+ patients.

CONCLUSIONS
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Table 1 summarizes the results of our analysis (red=Predictive model; blue=No
predictive model; grey/NA=insufficient or no data). In total, we identified predictive
biomarkers in 14 of 19 subgroups across the three feature selection approaches: (1)
restricted to mechanism of action genes; (2) expanded to include targeted pathways for
all 10 agents/combinations plus ESR1 and proliferation genes; (3) an unbiased whole
genome approach.

Our results suggests that hypothesis driven analysis restricted to assumed mechanisms
of action of the experimental agents may be insufficient, and that exploration of possible
off target effects may be needed to understand the underlying biology of response or
resistance.

METHODOLOGY
Each treatment arm/receptor subtype subgroup with at least 20 patients (n=19) was
evaluated independently with 25% of data held out as independent test sets. Log2
transformed data was centered and scaled. We then used a 3-fold cross validation
technique with 10 repeats applying different resampling methods. Random Forest
ensemble algorithm was implemented with recursive feature elimination (Figure 3).

In combination with clinical data, a three-pronged feature-selection approach was
employed: (1) restricted to mechanism of action genes: AKT/PI3K/HER (m=10 genes),
IGF1 (m=11), HSP90 (m=88), DNA repair (m=79), TIE1/2 (m=11), and immune (m=61),
as well as HER2 amplicon genes; (2) expanded to include targeted pathways for all 10
agents/combinations plus ESR1 and proliferation genes (m=339); (3) an unbiased whole
genome approach (m=17,990) (Figure 4).

Models were considered predictive if AUROC ≥ 0.75, Sensitivity ≥ 0.6 and Specificity ≥
0.6 in cross validation and independent test sets.

PREDICTION OF PATHOLOGIC COMPLETE RESPONSE
I-SPY 2 is a multicenter, phase 2 trial using response-adaptive randomization within
biomarker subtypes to evaluate a series of novel agents when added to standard
neoadjuvant therapy for women with high-risk stage II/III breast (Figure 2). Within each
patient subtype, participants are assigned to one of several investigational therapies or
the control regimen (4:1). Randomization probabilities are weighed by the probability of
achieving a pCR within each subtype for each agent and adapts over the course of the
trial. The primary endpoint is pathologic complete response (pCR, no residual disease in
breast or nodes) at surgery.

BACKGROUND
Machine learning relies on algorithms that learn patterns in large, complex datasets to
predict outcomes. The adaptive, neoadjuvant I-SPY 2 TRIAL evaluates novel agents
added to standard therapy, and identifies their most responsive subtype. While
previously proposed genes/signatures reflecting an agent’s mechanism of action
predicted pathologic complete response (pCR) in some treatment arms/subtypes, not all
arms had strong predictive biomarkers. We leverage machine learning to explore the
limitations of using only known mechanisms of action in predicting pCR, and the extent
to which biology outside known drug action improves response prediction in the first 10
arms of the trial.

Our study involves 986 patients with pre-treatment gene expression and pCR data
across 10 treatment arms including inhibitors of HER2: neratinib (N), pertuzumab (P),
TDM1/pertuzumab (TDM1/P); AKT (MK-2206; M); IGF1R (ganitumab); HSP90
(ganetespib); PARP/DNA repair (veliparib/carboplatin; VC); ANG1/2 (AMG386); immune
checkpoints (pembrolizumab; Pembro); and a shared control arm (Ctr) (Figure 1).

I-SPY2’s ADAPTIVE TRIAL DESIGN

PREDICTORS ACROSS MECHANISMS OF ACTION
Expansion of the feature set to include genes associated with all mechanisms of action
of all drugs proved sufficient to produce good predictive models in 8 of 19 subgroups.
Examples include DNA repair + immune genes predicting response to ganitumab in
HR+HER2- and to neratinib in HR+HER2+ (Figure 6).

UNBIASED PREDICTORS
An unbiased approach using all data yielded predictive power in 8 of 19 subgroups,
including 5 with no predictive models from the first two approaches. Examples include
HR-HER2- neratinib predictors enriched for metabolic, cell division and membrane
protein proteolytic processes; HR+HER2+ TDM1/P enriched for metabolic, stress
response and cell cycle processes (Figure 7); and HR-HER2- MK-2206 predictors
containing Ser/Thr kinases.

Figure 3: Schematic outlining main challenges, 
methododiical considerations and optimization steps. 
(Random Forest Simplified schematic from Wikimedia Commons)

Figure 6. Case Study HR+ HER2+ 
neratinib. DNA Repair, such as 
RPA1, and immune genes, such as 
SPIB, which are outside the known 
mechanism of action of N were 
found to be predictive in  10 
models. Five DNA repair and 
immune genes have predictive 
value in these models.

Figure 7. Case Study HR+ HER2+ TDM1/P. (A) An unbiased approach discovers 902 ranked 
predictors, 867 are highly connected via protein-protein interaction (StringDB conficence > 0.7) 
and enrich for metabolic, stress response and cell cycle processes. (B-C) DAVID functional 
enrichment identifies a cluster of genes associated with cell cycle and mitosis that are 
upregulated (orange), e.g. NUP43, PTTG1, TUBB4B, ZWINT or downregulated (purple), e.g. 
RBBP8, in pCR vs. no pCR.

Unbiased approach

Restricted to 
mechanism of action

Expanded to targeted 
pathways of all agents

Figure 4: Three-pronged feature 
selection approach.

The goal is to identify/graduate regimens that
have ≥85% Bayesian predictive probability of
success (statistical significance) in a 300-
patient phase 3 neoadjuvant trial, defined by
hormone-receptor (HR) & HER2 status &
MammaPrint (MP).

Regimens may leave the trial for one of four
reasons: Graduate, Drop for futility (< 10%
probability of success), Drop for safety issues,
or accruing maximum sample size (10%<
probability of success <85%).
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I-SPY 2 Investigational Agents

Anti-HER family signaling
• neratinib (pan anti-HER)
• pertuzumab (anti-HER2)
• TDM1/pertuzumab (anti-HER2)

AKT inhibition 
• MK-2206

Anti-IGF1R
• ganitumab Immune checkpoint 
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response inhibition
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• AMG386 (ANG1/2 inhibitor)

PARP inhibition + DNA damage
• veliparib/carboplatin  

A

Figure 1: (A) I-SPY 2 investigational agents and their 
mechanisms of action against Hallmarks of Cancer pathways. 
(B) The number of patients in each treatment arm with 
fraction in each receptor subtype indicated in color.

B

Figure 2: I-SPY 2 study schema and adaptive
randomization based on probabilities of
agents of achieving pCR within a given
subtype.
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Case Study: HR+ HER2- pembrolizumab (immune checkpoint inhibitor) 
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Figure 5. (A) Case Study HR-
HER2- VC. DNA Repair genes, 
such as FEN1 and BRCA1, were 
predictive in  7 models. Two models 
consisted of 4 predictors each; 5 
models of 9 predictors each. (B) 
Case Study HR+ HER2- Pembro. 
Immune genes, such as IL21R and 
CXCL13, were predictive in 2 
models. One model consisted of 9 
predictors; the ther of 49 predictors.
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Case Study: HR- HER2- veliparib/carboplatin (PARP inhibitor/DNA damage)
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Case Study: HR+ HER2+ neratinib (pan-anti HER) 
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1:  Proper stratification – predict pCR not receptor status
2:  Small sample sizes for certain receptor status + treatment arms combinations 
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TABLE 1.

Mechanism 
of Action

All 
Mechanisms 

of Action
Unbiased

Mechanism 
of Action

All 
Mechanisms 

of Action
Unbiased

Mechanism 
of Action

All 
Mechanisms 

of Action
Unbiased

Mechanism 
of Action

All 
Mechanisms 

of Action +
Unbiased

neratinib (pan anti-HER) 18 32 No No Yes 42 No Yes Yes 23 No No Yes
pertuzumab  (anti-HER2) NA NA 29 Yes Yes No 15
TDM1/pertuzumab  (anti-HER2) NA NA 35 No No Yes 17
MK−2206 (AKT inhibitor) 28 No No No 32 No No Yes 16 18
ganitumab (IGFR inhibitor) 58 No Yes No 48 No No No NA NA
ganetespib (HSP90 inhibitor) 48 No Yes Yes 45 No No No NA NA
velirapib/carboplatin (PARP inhibitor/DNA damage) 33 Yes Yes No 39 Yes Yes No NA NA
AMG386 (ANG1/2 inhibitor) 62 No Yes Yes 53 No No No 15 4
pembrolizumab (immune checkpoint inhibitor) 38 Yes Yes No 29 Yes No No NA NA
HER2+ control NA NA 19 12
HER2- control 94 No No Yes 84 No No No NA NA
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No Predictive Model
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Results
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ResultsTable 1:

Gene Ontology GO ID Term Description Observed Gene Count FDR
Biological Process GO:0008152 Metabolic Process 485 0.0199
Biological Process GO:0006950 Response to Stress 187 0.0497
Cellular Compartment GO:0000775 Chromosome, Centromeric Region 22 0.0053
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