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Abstract

The access to COVID-19 vaccines on the global scale has been drastically impacted by structural
socio-economic inequalities, resulting in the fact that most COVID-19 vaccines have been used in high
and upper middle income countries. Here, we develop a data-driven age-stratified epidemic model
to evaluate the effects of COVID-19 vaccine inequalities in eight low and middle income countries
sampled from all regions of the world. The model accounts for vaccination data, non-pharmaceutical
interventions, and the introduction of more transmissible strains. The modeling approach allows us
the exploration of counterfactual scenarios where we either apply vaccination rates observed in high
income countries or anticipate the rollout starting dates to match those of high income countries. We
estimate that more than 50%, with peaks of 80%, of deaths would have been averted with respect to
the actual vaccine allocation and distribution occurred in the analyzed countries. Overall, our results
quantify the negative impacts of vaccines inequalities and call for the multiplication of global efforts
to provide better access and support to COVID-19 vaccines in low and middle income countries.

Introduction

The scale of the COVID-19 pandemic, the socio-economic disruptions induced by the virus and by non-
pharmaceutical interventions (NPIs) have exacerbated structural inequalities in access to key health
tools such as vaccines [1–4]. Furthermore, socio-economic disparities have been linked to higher and
disproportionate COVID-19 burden [5–13]. In the case of vaccine allocation the differences, in terms of
COVID-19 vaccines doses administered across countries grouped by income levels, are staggering [14],
and have potentially enormous effect on the future health, economic, and other harms due to COVID-
19 [1, 2]. As of December 1st 2021, the median share of fully vaccinated individuals living in high and
upper middle income countries is 60%. The equivalent share in low and lower middle income countries
(LMIC) is 12%. At the same time, the share of doses administered in high and upper middle income
countries is 72% against 27% in middle and less than 1% low income countries. It is important to notice
how these disparities were drastically more pronounced in the early months of 2021, at the start of the
vaccination campaigns (outside China, which started vaccinating much earlier in July 2020). By the end
of February 2021 for example, 77% of doses were concentrated in high-income countries. Only in June
2021, the global share of doses administered in such rich countries went below 50%. Hence, for about six
months more than 50% of the doses administered globally have been concentrated in 18% of the global
population which lives in high-income countries.

Here, we develop a realistic, stochastic, multi-strains compartmental epidemic model to study the
potential impact of less unequal vaccination campaigns in eight LMIC countries sampled from differ-
ent regions of the world. In particular, we focus on Bangladesh, Bolivia, Indonesia, Kenya, Morocco,
Mozambique, Sri Lanka, and Ukraine. The sampling process was driven also by data availability about
vaccinations, genomics information about variants prevalence, NPIs, and reported deaths. The model
accounts for demographics, age-structured contact mixing patterns, and their variations due to NPIs as
well as multiple virus strains and their effects on vaccines’ efficacy. We fit the model, independently, in
each country, by using an Approximate Bayesian Approximation method [15, 16]. We explore a range
of counterfactual scenarios aimed at quantifying what could have happened in less unequal settings. In
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the case that these countries would have been able to vaccinate at the same rate as Italy, the United
Kingdom (UK), or the United States (US), we estimate that the fraction of averted deaths with respect
to the actual vaccine rollout would have been larger than 50% with peaks of 80%. In case instead, these
countries would have been able to start their vaccination campaigns at the same time as the European
Union (27th of December, 2020) we find an overall beneficial effect with peaks of around 50% averted
deaths respect to the factual analysis.

We also estimate the level of NPIs that these countries would have to put in place to offset the unequal
allocation of vaccines. In fact, for the large part of 2020, the mitigation of the pandemic was achieved
at high costs through the implementation of economically and socially disruptive NPIs [17], while in
high-income countries, vaccines have allowed relaxing such tough socio-economic measures reopening
society [18, 19]. Hence, we estimate the variation in NPIs strictness necessary to reduce the fatality
burden without boosting vaccinations. We find that significantly stronger NPIs (i.e., either tougher or
more prolonged) would be needed in order to achieve the same number of averted deaths estimated in
the presence of the same vaccines availability of high income countries.

Overall, the results highlight the negative effects of vaccine inequalities and call for targeted efforts
to provide faster and more equitable access to vaccines. This is not just a moral imperative to reduce
the burden of COVID-19 around the world, but also a pragmatic stand to limit the emergence, spread,
and introductions of new variants possibly able to breach the protection of existing vaccines. Though we
have focused on a sample of eight LMIC countries, the approach we developed could be used to study
and quantify the impact of vaccines inequality in others.

Results

In order to quantify the vaccine allocation volume and timeline of their administration across countries
with different income income levels, we combine two datasets. The first is managed, maintained, and
disseminated by the United Nations Development Programme via their Global Futures Platform [14]. It
provides general information about the COVID-19 vaccine rollout around the world, including several
socio-economic dimensions. The second dataset comes from Our World in Data [20]. Besides a range
of general information about the vaccination efforts around the world, it provides the number of doses
administered across countries as a function of time.

In Figure 1-A we plot the number of total doses administered per 100 people. As of December 1st,
2021, high and upper middle income countries have, on average, more than one dose per person. The
numbers are radically different in LMIC. While lower middle countries managed to administer slightly
more than 60 doses per 100, the equivalent number for low income countries is only 9.6 per 100. The
evident levels of inequality become even more staggering when considering the share of global populations
of the four groups. As mentioned above, only 18% of the population lives in high income countries, while
nearly 50% in LMIC.

In Figure 1-B we show a scatter plot of the Human Development Index (HDI) on the x-axis and the
percentage of the fully vaccinated population of each country on the y-axis. The size of data points is
set proportional to the estimated cost of vaccinating 40% of the population as a percentage of current
healthcare spending. The colors indicate the income group of each country. The HDI is a composed
index that accounts for life expectancy, education, and per capita income as well as other aspects of
human development [21]. The cost of reaching a given vaccination level as a percentage of the healthcare
spending instead is used to quantify the economic challenge posed by the COVID-19 vaccination. The
plot shows a positive correlation between HDI and vaccination coverage (Pearson correlation coefficient:
0.83, p < 0.001). The more developed the country, the higher the fraction of its population vaccinated.
Furthermore, countries characterized by the lowest values of HDI face drastically different economic
challenges in reaching 40% of the population vaccinated. It is important to note how this threshold is a
very low bar of immunity, far from the current levels in many high-income countries. The plot suggests
that without global efforts and initiatives, countries characterized by low HDI might not be able to reach
significant vaccination coverage.

In Figure 1-C we plot the distribution of vaccine rollout starting dates. As clear from the plot, the
median start for high and upper middle income countries is much early than for LMIC. The difference
between the peaks of high and low income countries is of about four months. This plot speaks to the
differential power among income levels to secure a scarce resource such as COVID-19 vaccines in the early
phases of the rollout. Furthermore, it speaks to the different capabilities and opportunities in setting up
a mass vaccination campaign.
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Cost of vaccinating 40% 
of the population as % of
healthcare spending 

Figure 1: Vaccine inequalities. A) Total number of doses administered per 100 people in different
income groups as of December 1st, 2021. B) Scatter plot of % of fully vaccinated versus Human Devel-
opment Index (HDI) of different countries. The color of dots indicates the income group while size it is
proportional to the cost of vaccinating 40% of the population expressed as percentage of current health-
care spending. C) Density plot of date of first COVID-19 vaccination across different income groups. D)
Evolution in time of share of vaccines administered monthly among income groups.

In Figure 1-D, we plot the share of vaccines administered across income levels as a function of time.
The trends are extremely clear and confirm how, in the first six months from the start of the COVID-19
vaccination, high income countries administered more than half of the doses globally. These figures do
not consider the very early start of the rollout in China which took place in July 2020. The plot also
highlights how low income countries, despite counting for 8% of the global population, have administered
a share of doses that is smaller than 1% of total doses administered so far.

To quantify the potential impact of inequalities in vaccination allocation, we developed a realistic,
stochastic, multi-strain, and compartmental epidemic model. The model takes as input demographics,
age-stratified contact patterns, NPIs, genomics information, vaccines, and epidemic data (see the Supple-
mentary Information for details). We fit the model calibrating it to the context and data of each country
separately via an Approximate Bayesian Computation method [15]. This allows defining posterior distri-
butions for a range of parameters such as the transmissibility of the different strains, seasonality, delay
between deaths and their notification, under-reporting of deaths, infection fatality rates (IFRs) rescaling
with respect to the estimates reported in Ref. [22] in high and upper middle income countries. We refer
the reader to the Supplementary Information for the details about the model and the calibration process.

We use the model to study, via a series of counterfactual scenarios, what could have happened in
case of i) different vaccine allocation scenarios and ii) an earlier start of the rollout of the vaccination
campaign in the countries under investigation. Furthermore, we estimate the variation in strictness of
NPIs necessary to offset the lack of vaccines.

In Figure 2-A, we show the percentage of averted deaths in the eight countries in case they would
have been able to vaccinate with the rate of three high-income countries taken as reference: Italy, the
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UK, and the US. In administering the extra doses, we assume a protocol that prioritizes the elderly
population hence targeting a reduction of deaths rather than of overall infections [23–25]. In all Figures
we arrange countries according to their vaccination coverage. As shown in Supplementary Information,
there are marked differences in the group. We go from fractions of fully vaccinated above 50% in Sri
Lanka (top left) to values below 10% in Kenya and Mozambique (bottom right). Indonesia and Bolivia
are in between these two groups with a fraction of fully vaccinated population close to 20%. The
percentages in the Figure are calculated with respect to the number of deaths observed in their actual
vaccination campaign (see the Supplementary Information for more details). Hence, the plot describes
what additional impact vaccines could have had in case these LMIC could afford the vaccine rollout of
high income countries. While the vaccine availability in the UK, Italy and the US followed different
timelines (see the Supplementary Information for details), the Figure shows how higher vaccination
rates would have induced a very significant reduction in deaths. Numbers are above 80% for Indonesia,
Sri Lanka, and Bangladesh for a rollout equivalent to the UK. The numbers are smaller but still very
significant for Kenya, Mozambique, and Ukraine. Remarkably, except for Ukraine (in the case of a
vaccination rate equivalent to Italy), all numbers are around or well above 50%.

Figure 2-B shows the evolution of the number of weekly deaths in the different countries under several
vaccination scenarios. We show the weekly deaths as reported by surveillance (blue dots), as simulated
by our model following the actual vaccination campaigns (blue solid lines and shaded areas) and the
counterfactual vaccination rates of Italy (light blue), the UK (orange), and the US (light red). First,
we notice a good accordance between reported and simulated deaths. This indicates that our model is
able to reproduce realistically the epidemic unfolding in different countries. Second, the plot confirms
the impressive impact that vaccination rates of high income countries would have had on the death toll.
Indeed, the curves start to visibly diverge since 2021/04 and we observe that higher vaccination rates
would have substantially avoided the waves observed in the second half of the year. As observed above,
the rates of the UK and the US seems to bring additional benefit with respect to vaccination rates of
Italy, nonetheless the difference with the actual vaccination rates remains unbridgeable. The results of
Fig. 2-B also explains the lower percentage of averted deaths achieved with high-income vaccination
rates in Ukraine as shown in Fig. 2-A. A new, massive wave fuelled by the Delta VOC started in Ukraine
in late August, 2021. The number of reported deaths peaked in mid November 2021, with twice as
much fatalities as those reported in the previous peak of April, 2021. Therefore, since our simulations
stops on 2021/10/01, we observe only the start of this wave. Thus the difference between actual and
counterfactual vaccination scenarios appears less pronounced.

In Figure 3-A, we investigate what would have happened if the LMIC countries would have been
able to start their rollout earlier without changes in allocation volume. We take as a reference point the
start of the vaccination campaign in the European Union (EU) which took place, symbolically across
all member States, on the 27th of December 2020. It is important to highlight the variance in the real
rollout start dates across the countries under study. Indonesia, Bangladesh and Sri Lanka administered
the first doses in mid (first country) and late (other two countries) January 2021. Bolivia, Morocco and
Ukraine in early, mid and late February respectively. Kenya and Mozambique in early March. Hence,
the difference respect to the initial date of the European Union spans between two weeks and three
months. Overall the plot shows how an early start would have been beneficial as it would have found a
larger fraction of the population susceptible to protect before the Delta wave. However, the magnitude
of such effects is heterogeneous in the group of countries. A key factor is the interplay within the amount
of vaccine vaccine available and the relative shift of the starting time. Sri Lanka and Morocco, that
achieved the highest coverage in the group and initiated their campaigns one month later respect to the
EU, show around 50% of averted deaths respect to their actual rollout. Only around 30 days can make a
big difference. In the case of Kenya and Mozambique the benefits of an early start are more limited but
substantial (around 20%). Even with very low vaccination rates a three month head start can make a
difference, but its effects are ultimately influenced by the relatively small number of administered vaccine
doses. In fact, the percentage of adverted deaths is very similar to what we find for Bolivia that has
higher vaccination coverage but started only about one month later than the EU. Similarly, the moderate
percentage of averted deaths for Indonesia and Bangladesh is due to the small difference between the
actual and counterfactual start of the vaccination campaigns.

Finally, we study the extent to which additional NPIs are required in each country to offset the
lack of vaccines with respect to high income countries. In this counterfactual we keep the real doses
administration as it unfolded in reality. Then, after week 50 of 2020 (a proxy date for the start of the
rollout in high income countries), we modify the NPIs making them more restrictive in the countries
under study. Since the impact of NPIs is modulated by their strictness and their duration [17, 26–
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Figure 2: Counterfactual scenarios - Averted deaths with high-income vaccination rates.
A)Averted deaths (median and 90% CI) expressed as a percentage with respect to the factual vaccination
baseline using the vaccination rates of Italy, United Kingdom, and United States. Countries are ordered
according to the number of doses actually administered, from highest to lowest. B) Evolution of weekly
deaths as reported and as simulated with factual vaccines rates and vaccination rates of Italy, United
Kingdom, and United States.
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31], we explore a two-dimensional parameter space in which NPIs are X% stricter with respect to
the observed and the tightening of measures is maintained for W weeks. In Figure 3-B, we show the
percentage of averted deaths with respect to the real evolution as a function of these two variables. As a
comparison, we also show the deaths averted by applying UK vaccination rates as a red dashed contour
line (analogous conclusions can be drawn considering Italy and US rates, not shown). In other words, we
measure the level of restrictions and their duration necessary to avert the same number of deaths that
higher vaccine allocation policies would have been able to. As expected, across the different countries
considered, the longer additional NPIs are in place the less strict they need to be in order to avert the
same number of deaths. In the case of Indonesia, for example, the level of deaths averted with the UK
vaccination rates are matched by either NPIs that are 50% stricter and maintained for 2 months, or by
NPIs that are 15% stricter but are maintained for much longer (∼ 8 months). More in general, we find
that significantly stricter levels of NPIs would be needed in the LMIC countries considered to match
the benefits brought by higher vaccine availability. Additionally, we notice that the lower the vaccine
coverage in a country, the higher the level of NPIs needed to obtain the same level of averted deaths
(see for example Mozambique and Kenya, where little vaccines were delivered respect to Sri Lanka and
Morocco). This underlines once again the positive impact of vaccines in LMIC despite the low numbers.
It is important to mention how a third variable affects the impact of NPIs: their timing with respect
to the prevalence of infections [17, 26–31]. Here, we have fixed their start across all countries analyzed.
Hence, such measures are put in place in different epidemiological contexts. For example the end of 2020
in Sri Lanka was far from any pandemic peaks. Instead, in Ukraine, Mozambique and Boliva the end of
2020 was characterized by high prevalence levels that peaked soon after. Hence, the behaviors observed
in Figure 3-B are modulated also by the relative timing of the simulated additional NPIs.

Discussion

As of 1st December, 2021, 55% of the global population has received at least one dose of a COVID-19
vaccine. While this is an incredible milestone, vaccines allocation has been characterized by extreme
inequality levels. As result, high and upper-middle income countries have vaccination rates that are
much higher than LMIC. Their rollout started earlier, and it had a much smaller economic impact (with
respect to their GDP and healthcare expenditures). In this context, we studied COVID-19 vaccine
inequalities in eight LMIC selected to sample different regions of the world.

We use a computational modeling approach, calibrated to the epidemiological context of each country,
to study counterfactual scenarios where each country would have been able to administer vaccines at the
same rate as in Italy, the UK, and the US. We estimate that in these counterfactual scenarios the eight
countries would have adverted more than half (with peaks of 80% and above) of the deaths that actually
occurred. We also run a counterfactual scenario where we kept the same number of doses administered
in those countries but we assumed an early start of each vaccination campaign. Also in this case we find
differences in the impact of an early vaccination campaign start among the eight LMIC, but overall we
estimate that a remarkable fraction of death could have been averted by just anticipating the vaccine
allocation. Finally, we estimate the strictness of NPIs that each country would have to put in place to
offset the lack of vaccines with respect to high-income countries. Across the different LMIC, we find
that stronger and sustained NPIs are necessary to obtain a number averted deaths comparable to those
estimated in the counterfactual scenarios with higher vaccination rates. This finding, combined with the
difficulty of implementing additional NPIs is these settings, underlines once again the largely untapped
benefits that vaccines could bring in LMIC.

Our study, as all modeling approaches, comes with limitations. First, the details about the vacci-
nation campaigns may lack detailed or the type of vaccine administered. The compartmental structure
used to simulate the disease progression does not capture explicitly asymptomatic transmission as well
as different severe outcomes such as hospitalizations and ICUs admissions. The model operates at na-
tional level thus neglecting geographical heterogeneities that could reveal yet other layers of inequalities,
within each country. Although we consider variable IFRs across countries we do not explicitly account
for comorbidities nor limited healthcare access. Finally, it is worth remarking that the counterfactual
scenarios do not take into account vaccine hesitancy, nor the cost of the supply chain necessary to receive,
store, distribute and administer doses.

Overall the picture emerging from our analysis shows that vaccine inequality, in both the number of
doses available and the timeline of delivery, drastically reduced the impact of vaccination campaigns in
the sample of LMIC studied. As the world is facing the Omicron variant of concern (which appears to
have a relative advantage with respect to Delta and larger immune escape capabilities) [32], countries
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are rushing to progress their vaccination rollouts, which now include also booster shots. In many of
these countries, there have been more boosters than first doses in several LMIC. Furthermore, many of
these countries are facing vaccine hesitancy challenges that effectively make a sizable fraction of vaccine
doses unutilized. Potentially a staggering number of vaccines doses are currently not used and as much
as 1B might be disposed due to expiration dates by end of 2021 [33]. Vaccine inequality will persist to
be a critical issue in the mitigation and control worldwide of the COVID-19 pandemic. The presented
approach is potentially relevant in defining strategies aimed at minimizing the effect of inequalities in
vaccine allocation across countries.
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1 Data

Data about demographics comes from the United Nation World Population Prospects [1]. Epidemi-
ological data are taken from the COVID-19 Data Repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University and from official sources [2]. Data about vaccination
are taken from the United Nations Development Programme via their Global Futures Platform [3] and
from Our World in Data [4].

2 Epidemic model

We adopt a SLIR-like compartmental model (see Figure 1 for a schematic depiction). The susceptible
individuals are placed in the compartment S. Getting in contact with the Infectious (I) they transition
to the compartment of the Latent (L). Latent individuals are infected but become infectious only after
ϵ−1 days when they eventually pass to the compartment I. After µ−1 days, infectious subjects finally
transition to the compartment of the Recovered (R). By considering the COVID-19 characteristics we set
ϵ−1 = 4days and µ−1 = 2.5days. [5, 6]. Individuals are divided into 10 age groups (0−9, 10−19, 20−24,
25−29, 30−39, 40−49, 50−59, 60−69, 70−79, 80+). The age-stratified rate of interaction are defined by
the country specific contacts matrix C from Ref. [7]. We compute the number of deaths on daily recovered
using as basis (see more information below) the age-stratified Infection Fatality Rate (IFR) from Ref. [8].
To account for possible delays due to hospitalization and reporting between the transition I → R and
actual death we record the number of deaths computed on the recovered of day t only after ∆ days. We
also introduce a seasonal term to capture modulation of the force of infection regulated by changes in
factors such as temperature and humidity [9, 10]. This means that in our simulation Rt is multiplied

by a rescaling factor si(t) defined as si(t) =
1
2

[(
1− αmin

αmax

)
sin

(
2π
365 (t− tmax,i) +

π
2

)
+ 1 + αmin

αmax

]
, where

i refers to the hemisphere considered, and tmax,i is the day associated to the maximum of the rescaling
function. For the northern hemisphere it is set to January 15th and to July 15th for the southern
hemisphere, while we consider no seasonal modulation in the tropical hemisphere. If a country extends
across multiple zones, the seasonal factor is a weighted average of the different si(t) according to the
population living in the different hemispheres. We fix αmax = 1 and consider αmin as a free parameter
(see more details below).

On top of this disease dynamics we model both vaccinations and the introduction of a second, more
transmissible virus strain. Individuals that received a single dose of vaccines are placed in the V1
compartment. For these individuals the force of infection is reduced by a factor (1−V ES1). Additionally,
also the IFR of V1 is reduced by a factor of (1 − V EM1). It follows that, in our simulations, the
overall efficacy of a single dose of vaccine against death is V E1 = 1 − (1 − V ES1)(1 − V EM1). After
receiving the second dose, V1 individuals transition to V2 compartment. Similarly, force of infection
and IFR of V2 is reduced, respectively, by (1 − V ES2) and (1 − V EM2), implying an overall efficacy
of V E2 = 1 − (1 − V ES2)(1 − V EM2). We also assume that vaccinated individuals are less infectious
by a factor (1 − V EI) [11]. We assume that S, L, and R individuals can receive the vaccines and that
the rollout proceeds prioritizing the elderly. This means that, in our model, vaccines are distributed in
decreasing age order until all 50+ individuals are vaccinated, after vaccines are distributed homogeneously
to the age groups 10− 50. We inform the model with the number of daily 1st and 2nd doses in different
countries from Ref. [12]. In this work we set V E1 = 80% (V ES1 = 70%), V E2 = 90% (V ES2 = 80%),
and V EI = 40% [11]. Since the effect of vaccines is not immediate, we introduce a delay of ∆V = 14days
between administration and vaccine protection.

We add specific L and I compartments to account for the introduction and emergence of the more
transmissible SARS-CoV-2 variant of concern Delta. Looking at genomic sequence data from Ref. [13–
15] we get a proxy date for its introduction (more details provided below). We imagine that Delta is ψ
times more transmissible than the strain circulating previously and has a shorter latent period ϵ−1

Delta =
3days [16]. We also assume that vaccines have a reduced efficacy against Delta VOC: V EDelta

1 = 70%
(V EDelta

S1 = 30%), V EDelta
2 = 90% (V EDelta

S2 = 60%) [11].

3 Model calibration

The free parameters of the model are calibrated through a rejection algorithm based on Approximate
Bayesian Computation [17, 18]. We define a prior distribution P (θ) on the free parameters θ. At each

step of the iterative algorithm, we sample a set of parameters θ̂ from P (θ) and an instance of the model
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Figure 1: Epidemic Model.

is generated using θ̂. Then, an output quantity of the model E′ is compared to the corresponding real
quantity E using an error metric S(E,E′): if S(E,E′) is smaller than a tolerance δ, θ̂ is accepted
otherwise is rejected. Repeating this procedure iteratively we obtain an approximation of the posterior
distribution of the parameters θ. In this work we consider weekly deaths as output quantity and the
weighted mean absolute percentage error (wMAPE) as distance metric. The free parameters and the
relative priors are:

• the transmission rate β; we explore uniformly values such that the Rt on the first simulation date
is between 0.6 and 2.0;

• the delay in deaths ∆ ∼ U(10, 35) [19];

• the seasonality parameter αmin ∼ U(0.5, 1.0) (0.5 indicates strong seasonality while 1.0 absence of
seasonality);

• the percentage of deaths reported ∼ U(5%, 100%);

• the initial number of infected individuals; we explore uniformly values between 1 and 20 times the
number of cases notified in the 7 days prior the beginning of the simulation (Infmult

start). We divide
these individuals in the infected compartments (L, I) proportionally to the time spent there by
individuals (ϵ−1 for L and µ−1 for I);

• the initial number of recovered; we explore uniformly values between 1 and 20 times the total
number of reported cases up to the start of the simulation (Recmult

start);

• the relative transmissibility advantage of the Delta VOC ψ ∼ U(1.0, 2.5)

• the date of the introduction of the Delta VOC. We consider values between 1 month before and
after the date when Delta was responsible for at least 5% of sequenced samples according to the
data from Ref. [13–15]. If genomics data are not available, we consider data from neighboring
proxy countries;

• the IFR multiplier ∼ U(0.5, 2.0).

The model is calibrated separately for each country during the period 2020/12/01 − 2021/10/01. In
Tab. 1 and Tab. 2 we report the posterior distributions (median and interquartile range) of the free
parameters.
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Sri Lanka Morocco Bolivia Indonesia

Rstart
t 0.88 [0.86, 0.91] 1.1 [1.09, 1.17] 1.33 [1.26, 1.41] 1.26 [1.22, 1.3]

∆ 21.0 [19.0, 26.0] 15.0 [12.0, 20.0] 22.0 [19.0, 27.0] 28.0 [25.0, 30.0]

αmin 0.7 [0.69, 0.73] 0.7 [0.56, 0.96] 0.66 [0.56, 0.77] 0.72 [0.66, 0.91]

Infmult
start 8.11 [2.63, 17.34] 6.61 [4.01, 12.04] 13.2 [8.88, 16.73] 18.59 [11.2, 29.41]

Recmult
start 32.75 [6.0, 41.66] 10.78 [7.4, 12.75] 15.54 [13.45, 19.93] 34.88 [14.85, 42.28]

Date intro. VOC 04/23 [04/20, 04/25] 04/13 [04/04, 04/27] 07/26 [07/04, 08/04] 04/17 [04/12, 05/03]

% deaths reported 55.0 [35.0, 76.0] 39.0 [28.0, 56.0] 88.0 [80.0, 95.0] 73.0 [58.0, 87.0]

IFR Multiplier 1.24 [0.84, 1.62] 1.02 [0.72, 1.42] 1.74 [1.58, 1.88] 1.46 [1.14, 1.72]

ψ 2.43 [2.23, 2.46] 1.81 [1.73, 2.16] 1.31 [1.17, 1.43] 1.41 [1.36, 1.53]

Table 1: Posterior distributions of free parameters obtained via ABC calibration (Sri Lanka,
Morocco, Bolivia, Indonesia). We show median and interquartile range of the different parameters.
Dates are represented with a mm− dd format and refer all to the year 2021.

Bangladesh Ukraine Mozambique Kenya

Rstart
t 1.13 [1.09, 1.19] 1.57 [1.51, 1.65] 1.57 [1.5, 1.6] 1.38 [1.36, 1.43]

∆ 19.0 [16.0, 26.0] 29.0 [29.0, 32.0] 29.0 [24.0, 31.0] 27.0 [25.0, 31.0]

αmin 0.68 [0.58, 0.8] 0.69 [0.65, 0.85] 0.71 [0.6, 0.87] 0.68 [0.6, 0.82]

Infmult
start 11.66 [7.55, 19.67] 1.2 [1.1, 1.29] 28.57 [20.6, 34.83] 27.78 [18.5, 34.87]

Recmult
start 27.49 [22.06, 35.27] 3.46 [3.35, 4.06] 30.09 [16.78, 37.06] 29.77 [17.65, 37.51]

Date intro. VOC 04/09 [03/24, 05/03] 05/18 [05/10, 05/31] 04/10 [03/28, 04/22] 04/19 [04/03, 05/04]

% deaths reported 15.5 [11.0, 23.0] 61.0 [45.0, 78.0] 5.0 [4.0, 8.0] 7.0 [5.0, 11.0]

IFR Multiplier 0.98 [0.7, 1.4] 1.24 [0.92, 1.56] 0.98 [0.7, 1.4] 0.98 [0.7, 1.4]

ψ 1.8 [1.65, 1.98] 1.52 [1.36, 1.67] 1.34 [1.24, 1.47] 1.27 [1.11, 1.41]

Table 2: Posterior distributions of free parameters obtained via ABC calibration
(Bangladesh, Ukraine, Mozambique, Kenya). We show median and interquartile range of the
different parameters. Dates are represented with a mm− dd format and refer all to the year 2021.
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4 Non-pharmaceutical interventions

We model the effects of non-pharmaceutical interventions on contacts using the COVID-19 Community
Mobility Report By Google [20]. The dataset provides, for various countries and spatial resolutions,
a percentage change in mobility r(t) on day t. We convert this quantity into a contacts reduction
parameters c(t) following the relation: c(t) = (1 + r(t)/100)2. Indeed, the number of contacts scale
with the square of the number of individuals. For example, a percentage reduction of −20% translates
into a contacts reduction factor of 0.64. In the simulations the contacts matrix C is multiplied by
this reduction parameter c(t) to account for the modulation in contacts induced by NPIs. The dataset
provides mobility changes with respect to specific locations. In this work, we compute r(t) we use the
average of the fields workplaces percent change from baseline, retail and recreation percent

change from baseline and transit stations percent change from baseline.

5 Counterfactual scenarios

We studied three counterfactual scenarios.

5.1 Vaccination rates of high income countries

We propose scenarios in which the eight LMIC considered manage the same vaccines availability of three
high income countries: Italy, United Kingdom, and United States. To do so, we simply run simulations
in which, instead of the actual vaccination data of the LMIC considered, we use the daily number of first
and second doses administered in the three high income countries. To account for different population
sizes among countries, we rescale the number of doses available in the counterfactual. For example,
consider the case when we apply to Mozambique the vaccination rates of Italy. If Italy administered
XItaly

t doses on day t, in the counterfactual scenario we administer X ′Mozambique
t = XItaly

t
NMozambique

NItaly
.

In Fig. 2 we show the cumulative number of doses given per 100 in these counterfactual vaccination
scenarios with respect to the data-driven case.

5.2 Earlier start of actual vaccinations

As a second counterfactual analysis, we anticipate the actual vaccination campaign in the eight LMIC in
order to match the start of vaccine rollout in high income countries. As new starting date we choose the
2020/12/27, when COVID-19 vaccinations started in most of European Union countries [21]. If the shift
of vaccination data causes missing data at the end of the time series, we fill it considering the average
number of doses administered during the last 7 days.

5.3 Additional NPIs

We consider simulations in which we modify the actual NPIs quantified with the COVID-19 Community
Mobility Report. More in detail, given the contacts reduction factor of week t c(t), in the new simulations
with X% additional NPIs the new factor will be c′(t) = c(t)(1−X/100). The additional level of NPIs is
applied to contacts reduction factors after week 50 of 2020, a proxy date for the start of vaccinations in
the high income countries considered (Italy, UK, and US). Indeed, our goal is to estimate the additional
amount of NPIs needed to match the number of deaths averted when applying vaccination rates of
these countries. Finally, the tightening of NPIs is sustained for a limited number of weeks. We explore
multiple scenarios with NPIs that are from 5% to 95% tougher and that are sustained for a number of
weeks between 4 and 40. In practice, we run additional simulations in which we modify the NPIs as just
described and we compute the fraction of averted deaths with respect to simulations with actual NPIs
and vaccine rolout.
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Figure 2: Cumulative number of doses given per 100 in different scenarios.
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6 Estimating the impact of the factual vaccination campaigns

In Figure 3-A we plot the evolution of the percentage of partially and fully vaccinated in the eight
countries up to 2021/10/01. As clear from the graphs, there is a high level of heterogeneity. We go from
fractions of fully vaccinated above 50% in Sri Lanka to values below 10% in Kenya and Mozambique.
Indonesia and Bolivia are around the middle between these two groups with a fraction of fully vaccinated
close to 20%. When interpreting the numbers it is important to recognize the differences in terms of
populations. Indonesia and Bangladesh are the largest with 273M and 165M people respectively. Sri
Lanka and Bolivia are the smallest with 21M and 11M residents respectively. Hence, the differences in
terms of the absolute number of vaccinated individuals and doses administered span several orders of
magnitudes among these countries.

In Figure 3-B, we show the real data of confirmed deaths (dark blue dots). In all countries, the latest
epidemic wave, caused by the Delta variant, was, unfortunately, the most deadly. Clearly in contrast
with observations across high income countries where, despite the increased transmissibility and severity,
the Delta wave was strongly limited by high vaccination rates with respect to the previous [22, 23]. This
observation is a first clear hint about the impact that vaccines could have had in these settings. In the
plots, we also report the median and confidence intervals of our fits (light green lines and shaded areas).
Across the board, the model can capture the evolution of the pandemic with accuracy. It is however
important to highlight the few misses. In the case of Sri Lanka the model produces a peak that is
slightly delayed with respect to observations. In the case of Ukraine, the models’ median trend does not
capture the latest increase of deaths, though the real data is still within confidence intervals. Each plot
reports also the model’s prediction of what would have happened in absence of vaccines (red dashed lines
and shaded areas). In particular, we run the model keeping all the same fitted parameters, NPIs, but
remove all doses administered. In doing so, we provide estimates of the impact of the actual vaccines in
each country. Again, we find large heterogeneity induced by the radically different vaccination coverage.
Countries that managed to vaccinate more, such as Morocco and Sri Lanka, show the largest differences
between the real evolution of confirmed deaths and those in the hypothetical scenario without vaccines
(i.e., baseline). Conversely, in countries such as Kenya, and Mozambique, that have a minimal vaccination
coverage, the differences are very small and barely visible. In Figure 3-C, we plot the averted deaths
thanks to the vaccination rollout with respect to the baseline without vaccines. While interpreting the
results and comparing countries it is important to stress how the model is fitted separately to each nation.
Hence, some values of the free parameters such as the transmissibility of the strains circulating might be
estimated as slightly different even though they refer to the same variants. For example, the posterior
distribution for the relative transmissibility advantage of the Delta variant with respect to Alpha peaks
at 1.8 in Morocco while at 2.4 in Sri Lanka. These are effective parameters selected based on the available
data. As such, they factor in many behavioral factors that are not explicitly modeled. Examples are
the relations among mobility reduction, contact rates modifications, and infections. These might differ
in different contexts/environments and affect the scenarios modelled here. The plot confirms the picture
emerging from panel B but provides a more clear estimation of the impact of vaccines. Namely, in Sri
Lanka and Morocco, the vaccine rollout averted about 70% of the deaths with respect to the baseline.
In Bolivia, Indonesia, and Bangladesh the numbers are lower but still significant. Finally, in the case
of Ukraine, Kenya, and Mozambique the doses administered are very limited but their impact is still
positive. For Ukraine, we note that the confidence intervals show how the impact of vaccines cannot
be fully discerned from stochastic effects (see the negative values). It is important to stress this point.
The plot does not suggest that the country would have been better off without vaccines. However, the
number of doses administered is small and their impact in some simulations is close to the stochastic
effects.
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Figure 3: Vaccination campaign and its effect. A) Evolution in time of percentage of fully and
partially vaccinated individuals in different countries. B) Weekly deaths as reported, as simulated by
our model with data-driven vaccines administration, and as simulated by our model without vaccines
administered. C) Estimated percentage (median and 90% CI) of deaths averted by vaccines with respect
to the baseline simulations without vaccines.
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7 Averted deaths - Counterfactual scenarios

In Tab. 3 and Tab. 4 are reported for the different countries considered the number of deaths avoided in
the counterfactual scenarios with respect to simulations with data-driven vaccine rollouts. More in detail,
Tab. 3 shows the number of averted deaths without accounting for underreporting. On the other hand,
the figures reported Tab. 4 take into account the biases of reporting estimated via the ABC procedure.
Therefore, the numbers reported in Tab. 4 represent the real estimated number of potentially averted
deaths in counterfactual scenarios.
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