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ABSTRACT
Purpose. This study was designed to determine (1) rates

of clinically meaningful tumor reduction in breast tumor

size following neoadjuvant chemotherapy (NAC), (2)
which receptor subtypes and MRI phenotypes are associ-

ated with clinically meaningful tumor reduction, and (3)
whether MRI phenotype impacts concordance between

pathologic and MRI size.

Methods. We analyzed data from the I-SPY TRIAL, a
multicenter, prospective NAC trial. Reduction in tumor

size from [4 to B4 cm was considered clinically mean-

ingful, as crossing this threshold was considered a
reasonable cutoff for potential breast conservation therapy

(BCT). MRI phenotypes were scored between one (well-

defined) and five (diffuse) on pre-NAC MRIs.
Results. Of 174 patients with tumors [4 cm, 141 (81 %)

had clinically meaningful tumor reduction. Response to

therapy varied by MRI phenotype (p = 0.003), with well-
defined phenotypes more likely than diffuse phenotypes to

have clinically meaningful tumor shrinkage (91 vs. 72 %,

p = 0.037). Her2? and triple-negative (Tneg) tumors had
the highest rate of clinically meaningful tumor reduction

(p = 0.005). The concordance between tumor diameter on

MRI and surgical pathology was highest for Her2? and
Tneg tumors, especially among tumors with solid imaging

phenotypes (p = 0.004).

Discussion. NAC allows most patients with large breast
tumors to have clinically meaningful tumor reduction,

meaning response that would impact ability to undergo BCT.
However, response varies by imaging and tumor subtypes.

Concordance between tumor size on MRI and surgical

pathology was higher in well-defined tumors, especially
those with a Tneg subtype, and lower in HR? diffuse tumors.

Neoadjuvant chemotherapy (NAC) is used increasingly
for breast cancer treatment, with two main benefits: it

offers the ability to monitor response to treatment, where

pathologic complete response (pCR) is prognostic, and it
can result in downstaging of tumor and breast conservation

treatment (BCT) or eliminate the need for postmastectomy

radiation in the setting of pCR.1–6 Many factors influence
the choice of surgical procedure after NAC: patient pref-

erence, tumor appearance, hormone receptor (HR) and

Her2 expression status, and treatment response.7,8 Whereas
the post-NAC MRI often is used to determine whether

BCT is possible, investigators note that the pre-NAC MRI

influences surgeons’ recommendations, regardless of tumor
appearance after NAC.9 Because clinicians and patients

seek to avoid reexcision, it is important to understand the

reliability of the postchemotherapy MRI.10–13

Physical examination, ultrasound, and mammography

have only moderate accuracy in predicting residual disease,

whereas MRI longest diameter and volumetric measurements
are the most accurate measures after chemotherapy.14–17

Despite this, both false positives and negatives remain. A

better understanding of imaging reliability and which features
predict successful BCT could affect surgical

management.18,19
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We previously identified that MRI phenotypes (solid

and well-contained vs. diffuse and infiltrative) correspond
with degree of response to NAC and predict the ability to

achieve breast conservation.20 In this study, we investi-

gated whether MRI phenotype and receptor subtype
predicted rates of clinically meaningful tumor reduction in

a larger cohort with imaging and molecular data. Surgeon

comfort with attempting BCT varies and was not man-
dated; our primary endpoint therefore was crossing the

threshold from [4 cm to tumor size of B4 cm, a reason-

able cutoff for potential BCT. We also investigated
whether the correlation between tumor size on post-NAC

MRI and surgical pathology differed by MRI phenotype

and receptor subtype.

METHODS

Patients

Patients received anthracycline-based chemotherapy,

followed by a taxane regimen on the I-SPY 1 TRIAL
(CALGB 150007/150012, ACRIN 6657).1,2 Herceptin was

used neoadjuvantly in Her2? patients after 2005. This

study was approved by the UCSF institutional review
board.

MRI Technique

Contrast-enhanced MRI was performed on 1.5T MRI

scanners using dedicated breast radiofrequency coils
(details previously described).21 Unilateral images were

acquired using 3D, fat-suppressed, T1-weighted spoiled

gradient echo (SPGR) imaging with spatial resolution
B1 mm/pixel in-plane and B2.5-mm slice thickness. Pre-

and postgadolinium (0.1 mmol/kg) imaging was performed

at prespecified temporal resolution to achieve imaging at
*2.5 and 7.5 min after contrast administration. Tumors

were assigned one of five MRI phenotypes based on pre-

NAC imaging: 1—well defined, unicentric mass; 2—well
defined, multilobulated mass; 3—area enhancement with

nodularity; 4—area enhancement without nodularity; 5—

septal spreading (Fig. 1). Pre-NAC MRI phenotype was
determined by a centrally trained breast radiologist at each

study site.

Determination of Tumor Marker Subtypes

Core biopsies were obtained at each site before NAC,
and immunohistochemical and genomic markers were

performed as previously described.1,2

Postsurgical Pathology Analysis

Seven study pathologists were trained on evaluation of

gross and microscopic sections using a standardized tool:
the residual cancer burden method.22 Training was done by

Dr. Fraser Symmans, who reviewed the first five cases from

each pathologist. An electronic tool was built to capture
extent of disease. Pathology size was re-reviewed and

longest diameter from this central re-review was used as

the largest size.

Definition of Clinically Meaningful Tumor Reduction

Subjects were considered potentially eligible for BCT
before receiving NAC if the tumor was B4 cm on both pre-

NAC clinical examination and pre-NAC MRI. This cut

point was chosen based on its use in the National Surgical
Adjuvant Breast and Bowel Project B-06.23 Patients with

tumors[4 cm in size before NAC were considered to have

a clinically meaningful tumor reduction if the tumor was
B4 cm on surgical pathology. Discrepancy between post-

NAC MRI and surgical pathology was defined as a dif-

ference in longest tumor diameter of C2 cm (cutoff based

FIG. 1 Examples of each of the five MRI phenotypes: 1 well defined, unicentric mass; 2 well defined, multilobulated mass; 3 area enhancement
with nodularity; 4 area enhancement without nodularity; 5 septal spreading
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on internal consensus). Employment of stricter cutoffs (up

to 1.5 cm) did not significantly alter our findings.

Statistical Analysis

As most variables were not normally distributed, median
values and ranges are reported. The Kruskal–Wallis test

was used to compare continuous variables, and contin-

gency tables with the v2 test were used for categorical
variables.24 MRI phenotypes were analyzed as five distinct

categories, as well by dichotomization into well-defined
versus diffuse categories. p values were two-sided, and

p \ 0.05 based on contingency table v2 statistical test was

considered significant.25

RESULTS

Clinical Characteristics

Of the 221 subjects in the I-SPY TRIAL, 198 had data

available for pre- and posttreatment MRIs, pretreatment
clinical examinations, type of surgery, and surgical

pathology; 193 had pre-NAC HR and Her2 status avail-

able.1,2 Of the 198 subjects in this study, 24 had tumors
B4 cm on both pre-NAC clinical examination and pre-

NAC MRI.

Clinically Meaningful Tumor Reduction

Of the 174 subjects with tumors [4 cm on pre-NAC

clinical examination and MRI, 141 (81 %) had a clinically

meaningful tumor reduction after NAC based on a tumor

size B4 cm on surgical pathology. Sixty-one of these 174
(35 %) subjects received BCT. Of the 141 subjects whose

tumors shrank to B4 cm, 52 (37 %) received BCT, 2

(1.4 %) had attempted BCT but subsequently required
mastectomy for positive margins, and 87 (62 %) underwent

mastectomy. The most common reasons for not receiving

BCT included multicentric disease (22 %) and patient
choice (22 %; Supplementary Table 1).

The response to NAC varied by MRI phenotype
(p = 0.037). Patients with well-defined pre-NAC MRI

phenotypes (Fig. 1) had higher rates of clinically mean-

ingful tumor reduction than those with diffuse phenotypes
(92 vs. 72 %; Fig. 2a). The rates of BCT were higher in the

well-defined phenotypes compared with the diffuse phe-

notypes (47 vs. 27 %, p = 0.023; Fig. 2a).
The rate of clinically meaningful tumor reduction also

varied by receptor subtype (p = 0.005). Her2? and Tneg

(HR-/Her2-) tumors had higher rates compared with the
HR?/Her2- group (Fig. 2b). However, there was no sig-

nificant difference in BCT rates (Fig. 2b). Analysis using a

3-cm cutoff for clinically meaningful tumor reduction
yielded similar results.

MRI/Pathology Concordance

Pretreatment tumor size varied by MRI phenotype pat-

tern (p = 0.002; Supplementary Table 2). In addition,

tumor diameter on pre-NAC MRI differed significantly
from tumor diameter by palpation (paired Wilcoxon rank-

sum test, p = 0.01) and this difference varied by imaging

a b

FIG. 2 a Bar plot showing percentage of patients who had clinically
meaningful tumor reduction (blue) and who received BCT (yellow)
after NAC by MRI phenotype; pink line represents the average rate of
clinically meaningful tumor reduction (81 %). Subjects with well-
defined MRI phenotypes (1 and 2 ) were more likely to have a

clinically meaningful tumor reduction and receive BCT after NAC.
b Bar plot showing same data by receptor subtype. Her2? and Tneg
tumors had a higher likelihood of having clinically meaningful tumor
reduction after NAC compared to HR?/Her2- tumors; however, the
actual rates of receiving BCT do not differ by subtype
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phenotype (p = 0.003) with a median size difference of

-0.4, -0.2, 0.9, 0.65, and 2 cm for phenotypes 1–5,
respectively. Clinical diameter tended to be larger than

MRI diameter in solid tumors. In diffuse phenotypes, the

MRI size was larger than by clinical exam (Fig. 3). One

Tneg tumor was excluded from this analysis because the

tumor took up the entire breast, so preoperative size was
not recorded.

The post-NAC MRI longest diameter measurements

differed from diameter measured on surgical pathology
(Fig. 4). Of the 198 subjects analyzed, 75 (38 %) had a

discrepancy of C2 cm between size on imaging and

pathology. Of the 75 discrepant cases, the tumor size on
post-NAC MRI was greater than pathology in 52 cases

(69 %) and smaller in 23 cases (31 %). There were 18
cases (9 %) in which pathology showed no tumor, but post-

NAC MRI tumor size was C2 cm, and 7 cases (3.5 %) in

which post-NAC MRI showed no tumor, but pathology
showed C2 cm of tumor. MRI/pathology concordance

varied by tumor subtype (p = 0.004), with size discrep-

ancies present in half of all HR?/Her2- tumors but lower
discrepancy rates in Her2? and Tneg tumors. Underesti-

mation of disease by[2 cm was rare (4.3 %) in solid MRI

tumor patterns. In cases where the post-NAC MRI under-
estimated the tumor size, all tumors were either diffuse

and/or HR?/Her2- or Her2?, and none were Tneg.

Within each marker subtype, diffuse tumors were more
likely to have size discrepancies. Overall, diffuse HR?

Her2- tumors were most likely to have discrepancies

between post-NAC MRI and surgical pathology (Fig. 4).
Similar trends were observed among patients who received

BCT (80/198 total patients analyzed), with the highest

discrepancy rates in HR? HER2- diffuse cases (31 vs.
19 % all others) and MRI underestimation of tumor size

occurring only in diffuse and/or HR? cases. Additionally,

employing stricter cutoffs for discrepancy (up to 1.5 cm)
did not alter these findings.

FIG. 3 Vertical axis shows the difference in centimeters between
tumor diameter on pre-NAC MRI and tumor diameter palpated on
pre-NAC physical examination. Horizontal axis shows results by MRI
phenotype. Overall, palpation underestimated tumor size in the
diffuse tumors and slightly overestimated in solid tumors. Note that
one Tneg case was left out of this analysis

FIG. 4 Vertical axis shows the
difference in centimeters between post-
NAC MRI longest diameter and tumor
size on surgical pathology. Solid tumors
had smaller size discrepancies than
diffuse tumors. MRI underestimated
path tumor size only in diffuse or HR?
tumors. For cases where MRI was
accurate (\2 cm difference), there were
72 solid and 51 diffuse cases. For cases
were MRI overestimated path tumor
size, there were 16 solid and 36 diffuse
cases. MRI most often overestimated
the size of diffuse tumors, except in the
case of HR?/Her2- tumors. Circles
represent MRI phenotypes 1 and 2 ;
Triangles are phenotypes 3 , 4 , and 5
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MRI Phenotype and Tumor Subtype

The most common patterns were MRI phenotypes 2 and
3 (Table 1). There were significant differences in the

receptor subtype distribution for well-defined versus dif-

fuse MRI categories (p = 0.015 by v2 test). The Tneg
(HR-/Her2-) group made up a larger proportion of the

well-defined MRI phenotypes (35 %) than the diffuse

phenotypes (15 %). The diffuse patterns had a higher
proportion of HR? cases (68 %) than the well-defined

patterns (52 %; Fig. 5). However, all phenotypes were

represented in each receptor subtype.

DISCUSSION

Overall, the results in this prospective cohort of patients
confirm our previous findings that tumor morphology,

captured by MRI phenotype, and tumor subtype affect rates

of achieving clinically meaningful tumor reduction after
NAC.26 Patients with well-defined MRI phenotypes and

those with Her2? and Tneg tumors were more likely to

have tumor shrinkage to B4 cm. We and others have found
an improved correlation between post-NAC MRI and sur-

gical pathology in tumors that are well-defined by

imaging.27 Together, these findings suggest that MRI
phenotype may be used in conjunction with tumor subtype

to set appropriate expectations before undergoing NAC.

MRI phenotype and tumor subtype likely reflect bio-
logical differences between tumors. Other phenotypic

features are associated with different tumor subtypes.

Basal-like breast tumors have distinct histologic and im-
munotypic properties, with characteristics, such as central

scar, tumor necrosis, spindle cells, squamous metaplasia,

high mitotic count, and high nuclear to cytoplasmic
ratio.28,29 Most of these Tneg tumors have mass-like

imaging patterns on MRI.30,31 Even on mammogram and

ultrasound, breast cancer subtypes have imaging charac-
teristics, with Tneg cancers more likely to have smooth

margins.32,33

MRI phenotype and marker status influenced the like-
lihood of size discrepancies between imaging and

pathology. Similarly, Chen et al.9,34 found that MRI was

less accurate in tumors that present as non-mass enhance-
ment on MRI, and in another study suggest that MRI can be

used more successfully to plan BCT in Her2? patients.

Others also have reported that post-NAC MRI appears to
be less accurate in ER? tumors and most accurate in Tneg

or Her2? tumors and that pre-NAC tumor size and

response also impact accuracy.34–37 Although some have
reported the highest accuracy of MRI for Her2- disease,

not knowing HR status and differences in rates of tra-
ztuzumab use could potentially account for the disparate

results.38 Benign proliferative processes can enhance on

TABLE 1 Patient and tumor characteristics: age, stage, histology,
grade, chemotherapeutic regimens, HR/Her2 marker status, surgical
treatment received, and MRI phenotype

Total (n = 198)
Number (%)

Median age (range) 48.5 (26.7–68.8)

Stage at presentation

I 3 (1.5)

II 93 (47)

III 88 (44.4)

Inflammatory 14 (7)

Histology

Necrosis 3 (1.5)

Ductal 158 (80)

Lobular 18 (9)

Mixed ductal-lobular 7 (3.5)

Other/not available 12 (6)

Grade

1 14 (7)

2 90 (45.5)

3 90 (45.5)

Indeterminate 4 (2)

Chemotherapy regimen

Doxorubicin (A)/cyclophosphamide (C) 9 (4.6)

Doxorubicin (A)/cyclophosphamide (C)/taxane 171 (86.4)

Doxorubicin (A)/cyclophosphamide (C)/taxane/
herceptin

16 (8)

Doxorubicin (A)/cyclophosphamide (C)/taxane/
other

2 (1)

Marker subtype

HR?/Her2- 88 (44.4)

Her2? 58 (29.7)

HR-/Her2- 47 (23.7)

Unavailable 5 (2.5)

Surgical treatment

Lumpectomy 80 (40.4)

Lumpectomy followed by mastectomy 2 (1)

Mastectomy 116 (59)

MRI Phenotype

1 well defined unicentric mass 33 (16.7 %)

2 well defined multilobulated mass 59 (29.8 %)

3 area enhancement with nodularity 60 (30.3 %)

4 area enhancement without nodularity 28 (14.1 %)

5 septal spreading 18 (9.1 %)

Potentially Eligible for BCT

Pre-NAC (palpation and MRI \4 cm)

Yes 24 (14 %)

No 150 (86 %)

Post-NAC (pathology size \4 cm)

Yes 141 (81 %)

No 33 (19 %)

MRI Phenotype and Tumor Subtype 3827



MRI and are difficult to differentiate from low-grade, ER?

DCIS lesions. False-positive MRI enhancement may reflect
a spectrum of change within high-risk tissue, possibly

explaining why it is difficult to distinguish residual tumor

size in ER-positive patients, especially with diffuse
disease.39,40

We previously reported differences in response to NAC

based on the five MRI phenotypes described. Patients with
well-circumscribed masses had the greatest response to

NAC.20 In the current study, the majority of patients

(81 %) achieved shrinkage to tumor size B4 cm, whereas
we previously found only 47 % achieved enough shrinkage

to be potentially eligible for BCT.26 This was likely due to

the addition of taxane, which doubles the pCR rate com-
pared with doxorubicin alone.41 For tumor subtypes,

adjusting for pre-NAC tumor size did not change our

results. For MRI phenotype, we found that size and phe-
notype were associated, because diffuse tumors will

necessarily occupy a larger space. The larger size of these

diffuse tumors could influence the ability to reach the
threshold of B4 cm, but separating the contribution of

phenotype from size is not possible in this study. The tumor

response to NAC also can affect MRI accuracy, with good
correlation between MRI and pathology noted in tumors

with extreme responses (either complete or none), and

worse correlation among partial responders.42,43

For the MRI phenotypes, the well-defined groups had

higher BCT rates, but no difference was seen among tumor

subtypes. Whereas patient choice was a factor in 22 % of
cases that were potentially candidates for but did not receive

BCT, other factors, such as physician recommendations,

could play a role in surgical decisions. Knowing the accu-

racy of MRI could alter these recommendations.
Interestingly, post-NAC MRI longest diameter showed a

stronger association with surgical procedure than tumor size

on surgical pathology or post-NAC mammographic longest
diameter among the 175 patients assessed by all three

methods (Wilcoxon rank-sum test, p = 0.001, 0.17, and

0.02 respectively). There was no significant difference in
local recurrence or recurrence free survival between subjects

who received BCT and those who received mastectomy.44

More than one third of patients had a size discrepancy

C2 cm between the post-NAC MRI and surgical pathol-

ogy. Some have suggested that overestimation on MRI
could be a result of taxane causing increased vascular

permeability and gadolinium uptake, or related to an

inflammatory infiltrate or necrosis.43,45 We found more
discrepancies in the diffuse tumor phenotypes, which likely

reflects increased difficulty in measuring tumor diameter.

These discrepancies were particularly notable in the diffuse
HR?/Her2- tumors and make it more difficult to set

expectations based on post-NAC MRI in these tumor types.

However, in the setting of HR- tumors of solid pheno-
types, post-NAC imaging did not underestimate residual

tumor size. When MRI showed a pCR, the surgical

pathology was concordant.
The strengths of this study include central assessment of

HR/Her2 status and the consistent timing of MRIs. There

were dedicated breast radiologists at each site who under-
went centralized training to validate the MR phenotypes.

Size assessment can be somewhat subjective, however,

especially for diffuse tumors. Adding tumor volume mea-
surements may help to decrease the chance of

overestimating the tumor size compared to surgical

pathology. Despite these limitations, however, the findings
are consistent with those reported in the literature, with the

additional finding that MRI size estimates are less likely to

correspond well with pathology for HR? diffuse tumors.
These findings have clinical implications. Whereas the

majority did not attain a pCR, most patients attained clin-

ically meaningful tumor reduction. The MRI phenotype
and tumor subtype can inform the discussion about the

likelihood of achieving enough response to be potentially

eligible for BCT. Whether this information would increase
rates of receiving BCT is unknown, but increased under-

standing, particularly of the accuracy of post-NAC MRI,

could impact recommendations and patient decisions.
Overall, many more patients have clinically meaningful

tumor reductions than have a pCR. Although the reasons

for not receiving BCT are complex, there is likely room for
improvement in offering BCT to more patients. We are

currently developing an algorithm based on biologic and

MRI features to help determine the chances of having a
clinically meaningful tumor reduction and the likely

FIG. 5 Whereas the relative proportions of tumor subtypes varied
between the well-defined and diffuse MRI phenotypes, both groups
contained all four receptor based subtypes
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accuracy of MR post-NAC to guide this decision-making

process.
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