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Abstract: Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve
images, which topographically assesses the cup and the presence of haemoglobin. Its latest version
has been fully automated with five deep learning models. In this paper, perimetry in combina-
tion with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion
estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual
field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold
coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected
values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined
with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating
Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the
combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%,
respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with
the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and
18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion,
and function can be mutually enhanced with the methods described for the purpose of glaucoma
assessment, providing early sensitivity.

Keywords: glaucoma; deep learning; perimetry; optic nerve

1. Introduction

Glaucoma is a disease with a relatively high incidence, estimated between 2.09% and
5.82% of the adult population [1]. Its diagnosis in early stages is difficult due to its almost
asymptomatic onset and controversy of criteria regarding its initial signs.

Intraocular pressure is an important pathogenesis factor; while not the only one, it
is currently the only one that can be targeted for treatment. Many other factors seem to
have an influence on the disease: genetic, morphological, vasospasm, intracranial pressure,
tissue thickness and morphology, sleep apnoea, etc.

For many years, visual field assessment and optic nerve head examination were the
main diagnostic procedures. More recently, morphological tests have been proposed,
and many authors have argued their greater precocity [2], although, as shown in this
paper, this opinion is debatable. Examples are the scanning laser polarimeter (GDx), the
Heidelberg retina tomograph (HRT) and the optical coherence tomograph (OCT), which is
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currently widely used. More recently, OCT angiographies have been introduced to analyse
vascularization [3], especially in the retinal areas surrounding the optic nerve.

We developed a simple colorimetric procedure to estimate the presence of haemoglobin
and its distribution on the optic disc, which reflects its perfusion and morphology, using
conventional colour retinographies (Laguna ONhE) [4]. The method has been shown to
have good sensitivity and specificity in previous studies [5–12]. However, deep learning
methods for the segmentation of optic nerve edges were later incorporated to facilitate its
use and improve its reproducibility [13].

Artificial intelligence, especially convolutional networks, allow the experience of
experts to be transferred with great precision to other possible users in different medical
specialties, most notably in ophthalmology [14]. Transfer Learning’s new procedures
simplify the development work, taking advantage of the previous training of networks on
generic problems [15].

In a previous experiment [13], we used a deep learning U-Net architecture for se-
mantic segmentation [16]. In this case, 40,000 images were used to segment the optic disc,
identifying the inner edge of Elschnig’s scleral ring.

The importance of perfusion in glaucoma is well recognised [3]. A recent paper using
this same version of the algorithm showed that its results are in the range of an OCT
angiography [17]. The aim of this paper was to take advantage of these new automatic
procedures based on experience to facilitate the use of the application and to improve its
reproducibility, sensitivity, and specificity. In particular, an attempt was made to combine
the morphological and perfusion information provided by the method with functional
perimetric data representative of visual field homogeneity [18] to assess whether this
provided robustness in the diagnostic decision.

2. Materials and Methods

The study protocol of this cross-sectional retrospective study adhered to the principles
of the 1975 Declaration of Helsinki revised in 2013, and was approved by the Research
Ethics Committee of the Hospital Universitario de Canarias (CHUC_2018_09 (V3)). Consent
was obtained from all participants.

2.1. Automation of the Laguna ONhE Method for Estimation of Haemoglobin in the Optic
Nerve Head

The presence of haemoglobin in the tissue was estimated by Laguna ONhE with refer-
ence to the colour of the vessels. Haemoglobin mainly absorbs green radiation and reflects
most of the red. Therefore, the reference colour of the vessels was calculated using the
values of the red (R) and green (G) channels of their pixels, to which the formula (R−G)/R
is applied. The same equation was used for the pixels of the tissue, and finally, the result
was expressed as a percentage. An estimate of cup size and position was also obtained,
and the results of the cup, rim sectors, vertical cup/disc ratio (Hb-C/D) and cup/disc area
ratio were compared with the percentiles achieved in the normal population [10]. Each
fundus camera model was calibrated to achieve an equivalent response.

To achieve full automation of the method, five neural networks were used: one to
segment the edges of the optic nerve already described [13], one for vessel segmentation
using 4195 optic disc images, one to identify the eye as left or right using 4201 images, one
to recognize image quality using 7048 images, and one to identify between normality (using
1518 images) and confirmed or suspected glaucoma (using 1596 images). The technical
method is described in detail in the Appendix A “Computing development setup”.

The classification results obtained by deep learning were associated with the distri-
bution of haemoglobin and the estimated Cup/Disc ratios to define a new value for the
“Globin Distribution Function” (GDF) index, as previously described [4,5]. Once the value
of the deep learning classifier was normalized to the mean values and standard deviation
in the normal population, it influenced the result of the current GDF index by 45%. In
the remaining 55%, the rest of the usual variables that we used in previous studies also
intervened with normalized values. An example of the graphic results is shown in Figure 1.



J. Clin. Med. 2021, 10, 3231 3 of 15

It shows how the method automatically performs the analysis of a retinography (a). Once
its quality has been checked, the position of the optic nerve is identified, the inner edge of
Elschnig’s scleral ring is defined, which is more internal than the apparent clear edge, and
the size and shape of the cup is estimated (b). Its veins and arteries are then segmented,
the colour of which is used to estimate the relative haemoglobin of the rest of the nerve
tissue, shown in a colour code (c). In each sector of the optic disc, cup or rim, their areas are
estimated as a percentage of the total disk area and expressed in colour if it corresponds to
what is expected in a normal optic nerve (d).
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Figure 1. Example of Laguna ONhE analysis: (a) Original wide-field eye fundus image. (b) Identifi-
cation of the optic disc and boundaries segmentation. Central cup estimated from the haemoglobin
distribution. (c) Segmentation of reference vessels and pseudo-colour image of haemoglobin dis-
tribution. (d) Estimated sector areas as a percentage of the total area, and compared to a normal
reference population.

2.2. Combination of Laguna ONhE and Perimetric Indices

The pattern standard deviation (PSD) perimetric index and its equivalent in the
Octopus perimeters, the square root of loss variance (sLV), are well known. In essence,
the pointwise differences between the patient’s sensitivity thresholds and the expected
value in a subject of the same age were calculated, and the standard deviation of all values
was obtained. In general, these values increase as the disease progresses, but in advanced
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defects they reduce as the number of points with no detectable sensitivity (0 dB) increases.
To achieve a linear response, in advanced glaucoma, a modification was made, as previously
described [19], taking into account the mean defect/deviation (MD), using Equation (1).

Equation (1): sLV modification to provide a linear response.

If abs(MD) > 16.33, then sLV = sLV +
abs(MD)− 16.33

0.84
(1)

The threshold coefficient of variation (TCV) is an index of regularity described by
our research group, which represents the harmony of one’s own visual field, without
comparing it with patterns of normality [18]. A characteristic for normality is stability
or harmony, and for pathology, is irregularity or fluctuation. We aimed to analyse them
in the subject themself, regardless of whether their thresholds are close or far from the
normal average, in the same way that a subject can be harmonious and of short stature or
harmonious and tall. This way, TCV is a less complex index than PSD, as it is independent
of the age of the subject. In normal subjects and initial and moderate glaucoma, it is
calculated by dividing the standard deviation of the thresholds in 16 symmetrical positions
of the visual field by their mean value, and multiplying by 100. In advanced glaucoma,
where absolute scotomas are present, both values are adjusted to their number.

2.3. Datasets for the Laguna ONhE, OCT and Perimetric Indices

Two groups were included, consisting of 477 healthy eyes from 409 subjects and
333 eyes with confirmed or suspected chronic open-angle glaucoma from 246 subjects.
Healthy subjects consisted of hospital staff, patient relatives, or people who needed refrac-
tion but did not have eye abnormalities.

All cases had corrected visual acuity of 20/40 or higher, refractive error with spher-
ical equivalent of less than ±5.00 dioptres, astigmatism less than ±2 dioptres, and open
anterior chamber angle. Subjects with cataracts reaching the specified visual acuity were
not excluded. Previous cataract or glaucoma surgery were also not exclusion criteria.
Patients with associated ocular diseases which could interfere with the interpretation of
the results, such as optic neuritis, coloboma, and papillary oedema, were not included.
All the participants underwent a complete examination, including visual acuity, slit lamp
examination, Goldmann tonometry, and fundus examination, within a maximum time
interval of one week.

All cases were examined with the Cirrus spectral-domain optical coherence tomograph
(OCT; Carl Zeiss Meditec, Jena, Germany), using the optic disc cube 200 × 200 acquisition
protocol (software version 5.2). All images were acquired with a quality greater than 6/10.

Three fundus cameras, two perimeters, and two different perimetric strategies were
used to verify that the results of the evaluated method did not depend on the instru-
ments used. In total, 213 normal cases and 110 glaucomas were examined with a Nidek
AFC-210 non-mydriatic fundus retinograph (Nidek Co., LTD, Aichi, Japan) and a white-
on-white Spark strategy in an Easyfield perimeter (Oculus Optikgeräte GmbH, Wetzlar,
Germany) [20]. Then, 87 normal cases and 70 glaucomas were examined with a Kowa Wx
non-mydriatic fundus retinograph (Kowa Co. Ltd., Tokyo, Japan) and with the Easyfield
perimeter using Spark strategy, and 177 normal and 153 glaucomas were examined with a
Horus Scope DEC-200 handheld fundus camera (MiiS, Hsinchu, Taiwan) and an Octopus
300 perimeter (Hagg-Streit AG, Bern, Switzerland) using the Tendency Oriented Perimetry
(TOP) strategy [21].

All control and glaucoma patients underwent perimetric assessment, having under-
gone at least two previous examinations. Healthy eyes had intraocular pressure less than
21 mmHg, and no abnormal results in the visual field or on the optic disc. The “glaucoma”
group comprised glaucoma and glaucoma-suspected eyes. Not all patients in the “glau-
coma” group had defects characteristic of the optic nerve or visual field. In some cases,
there were only signs of suspicion, such as intraocular pressure greater than 21 mmHg,
associated with a family history of glaucoma, an optic disc with a dubious appearance,
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or borderline visual fields, such as a mean deviation exceeding −2 dB or points outside
normal limits on the defect curve. Subjects with ocular pressures greater than 25 mmHg,
or pressures between 21 and 25 mmHg accompanied by a thin cornea (less than 500 µm),
were also included.

Two types of analysis were carried out. In the first, no strict boundary was established
between confirmed and suspected glaucoma, so as not to introduce an a priori criterion
that could alter an objective interpretation of the results [22]. This methodology was widely
discussed in a previous paper [23]. Additionally, two groups were analysed separately
(confirmed glaucoma and glaucoma suspects): confirmed glaucoma was defined based on
the presence of glaucomatous visual field loss in standard automated perimetry (pattern
standard deviation or mean deviation of <5%) and signs of glaucomatous neuropathy
(Laguna ONhE GDF or OCT-rim area of <5%). Those who did not meet these criteria,
but met some of the criteria described in the previous paragraph, were considered as
glaucoma suspects.

2.4. Statistical Analysis

Clinical statistical analyses were performed using the Excel 2016 program (Excel, Mi-
crosoft Corp., Redmond, WA, USA) and MedCalc (Version 18.9–64 bits; MedCalc software
bvba, Mariakerke, Belgium). The statistical comparison between the results of the different
AUCs were calculated in MedCalc using the criteria described by DeLonng et al. [24].

For statistical purposes, the sign of MD values of the Octopus Perimeter was inverted,
to use the same criterion in both perimeters.

In order to associate different indices, they were previously normalized in relation to
the mean value and standard deviation of all normal cases.

3. Results

The reference group was composed of 167 male eyes and 310 female eyes, aged
44.56 ± 13.23 years, with a perimetric MD of 0.18 ± 1.56 dB and PSD-sLV of 1.48 ± 0.52 dB.
The rim area of the Cirrus-OCT was 1.42 ± 0.29 mm2, the retinal nerve fibre layer thickness
(RNFLT) was 91.67 ± 9.77 µm, and the vertical cup/disc ratio (OCT-C/D) was 0.45 ± 0.15.

The glaucoma group consisted of 176 male eyes and 157 female eyes, aged
63.63 ± 11.74 years, with a perimetric MD of −8.85 ± 8.45 dB and PSD-sLV of 4.43 ± 2.82 dB.
The rim area was 0.77 ± 0.34 mm2, the RNFLT was 68.75 ± 16.44 µm, and the OCT-C/D
was 0.74 ± 0.14. Differences were statistically significant in all cases (p < 0.0001). Among
them, 235 met the criteria for confirmed glaucoma, and 98 were considered to be suspected
glaucoma. Glaucoma suspects had an MD of −0.92 ± 2.71 dB, and confirmed glaucoma
had an MD of −12.16 ± 7.81 dB.

3.1. Results of the Indices of the Three Testing Methods on the Total Sample (without Separating
Confirmed and Suspected Glaucoma)

The GDF index result in the groups of validation datasets is shown in Table 1. The
Laguna ONhE GDF index obtained significantly higher results than all perimetric and
Cirrus-OCT indices. The best OCT index was rim area and the best perimetric index TCV,
with no significant differences between them.

Figure 2 shows the receiver operating characteristic (ROC) curves obtained for the
Laguna ONhE GDF index, the OCT indices, and the perimetric indices. To improve the
identification of differences, the upper left part of the curves is enlarged. GDF presented a
sensitivity higher than the rim area for 95.0% (p = 0.0121) and 99.0% specificities (p = 0.0131),
which was also higher than the rest of the perimetric indices and OCT (p < 0.0001).
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Table 1. Performance of Laguna OnhE, OCT, and perimetry indices.

GDF RNFLT Rim Area OCT-C/D MD PSDr TCV

AUC 0.970 0.875 0.926 0.921 0.897 0.883 0.904
SE 0.0054 0.0135 0.0104 0.0099 0.012 0.013 0.0115
CI 0.956–0.981 0.850–0.897 0.906–0.943 0.901–0.939 0.874–0.917 0.859–0.904 0.881–0.923

GDF RNFLT Rim Area OCT-C/D MD PSD-sLVr

RNFLT p < 0.0001
Rim Area p < 0.0001 p < 0.0001
OCT-C/D p < 0.0001 p = 0.0006 p = 0.5812

MD p < 0.0001 p = 0.1389 p = 0.0422 p = 0.0869
PSDr p < 0.0001 p = 0.6013 p = 0.0039 p = 0.0083 p = 0.0692
TCV p < 0.0001 p < 0.0001 p = 0.0824 p = 0.1731 p = 0.5053 p = 0.0066

GDF = Laguna OnhE globin distribution factor; RNFLT = OCT retina nerve fiver layer thickness; OCT-C/D = OCT vertical cup/disc
ratio; MD = perimetric mean defect or deviation; PSDr = perimetric pattern standard deviation or square root of loss variance rectified;
TCV = perimetric threshold coefficient of variation; AUC = area under the receiver operating characteristic curve; SE = standard error; and
CI = 5–95% confidence intervals.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 6 of 15 
 

 

Table 1. Performance of Laguna OnhE, OCT, and perimetry indices. 

 GDF RNFLT Rim Area OCT-C/D MD PSDr TCV 
AUC 0.970 0.875 0.926 0.921 0.897 0.883 0.904 

SE 0.0054 0.0135 0.0104 0.0099 0.012 0.013 0.0115 
CI 0.956–0.981 0.850–0.897 0.906–0.943 0.901–0.939 0.874–0.917 0.859–0.904 0.881–0.923 

 GDF RNFLT Rim Area OCT-C/D MD PSD-sLVr  

RNFLT p < 0.0001       

Rim Area p < 0.0001 p < 0.0001      

OCT-C/D p < 0.0001 p = 0.0006 p = 0.5812     

MD p < 0.0001 p = 0.1389 p = 0.0422 p = 0.0869    

PSDr p < 0.0001 p = 0.6013 p = 0.0039 p = 0.0083 p = 0.0692   

TCV p < 0.0001 p < 0.0001 p = 0.0824 p = 0.1731 p = 0.5053 p = 0.0066  
GDF = Laguna OnhE globin distribution factor; RNFLT = OCT retina nerve fiver layer thickness; OCT-C/D = OCT vertical 
cup/disc ratio; MD = perimetric mean defect or deviation; PSDr = perimetric pattern standard deviation or square root of 
loss variance rectified; TCV = perimetric threshold coefficient of variation; AUC = area under the receiver operating char-
acteristic curve; SE = standard error; and CI = 5–95% confidence intervals. 

Figure 2 shows the receiver operating characteristic (ROC) curves obtained for the 
Laguna ONhE GDF index, the OCT indices, and the perimetric indices. To improve the 
identification of differences, the upper left part of the curves is enlarged. GDF presented 
a sensitivity higher than the rim area for 95.0% (p = 0.0121) and 99.0% specificities (p = 
0.0131), which was also higher than the rest of the perimetric indices and OCT (p < 0.0001). 

 
Figure 2. Receiver operating characteristic curve (ROC) obtained with Laguna ONhE (GDF), Cirrus-
OCT (rim area, vertical C/D ratio, and RNFLT) and perimetry (MD, TCV, and PSD-sLV) indices, as 
well as percentage sensitivities for 95% and 99% specificities. 

3.2. Combination of Laguna ONhE and Perimetric Indices on the Total Sample (without 
Separating Confirmed and Suspected Glaucoma) 

Table 2 shows the results of the combinations of the two examination methods (La-
guna ONhE and OCT) and the perimetric indices of uniformity and harmony. The AUCs 
did not show significant differences when combining GDF with each of the two perimetric 
indices, but these two combinations produced significantly larger curves than the combi-

Figure 2. Receiver operating characteristic curve (ROC) obtained with Laguna ONhE (GDF), Cirrus-
OCT (rim area, vertical C/D ratio, and RNFLT) and perimetry (MD, TCV, and PSD-sLV) indices, as
well as percentage sensitivities for 95% and 99% specificities.

3.2. Combination of Laguna ONhE and Perimetric Indices on the Total Sample (without Separating
Confirmed and Suspected Glaucoma)

Table 2 shows the results of the combinations of the two examination methods (Laguna
ONhE and OCT) and the perimetric indices of uniformity and harmony. The AUCs did not
show significant differences when combining GDF with each of the two perimetric indices,
but these two combinations produced significantly larger curves than the combinations
of perimetric and OCT indices. The RNFLT and PSDr combination performed better than
the other OCT indexes combinations with the perimetric PSDr. The combinations with the
perimetric MD performed worse and were thus ignored.
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Table 2. Performance of the combination of Laguna ONhE and Cirrus-OCT variables and perimetric variables.

GDF and TCV GDF and PSDr Rim Area and PSDr OCT-C/D and PSDr RNFLT and PSDr

AUC 0.978 0.976 0.945 0.947 0.915
SE 0.00459 0.00506 0.00872 0.0079 0.0109
CI 0.965–0.987 0.963–0.986 0.927–0.960 0.929–0.961 0.894–0.933

GDF and TCV GDF and PSDr Rim Area and PSDr OCT-C/D and PSDr

GDF and PSDr p = 0.2974
Rim Area and PSDr p = 0.0001 p = 0.0002
OCT-C/D and PSDr p < 0.0001 p < 0.0001 p = 0.8728

RNFLT and PSDr p < 0.0001 p < 0.0001 p = 0.0015 p = 0.0004

GDF = Laguna ONhE globin distribution factor; RNFLT = OCT retina nerve fiver layer thickness; OCT-C/D = OCT vertical cup/disc
ratio; MD = perimetric mean defect or deviation; PSDr = perimetric pattern standard deviation or square root of loss variance rectified;
TCV = perimetric threshold coefficient of variation; AUC = area under the receiver operating characteristic curve; SE = standard error; and
CI = 5–95% confidence intervals.

Figure 3 shows the ROC curves obtained for the combinations of the Laguna ONhE
and OCT indices with those of perimetry. The combinations of GDF and TCV and GDF and
rectified PSD-sLV did not present differences in sensitivity for 95.0% (p = 0.790) and 99.0%
(p = 0.674) specificities. For 95.0% specificity, both combinations had higher sensitivities
than the combinations of perimetry and OCT (p < 0.0005). For 99.0% specificity, the
combination GDF and TCV had higher sensitivity than the rim area and rectified PSD-sLV
(p = 0.011). GDF and rectified PSD-sLV surpassed this with p = 0.032. Both combinations
surpassed the combinations used by the other OCT and perimetrics indices (p < 0.0005).
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Figure 3. Graph of the receiver operating characteristic curve (ROC) of the combinations of Laguna
ONhE and Cirrus-OCT indices with the perimetrics, as well as percentage sensitivities for 95% and
99% specificities.

A linear relationship was observed between perimetric MD and the GDF and TCV
combination (Figure 4a), while the relationship was largely curvilinear when comparing
MD with the combination of OCT morphological indices and TCV or PSDr (Figure 4b). The
correlation between MD and GDF and TCV (r = 0.9132) was significantly higher than that
between MD and GDF and PSDr (r = 0.8927) (p = 0.0252).
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3.3. Results of the Indices of the Three Testing Methods on the Total Sample Compared to
Confirmed and to Suspected Glaucoma

Table 3 shows that Laguna ONhE GDF index obtained significantly higher results than
all perimetric and Cirrus-OCT indices in suspect glaucomas. It also achieves the highest
ROC area in confirmed glaucoma, but without significant differences with several of the
other indices.

Table 3. Performance of Laguna ONhE, OCT, and perimetry indices.

GDF RNFLT Rim Area OCT-C/D MD PSDr TCV

AUC susp. 0.932 0.709 0.827 0.834 0.687 0.651 0.718
AUC conf. 0.986 0.944 0.968 0.958 0.985 0.98 0.981
SE susp. 0.013 0.0303 0.025 0.0223 0.0297 0.0311 0.029
SE conf. 0.00437 0.0107 0.00877 0.00867 0.00316 0.00432 0.00391
CI susp. 0.908–0.951 0.670–0.746 0.794–0.857 0.801–0.864 0.647–0.725 0.611–0.690 0.679–0.754
CI conf. 0.974–0.993 0.925–0.960 0.952–0.979 0.940–0.971 0.973–0.993 0.966–0.989 0.968–0.990

GDF RNFLT Rim Area OCT-C/D MD PSDr

RNFLT susp. p < 0.0001
RNFLT conf. p = 0.0002

RimArea susp. p < 0.0001 p = 0.0002
Rim Area conf. p = 0.0635 p = 0.0490
OCT-C/D susp. p < 0.0001 p = 0.0001 p = 0.7755
OCT-C/D conf. p = 0.0019 p = 0.2691 p = 0.1642

MD susp. p < 0.0001 p = 0.5917 p = 0.0004 p = 0.0001
MD conf. p = 0.8630 p = 0.0002 p = 0.0636 p = 0.0025

PSDr susp. p < 0.0001 p = 0.1429 p < 0.0001 p < 0.0001 p = 0.2399
PSDr conf. p = 0.2847 p = 0.0015 p = 0.2264 p = 0.0199 p = 0.2146
TCV susp. p < 0.0001 p = 0.8057 p = 0.0022 p = 0.0008 p = 0.2796 p = 0.0050
TCV conf. p = 0.3720 p = 0.0008 p = 0.1663 p = 0.0106 p = 0.2885 p = 0.6232

GDF = Laguna ONhE globin distribution factor; RNFLT = OCT retina nerve fiver layer thickness; OCT-C/D = OCT vertical cup/disc
ratio; MD = perimetric mean defect or deviation; PSDr = perimetric pattern standard deviation or square root of loss variance rectified;
TCV = perimetric threshold coefficient of variation; AUC = area under the receiver operating characteristic curve; SE = standard error; and
CI = 5–95% confidence intervals.
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3.4. Performance of Combined Indexes in Normal Subjects as Compared to Confirmed and to
Suspected glaucoma

Table 4 shows the results of the best combinations of two non-psychophysical exami-
nation methods (Laguna ONhE and OCT), with the perimetric indices of uniformity and
harmony in confirmed and suspected glaucoma. Significant differences between the two
could be observed in glaucoma suspects. In suspected glaucomas, the combinations of
the three OCT indices and the perimetric PSDr did not show significant differences. The
combinations with the perimetric MD were worse and thus ignored.

Table 4. Performance of the combination of Laguna ONhE and Cirrus-OCT variables and perimetric variables between
reference and confirmed (conf.) and suspect (susp.) glaucoma cases.

GDF and TCV GDF and PSDr Rim Area and PSDr OCT-C/D and PSDr RNFLT and PSDr

AUC conf. 0.995 0.995 0.988 0.988 0.987
AUC susp 0.935 0.932 0.843 0.847 0.742

SE conf. 0.0021 0.0021 0.0049 0.0035 0.0033
SE susp. 0.013 0.015 0.024 0.022 0.029
CI conf. 0.987–0.999 0.987–0.999 0.977–0.995 0.977–0.995 0.976–0.994
CI susp 0.912–0.954 0.908–0.951 0.810–0.871 0.815–0.876 0.704–0.77

GDF and TCV GDF and PSDr Rim Area and PSDr OCT-C/D and PSDr

GDF and PSDr conf. p = 0.695
GDF and PSDr susp. p = 0.323

Rim Area and PSDr conf. p = 0.187 p = 0.195
Rim Area and PSDr susp. p < 0.0001 p = 0.0002
OCT-C/D and PSDr conf. p = 0.060 p = 0.064 p = 0.8728
OCT-C/D and PSDr susp. p < 0.0001 p < 0.0001 p = 0.839

RNFLT and PSDr conf. p = 0.036 p = 0.037 p = 0.852 p = 0.859
RNFLT and PSDr susp. p < 0.0001 p < 0.0001 p = 0.0005 p = 0.0001

GDF = Laguna ONhE globin distribution factor; RNFLT = OCT retina nerve fiver layer thickness; OCT-C/D = OCT vertical cup/disc
ratio; MD = perimetric mean defect or deviation; PSDr = perimetric pattern standard deviation or square root of loss variance rectified;
TCV = perimetric threshold coefficient of variation; AUC = area under the receiver operating characteristic curve; SE = standard error; and
CI = 5–95% confidence intervals.

4. Discussion

Several current papers that apply deep learning to the study of glaucoma exhibit
interesting theoretical approaches; however, they are not always based on real-life scenarios,
but on samples collected by outside groups. Several review papers [14,25] highlight the
results of others that exclude suspected glaucomas from the sample, not fully reflecting the
reality of the clinical problem. They often do not clarify the type of sample analysed [26], or
they base the reference classification (normal or glaucoma) exclusively on subjective expert
opinions on the images [27]. Others include only cases with large cups as glaucomas [28],
or do not indicate the specificity achieved [29]. Achieving a good sensitivity is not sufficient
in this type of task [15] if the specificity is not high. Our analysis was performed on a
real sample, without excluding doubtful or intermediate cases, and trying to avoid biases
that may occur when differentiating between confirmed and suspected glaucoma [23],
although both groups were analysed separately, according to the most common criteria in
the literature.

Selectively analysing the optic nerve and controlling image quality has undoubted
advantages over the use of wider eye fundus images [30], although it has been suggested
that the sectoral atrophy of fibres could enrich the diagnosis [31].

Attempting to emulate the behaviour of an OCT to obtain its most efficient indices
is an interesting approach [32]. However, the classifiers obtained through deep learning
produce results that tend to involve the extremes of a dichotomous series (for example:
Yes/No glaucoma or Yes/No image of adequate quality) but do not provide a gradual
value of the degree of defect. For this reason, in our case, we attempted to combine these
results with the estimation of other indices, such as the cup/disc ratio, which is obtained
by multiple regression from sectoral haemoglobin estimates [10], and/or with the results of
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visual field examinations. This type of combination provides new indices with progressive
gradation to better assess the level of defect and, likely, its degree of progression.

In general, published procedures require the intervention of experts for pre-processing
or assessing if the images are of sufficient quality for analysis. Our procedure reached a
degree of full automation in this respect, requiring no human intervention.

It is well known that the relationship between morphology and function estimated
by OCT and perimetry is not linear. However, the precocity of detectable morphological
damage with respect to functional damage has been questioned by several authors [33,34].
Some aspects can be complementary. Indeed, our study suggests that the association
between the Laguna ONhE algorithm and perimetry seems to provide highly promising
results. In particular, the linearity between the perimetric mean deviation (MD), the combi-
nation of the morphological and perfusion information presented by the Laguna ONhE
GDF index, and the functional disharmony assessed by TCV provides a new perspective in
the interpretation of these relationships.

It is noteworthy that this combination achieves high sensitivity while retaining high
specificity. In a disease of uncertain onset, such as glaucoma, it is advisable to evaluate it
with highly specific procedures, in order not to establish unnecessary treatments and to
avoid overloading the health systems.

The combination of the indices provided by OCT angiography with perimetric indices
should be evaluated in the future, in order to compare their results with those presented in
this paper. However, an important factor to take into account in this type of comparison is
the cost–benefit ratio for healthcare systems, given the low cost of some current fundus
cameras, and the possibility of evaluating their images via telemedicine, without additional
equipment. Such an evaluation should also be carried out in the near future.

5. Conclusions

The Laguna ONhE method arose from the observation of differences in RGB frequency
histograms of optic disc structures (vessels, rim, and cup) when analysing colour pho-
tographs of the optic nerve, as can be seen in Figure 6 of our first publication [4]. The
favourable results of a simple, non-invasive test, such as the one we propose for the assess-
ment of glaucoma, were cited in the introduction, and are further evident in this new study,
as they are enhanced by functional perimetric results. The application of deep learning
facilitates the use of the Laguna ONhE software, taking advantage of expert experience,
and improving its reproducibility, sensitivity, and specificity. Morphology, function, and
perfusion can be combined for the optimal evaluation of glaucoma. However, these results
should be confirmed by other independent studies.
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Appendix A. Computing Development Setup

For the development of the Laguna ONhE program and its neural networks, the
Python programming language (ver. 3.7.1, Python Software Foundation, Beaverton, OR,
USA) was selected.

Machine learning and deep learning development was carried out using images pro-
vided by RetinaLyze®, partner of INSOFT SL. For each neural network, the corresponding
image data sets were divided into three subsets. The training process of the neural net-
works requires two different images and ground-truths subsets (training and validation) to
fully pass through them in several cycles in order to complete the training process. Once
the network is trained on an independent test subset, which has never been seen by the
algorithm, it is used to estimate the method’s efficacy.

The libraries used were Keras, with Tensorflow background for the implementation
of the architectures; OpenCV, for RGB component analysis, image pre-processing, and
post-processing; Numpy, for calculations; Pandas, for data manipulation; and Scikit-learn
for splitting the training set between training and validation sets.

A. Optic Disc segmentation: In a previous experiment [13], we used a deep learning
U-Net architecture [16] for semantic segmentation. In this case, 40,000 images were used
to segment the optic disc, identifying the inner edge of Elschnig’s scleral ring. This was
achieved by manually identifying by an expert. Elschnig’s scleral ring is observed as a thin
white ring, immediately adjacent to the margin of the optic disc. An example is shown in
Figure 1 of reference [13].

B. Vessel segmentation: 4195 optic disc images were used to train the neural network
on vessel segmentation. The vessels were drawn by hand by a single expert on each
image, using the GIMP program (Version 2.10.10. http://www.gimp.org, Accessed on
21 July 2019). The data set was then divided into training (3684), validation (921), and test
(410) subsets. The training set was used to train the neural network, obtaining information
on each pixel belonging to a vessel or to adjacent tissue. The same basic structure of U-Net
was used with contracting path filter sizes of 16, 32, 64, 128, 256, and 512 pixels towards a
centre filter of 1024 pixels with batch normalization at each convolution block and ReLU
activation.

Results: The Sorensen–Dice index of coincidence between the ground truth and the
network was 0.932, and its corresponding Jaccard index was 0.877, in the 410 images of the
test subset.

C. Eye labelling as right or left: 4201 images of the optic disc and surrounding region
were divided into subsets for training (3025), validation (756), and testing (420). The results
were compared with two other criteria: the greater presence of vessels in the nasal half of
the optic disc and the estimation of a greater presence of haemoglobin in such area. The
optic disc position on wide-angle retinographies was not considered, in order to explicitly
assess the method’s ability to identify it as isolated or centred.

A pre-trained ResNet50-v2 was used, with the top layers cut out. The network was
trained in the ImageNet database. The network was fine-tuned with a global average
pooling layer and three fully connected layers using stochastic gradient descent (SGD).

Results: 98.5% of the eyes of the test dataset were correctly automatically classified
using only the optic nerve image, observing a greater presence of haemoglobin in the nasal
sector; 99.3% by the greater presence of vessels in the nasal half; and 95.9% by the neural
network. The coincidence of two of these three criteria identified 99.5% of the cases.

D. Image quality: Previous experience in screening systems with multiple users
showed us that it is necessary to detect and exclude images of very poor quality, incomplete

http://www.gimp.org
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optic disc, etc. In total, 7048 images were subjectively classified into two groups according
to their quality by a single expert (4780 acceptable and 2268 unacceptable quality), and
divided into subsets of training (5075), validation (1268), and testing (705).

For this analysis, a ResNet50 network architecture was used with two fully connected
layers. A LeakyRelu activation function [35] and an Adam optimizer were used for
stochastic optimization [36]. The network was first trained for 50 epochs and a learning
rate of 0.0001 and was fine tuned for an extra 20 epochs at a learning rate of 0.00001.

Results: In the test subset, an AUC of 0.958 was obtained, with a 5–95% confidence
interval 0.940 to 0.971 (p < 0.0001). For a sensitivity of 95.0%, indicating that the image
quality was correct, the specificity was 82.8%.

E. Normal vs. glaucoma discrimination: To train the network to distinguish normal
cases from glaucoma, the haemoglobin values estimated in the tissue were represented as
a pseudo-colour image, preserving the details of its surroundings. Normalization of its
colour channels was applied to reduce the differences due to the fundus camera or flash
used. In this way, the training was intended to include the atrophies that glaucoma usually
produces outside the optic disc.

Then, 3114 such images belonging to subjects verified as normal (1518) and of glau-
coma or glaucoma suspects (1596) were divided into subsets of training (2274), validation
(529), and testing (311). Transfer learning was used, passing the images to a ResNet50 net-
work [37], with the upper layers cut out, including the pre-trained weights in the ImageNet
database [38]. Therefore, independently of the original image size, which was 1956 × 1934,
all images were trimmed around the ONH segmentation and resized to 224 × 224 in order
to fine tune the pretrained ResNet50 network. Random horizontal flip, rotation of up to 25◦,
and brightness darkening up to a 20% were implemented. A global average pooling layer
and three specific layers were then included to classify the case as normal or glaucoma [39].
After each of the first two fully connected layers, a dropout layer with a rate value of 0.5
was included. Additionally, both use a hyperbolic tangent (tanh) activation function. The
final one uses a softmax activation function. Categorical cross-entropy was used as a loss
function, and accuracy was used as a metric to evaluate the performance of the model.
Stochastical gradient decent (SGD) was used as an optimizer with a learning rate of 0.0001
and momentum of 0.9. The classification results obtained by deep learning were associated
with the distribution of haemoglobin and the estimated cup/disc ratios to define a new
value for the globin distribution function (GDF) index, as previously described [4,5].

Results: In the test subset, an AUC of 0.976 was obtained, with a 5–95% confidence
interval of 0.953 to 0.990 (p < 0.0001).

In order to assess the model’s efficiency [40], the learning curve of the training and
validation loss as well as the confusion matrix of the test dataset are shown in Figure A1a,b.
These graphical representations are the most commonly accepted methods to determine
the model’s accuracy and generalization capability [41,42].

These show the capacity of the dataset, and therefore seem to us to be more representa-
tive of the effectiveness of the network than other possibilities such as “heat maps”, which
show examples of how the network focuses on representative details of specific cases, but
do not reflect the overall sensitivity of the method [43]. Figure A2 shows four examples of
these heat maps.

As can be seen from the learning curve, we achieved an optimal fit, which is the goal of
any learning algorithm achieving the minimum generalization gap [44]. Both the training
and validation losses decreased to a point of stability. After 1000 epochs, the training was
stopped in order to avoid overfitting. Additionally, dropout was activated when training,
but deactivated when evaluating the validation data, which makes it reasonable for the
validation error to be smaller than training error. The confusion matrix showed that the
model had very good accuracy in the test data set. The learning curves show that both
the training and validation losses drop rapidly until 100 epochs and then both continue to
decrease at a slower pace until both curves meet. Even though the validation error in the
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graph looks as though it stops lowering from epoch 100 onwards, this is a scale problem.
The validation curve does not stop; it continues to descend.
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